Myhill.thy
author wu
Fri, 07 Jan 2011 14:25:23 +0000
changeset 29 c64241fa4dff
parent 28 cef2893f353b
child 30 f5db9e08effc
permissions -rw-r--r--
Beautifying of the Other Direction is finished.

theory MyhillNerode
  imports "Main" "List_Prefix"
begin

text {* sequential composition of languages *}
definition Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where 
  "L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"

inductive_set
  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
  for L :: "string set"
where
  start[intro]: "[] \<in> L\<star>"
| step[intro]:  "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>" 

lemma seq_union_distrib:
  "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)"
by (auto simp:Seq_def)

lemma seq_intro:
  "\<lbrakk>x \<in> A; y \<in> B\<rbrakk> \<Longrightarrow> x @ y \<in> A ;; B "
by (auto simp:Seq_def)

lemma seq_assoc:
  "(A ;; B) ;; C = A ;; (B ;; C)"
apply(auto simp:Seq_def)
apply blast
by (metis append_assoc)

theorem ardens_revised:
  assumes nemp: "[] \<notin> A"
  shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)"
proof
  assume eq: "X = B ;; A\<star>"
  have "A\<star> =  {[]} \<union> A\<star> ;; A" sorry 
  then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" unfolding Seq_def by simp
  also have "\<dots> = B \<union> B ;; (A\<star> ;; A)"  unfolding Seq_def by auto
  also have "\<dots> = B \<union> (B ;; A\<star>) ;; A"  unfolding Seq_def
    by (auto) (metis append_assoc)+
  finally show "X = X ;; A \<union> B" using eq by auto
next
  assume "X = X ;; A \<union> B"
  then have "B \<subseteq> X" "X ;; A \<subseteq> X" by auto
  thus "X = B ;; A\<star>" sorry
qed

datatype rexp =
  NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

consts L:: "'a \<Rightarrow> string set"

overloading L_rexp \<equiv> "L::  rexp \<Rightarrow> string set"
begin

fun
  L_rexp :: "rexp \<Rightarrow> string set"
where
    "L_rexp (NULL) = {}"
  | "L_rexp (EMPTY) = {[]}"
  | "L_rexp (CHAR c) = {[c]}"
  | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)"
  | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
  | "L_rexp (STAR r) = (L_rexp r)\<star>"
end

definition 
  folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
where
  "folds f z S \<equiv> SOME x. fold_graph f z S x"

lemma folds_alt_simp [simp]:
  "finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)"
apply (rule set_ext, simp add:folds_def)
apply (rule someI2_ex, erule finite_imp_fold_graph)
by (erule fold_graph.induct, auto)

lemma [simp]:
  shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
by simp

definition
  str_eq ("_ \<approx>_ _")
where
  "x \<approx>Lang y \<equiv> (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)"

definition
  str_eq_rel ("\<approx>_")
where
  "\<approx>Lang \<equiv> {(x, y). x \<approx>Lang y}"

definition
  final :: "string set \<Rightarrow> string set \<Rightarrow> bool"
where
  "final X Lang \<equiv> (X \<in> UNIV // \<approx>Lang) \<and> (\<forall>s \<in> X. s \<in> Lang)"

lemma lang_is_union_of_finals: 
  "Lang = \<Union> {X. final X Lang}"
proof 
  show "Lang \<subseteq> \<Union> {X. final X Lang}"
  proof
    fix x
    assume "x \<in> Lang"   
    thus "x \<in> \<Union> {X. final X Lang}"
      apply (simp, rule_tac x = "(\<approx>Lang) `` {x}" in exI)      
      apply (auto simp:final_def quotient_def Image_def str_eq_rel_def str_eq_def)
      by (drule_tac x = "[]" in spec, simp)
  qed
next
  show "\<Union>{X. final X Lang} \<subseteq> Lang"
    by (auto simp:final_def)
qed

section {* finite \<Rightarrow> regular *}

datatype rhs_item = 
   Lam "rexp"                           (* Lambda *)
 | Trn "string set" "rexp"              (* Transition *)

fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)"
where "the_Trn (Trn Y r) = (Y, r)"

fun the_r :: "rhs_item \<Rightarrow> rexp"
where "the_r (Lam r) = r"

overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set"
begin
fun L_rhs_e:: "rhs_item \<Rightarrow> string set"
where
  "L_rhs_e (Lam r) = L r" |
  "L_rhs_e (Trn X r) = X ;; L r"
end

overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set"
begin
fun L_rhs:: "rhs_item set \<Rightarrow> string set"
where
  "L_rhs rhs = \<Union> (L ` rhs)"
end

definition
  "init_rhs CS X \<equiv>  if ([] \<in> X)
                    then {Lam EMPTY} \<union> {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}
                    else {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"

definition
  "eqs CS \<equiv> {(X, init_rhs CS X)|X.  X \<in> CS}"

(************ arden's lemma variation ********************)

definition
  "items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}"

definition
  "lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}"

definition 
  "rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)"

definition
  "rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)"

fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item"
where
  "attach_rexp r' (Lam r)   = Lam (SEQ r r')"
| "attach_rexp r' (Trn X r) = Trn X (SEQ r r')"

definition
  "append_rhs_rexp rhs r \<equiv> (attach_rexp r) ` rhs"

definition 
  "arden_variate X rhs \<equiv> append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))"


(*********** substitution of ES *************)

text {* rhs_subst rhs X xrhs: substitude all occurence of X in rhs with xrhs *}
definition 
  "rhs_subst rhs X xrhs \<equiv> (rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))"

definition
  "eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"

text {*
  Inv: Invairance of the equation-system, during the decrease of the equation-system, Inv holds.
*}

definition 
  "distinct_equas ES \<equiv> \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"

definition 
  "valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)"

definition 
  "rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)"

definition 
  "ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs"

definition 
  "non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}"

definition
  "finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs"

definition 
  "classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}"

definition
  "lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"

definition 
  "self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES"

definition 
  "Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> 
            non_empty ES \<and> finite_rhs ES \<and> self_contained ES"

lemma wf_iter [rule_format]: 
  fixes f
  assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and>  (f(e'), f(e)) \<in> less_than)"
  shows pe:     "P e \<longrightarrow> (\<exists> e'. P e' \<and>  Q e')"
proof(induct e rule: wf_induct 
           [OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify)
  fix x 
  assume h [rule_format]: 
    "\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')"
    and px: "P x"
  show "\<exists>e'. P e' \<and> Q e'"
  proof(cases "Q x")
    assume "Q x" with px show ?thesis by blast
  next
    assume nq: "\<not> Q x"
    from step [OF px nq]
    obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto
    show ?thesis
    proof(rule h)
      from ltf show "(e', x) \<in> inv_image less_than f" 
	by (simp add:inv_image_def)
    next
      from pe' show "P e'" .
    qed
  qed
qed

text {* ************* basic properties of definitions above ************************ *}

lemma L_rhs_union_distrib:
  " L (A::rhs_item set) \<union> L B = L (A \<union> B)"
by simp

lemma finite_snd_Trn:
  assumes finite:"finite rhs"
  shows "finite {r\<^isub>2. Trn Y r\<^isub>2 \<in> rhs}" (is "finite ?B")
proof-
  def rhs' \<equiv> "{e \<in> rhs. \<exists> r. e = Trn Y r}"
  have "?B = (snd o the_Trn) ` rhs'" using rhs'_def by (auto simp:image_def)
  moreover have "finite rhs'" using finite rhs'_def by auto
  ultimately show ?thesis by simp
qed

lemma rexp_of_empty:
  assumes finite:"finite rhs"
  and nonempty:"rhs_nonempty rhs"
  shows "[] \<notin> L (rexp_of rhs X)"
using finite nonempty rhs_nonempty_def
by (drule_tac finite_snd_Trn[where Y = X], auto simp:rexp_of_def items_of_def)

lemma [intro!]:
  "P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto

lemma finite_items_of:
  "finite rhs \<Longrightarrow> finite (items_of rhs X)"
by (auto simp:items_of_def intro:finite_subset)

lemma lang_of_rexp_of:
  assumes finite:"finite rhs"
  shows "L (items_of rhs X) = X ;; (L (rexp_of rhs X))"
proof -
  have "finite ((snd \<circ> the_Trn) ` items_of rhs X)" using finite_items_of[OF finite] by auto
  thus ?thesis
    apply (auto simp:rexp_of_def Seq_def items_of_def)
    apply (rule_tac x = s1 in exI, rule_tac x = s2 in exI, auto)
    by (rule_tac x= "Trn X r" in exI, auto simp:Seq_def)
qed

lemma rexp_of_lam_eq_lam_set:
  assumes finite: "finite rhs"
  shows "L (rexp_of_lam rhs) = L (lam_of rhs)"
proof -
  have "finite (the_r ` {Lam r |r. Lam r \<in> rhs})" using finite
    by (rule_tac finite_imageI, auto intro:finite_subset)
  thus ?thesis by (auto simp:rexp_of_lam_def lam_of_def)
qed

lemma [simp]:
  " L (attach_rexp r xb) = L xb ;; L r"
apply (cases xb, auto simp:Seq_def)
by (rule_tac x = "s1 @ s1a" in exI, rule_tac x = s2a in exI,auto simp:Seq_def)

lemma lang_of_append_rhs:
  "L (append_rhs_rexp rhs r) = L rhs ;; L r"
apply (auto simp:append_rhs_rexp_def image_def)
apply (auto simp:Seq_def)
apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def)
by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def)

lemma classes_of_union_distrib:
  "classes_of A \<union> classes_of B = classes_of (A \<union> B)"
by (auto simp add:classes_of_def)

lemma lefts_of_union_distrib:
  "lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)"
by (auto simp:lefts_of_def)


text {* ******BEGIN: proving the initial equation-system satisfies Inv ****** *}

lemma defined_by_str:
  "\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}"
by (auto simp:quotient_def Image_def str_eq_rel_def str_eq_def)

lemma every_eqclass_has_transition:
  assumes has_str: "s @ [c] \<in> X"
  and     in_CS:   "X \<in> UNIV // (\<approx>Lang)"
  obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y"
proof -
  def Y \<equiv> "(\<approx>Lang) `` {s}"
  have "Y \<in> UNIV // (\<approx>Lang)" 
    unfolding Y_def quotient_def by auto
  moreover
  have "X = (\<approx>Lang) `` {s @ [c]}" 
    using has_str in_CS defined_by_str by blast
  then have "Y ;; {[c]} \<subseteq> X" 
    unfolding Y_def Image_def Seq_def
    unfolding str_eq_rel_def
    by (auto) (simp add: str_eq_def)
  moreover
  have "s \<in> Y" unfolding Y_def 
    unfolding Image_def str_eq_rel_def str_eq_def by simp
  ultimately show thesis by (blast intro: that)
qed

lemma l_eq_r_in_eqs:
  assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
  shows "X = L xrhs"
proof 
  show "X \<subseteq> L xrhs"
  proof
    fix x
    assume "(1)": "x \<in> X"
    show "x \<in> L xrhs"          
    proof (cases "x = []")
      assume empty: "x = []"
      thus ?thesis using X_in_eqs "(1)"
        by (auto simp:eqs_def init_rhs_def)
    next
      assume not_empty: "x \<noteq> []"
      then obtain clist c where decom: "x = clist @ [c]"
        by (case_tac x rule:rev_cases, auto)
      have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def)
      then obtain Y 
        where "Y \<in> UNIV // (\<approx>Lang)" 
        and "Y ;; {[c]} \<subseteq> X"
        and "clist \<in> Y"
        using decom "(1)" every_eqclass_has_transition by blast
      hence "x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y ;; {[c]} \<subseteq> X}"
        using "(1)" decom
        by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def)
      thus ?thesis using X_in_eqs "(1)"
        by (simp add:eqs_def init_rhs_def)
    qed
  qed
next
  show "L xrhs \<subseteq> X" using X_in_eqs
    by (auto simp:eqs_def init_rhs_def) 
qed

lemma finite_init_rhs: 
  assumes finite: "finite CS"
  shows "finite (init_rhs CS X)"
proof-
  have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A")
  proof -
    def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" 
    def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"
    have "finite (CS \<times> (UNIV::char set))" using finite by auto
    hence "finite S" using S_def 
      by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto)
    moreover have "?A = h ` S" by (auto simp: S_def h_def image_def)
    ultimately show ?thesis 
      by auto
  qed
  thus ?thesis by (simp add:init_rhs_def)
qed

lemma init_ES_satisfy_Inv:
  assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
  shows "Inv (eqs (UNIV // (\<approx>Lang)))"
proof -
  have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS
    by (simp add:eqs_def)
  moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))"     
    by (simp add:distinct_equas_def eqs_def)
  moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))"
    by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps)
  moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))"
    using l_eq_r_in_eqs by (simp add:valid_eqns_def)
  moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))"
    by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def str_eq_def)
  moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))"
    using finite_init_rhs[OF finite_CS] 
    by (auto simp:finite_rhs_def eqs_def)
  moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))"
    by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def)
  ultimately show ?thesis by (simp add:Inv_def)
qed

text {* ****** BEGIN: proving every equation-system's iteration step satisfies Inv ***** *}

lemma arden_variate_keeps_eq:
  assumes l_eq_r: "X = L rhs"
  and not_empty: "[] \<notin> L (rexp_of rhs X)"
  and finite: "finite rhs"
  shows "X = L (arden_variate X rhs)"
proof -
  def A \<equiv> "L (rexp_of rhs X)"
  def b \<equiv> "rhs - items_of rhs X"
  def B \<equiv> "L b" 
  have "X = B ;; A\<star>"
  proof-
    have "rhs = items_of rhs X \<union> b" by (auto simp:b_def items_of_def)
    hence "L rhs = L(items_of rhs X \<union> b)" by simp
    hence "L rhs = L(items_of rhs X) \<union> B" by (simp only:L_rhs_union_distrib B_def)
    with lang_of_rexp_of
    have "L rhs = X ;; A \<union> B " using finite by (simp only:B_def b_def A_def)
    thus ?thesis
      using l_eq_r not_empty
      apply (drule_tac B = B and X = X in ardens_revised)
      by (auto simp:A_def simp del:L_rhs.simps)
  qed
  moreover have "L (arden_variate X rhs) = (B ;; A\<star>)" (is "?L = ?R")
    by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs 
                  B_def A_def b_def L_rexp.simps seq_union_distrib)
   ultimately show ?thesis by simp
qed 

lemma append_keeps_finite:
  "finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)"
by (auto simp:append_rhs_rexp_def)

lemma arden_variate_keeps_finite:
  "finite rhs \<Longrightarrow> finite (arden_variate X rhs)"
by (auto simp:arden_variate_def append_keeps_finite)

lemma append_keeps_nonempty:
  "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)"
apply (auto simp:rhs_nonempty_def append_rhs_rexp_def)
by (case_tac x, auto simp:Seq_def)

lemma nonempty_set_sub:
  "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)"
by (auto simp:rhs_nonempty_def)

lemma nonempty_set_union:
  "\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')"
by (auto simp:rhs_nonempty_def)

lemma arden_variate_keeps_nonempty:
  "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)"
by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub)


lemma rhs_subst_keeps_nonempty:
  "\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)"
by (simp only:rhs_subst_def append_keeps_nonempty  nonempty_set_union nonempty_set_sub)

lemma rhs_subst_keeps_eq:
  assumes substor: "X = L xrhs"
  and finite: "finite rhs"
  shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right")
proof-
  def A \<equiv> "L (rhs - items_of rhs X)"
  have "?Left = A \<union> L (append_rhs_rexp xrhs (rexp_of rhs X))"
    by (simp only:rhs_subst_def L_rhs_union_distrib A_def)
  moreover have "?Right = A \<union> L (items_of rhs X)"
  proof-
    have "rhs = (rhs - items_of rhs X) \<union> (items_of rhs X)" by (auto simp:items_of_def)
    thus ?thesis by (simp only:L_rhs_union_distrib A_def)
  qed
  moreover have "L (append_rhs_rexp xrhs (rexp_of rhs X)) = L (items_of rhs X)" 
    using finite substor  by (simp only:lang_of_append_rhs lang_of_rexp_of)
  ultimately show ?thesis by simp
qed

lemma rhs_subst_keeps_finite_rhs:
  "\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)"
by (auto simp:rhs_subst_def append_keeps_finite)

lemma eqs_subst_keeps_finite:
  assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)"
  shows "finite (eqs_subst ES Y yrhs)"
proof -
  have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}" (is "finite ?A")
  proof-
    def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}"
    def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)"
    have "finite (h ` eqns')" using finite h_def eqns'_def by auto
    moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def)
    ultimately show ?thesis by auto      
  qed
  thus ?thesis by (simp add:eqs_subst_def)
qed

lemma eqs_subst_keeps_finite_rhs:
  "\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)"
by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def)

lemma append_rhs_keeps_cls:
  "classes_of (append_rhs_rexp rhs r) = classes_of rhs"
apply (auto simp:classes_of_def append_rhs_rexp_def)
apply (case_tac xa, auto simp:image_def)
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)

lemma arden_variate_removes_cl:
  "classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}"
apply (simp add:arden_variate_def append_rhs_keeps_cls items_of_def)
by (auto simp:classes_of_def)

lemma lefts_of_keeps_cls:
  "lefts_of (eqs_subst ES Y yrhs) = lefts_of ES"
by (auto simp:lefts_of_def eqs_subst_def)

lemma rhs_subst_updates_cls:
  "X \<notin> classes_of xrhs \<Longrightarrow> classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}"
apply (simp only:rhs_subst_def append_rhs_keeps_cls classes_of_union_distrib[THEN sym])
by (auto simp:classes_of_def items_of_def)

lemma eqs_subst_keeps_self_contained:
  fixes Y
  assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A")
  shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" (is "self_contained ?B")
proof-
  { fix X xrhs'
    assume "(X, xrhs') \<in> ?B"
    then obtain xrhs 
      where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)"
      and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast)    
    have "classes_of xrhs' \<subseteq> lefts_of ?B"
    proof-
      have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def)
      moreover have "classes_of xrhs' \<subseteq> lefts_of ES"
      proof-
        have "classes_of xrhs' \<subseteq> classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}"
        proof-
          have "Y \<notin> classes_of (arden_variate Y yrhs)" using arden_variate_removes_cl by simp
          thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls)
        qed
        moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc
          apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym])
          by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def)
        moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}" using sc
          by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def)
        ultimately show ?thesis by auto
      qed
      ultimately show ?thesis by simp
    qed
  } thus ?thesis by (auto simp only:eqs_subst_def self_contained_def)
qed

lemma eqs_subst_satisfy_Inv:
  assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})"
  shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))"
proof -  
  have finite_yrhs: "finite yrhs" using Inv_ES by (auto simp:Inv_def finite_rhs_def)
  have nonempty_yrhs: "rhs_nonempty yrhs" using Inv_ES by (auto simp:Inv_def ardenable_def)
  have Y_eq_yrhs: "Y = L yrhs" using Inv_ES by (simp only:Inv_def valid_eqns_def, blast)

  have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" using Inv_ES
    by (auto simp:distinct_equas_def eqs_subst_def Inv_def)
  moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" using Inv_ES 
    by (simp add:Inv_def eqs_subst_keeps_finite)
  moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))"
  proof-
    have "finite_rhs ES" using Inv_ES by (simp add:Inv_def finite_rhs_def)
    moreover have "finite (arden_variate Y yrhs)"
    proof -
      have "finite yrhs" using Inv_ES by (auto simp:Inv_def finite_rhs_def)
      thus ?thesis using arden_variate_keeps_finite by simp
    qed
    ultimately show ?thesis by (simp add:eqs_subst_keeps_finite_rhs)
  qed
  moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))"
  proof - 
    { fix X rhs
      assume "(X, rhs) \<in> ES"
      hence "rhs_nonempty rhs"  using prems Inv_ES  by (simp add:Inv_def ardenable_def)
      with nonempty_yrhs have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))"
        by (simp add:nonempty_yrhs rhs_subst_keeps_nonempty arden_variate_keeps_nonempty)
    } thus ?thesis by (auto simp add:ardenable_def eqs_subst_def)
  qed
  moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))"
  proof-
    have "Y = L (arden_variate Y yrhs)" using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs      
        by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+)
    thus ?thesis using Inv_ES 
      by (clarsimp simp add:valid_eqns_def eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def
                   simp del:L_rhs.simps)
  qed
  moreover have non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))"
    using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def)
  moreover have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"
    using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def)
  ultimately show ?thesis using Inv_ES by (simp add:Inv_def)
qed

lemma eqs_subst_card_le: 
  assumes finite: "finite (ES::(string set \<times> rhs_item set) set)"
  shows "card (eqs_subst ES Y yrhs) <= card ES"
proof-
  def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)"
  have "eqs_subst ES Y yrhs = f ` ES" 
    apply (auto simp:eqs_subst_def f_def image_def)
    by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+)
  thus ?thesis using finite by (auto intro:card_image_le)
qed

lemma eqs_subst_cls_remains: 
  "(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)"
by (auto simp:eqs_subst_def)

lemma card_noteq_1_has_more:
  assumes card:"card S \<noteq> 1"
  and e_in: "e \<in> S"
  and finite: "finite S"
  obtains e' where "e' \<in> S \<and> e \<noteq> e'" 
proof-
  have "card (S - {e}) > 0"
  proof -
    have "card S > 1" using card e_in finite  by (case_tac "card S", auto) 
    thus ?thesis using finite e_in by auto
  qed
  hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp)
  thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto
qed

lemma iteration_step: 
  assumes Inv_ES: "Inv ES"
  and    X_in_ES: "(X, xrhs) \<in> ES"
  and    not_T: "card ES \<noteq> 1"
  shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and> (card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'")
proof -
  have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def)
  then obtain Y yrhs where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" 
    using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto)
  def ES' == "ES - {(Y, yrhs)}"
  let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)"
  have "?P ?ES''"
  proof -
    have "Inv ?ES''" using Y_in_ES Inv_ES
      by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb)
    moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''"  using not_eq X_in_ES
      by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def)
    moreover have "(card ?ES'', card ES) \<in> less_than" 
    proof -
      have "finite ES'" using finite_ES ES'_def by auto
      moreover have "card ES' < card ES" using finite_ES Y_in_ES
        by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less)
      ultimately show ?thesis 
        by (auto dest:eqs_subst_card_le elim:le_less_trans)
    qed
    ultimately show ?thesis by simp
  qed
  thus ?thesis by blast
qed

text {* ***** END: proving every equation-system's iteration step satisfies Inv ************** *}

lemma iteration_conc: 
  assumes history: "Inv ES"
  and    X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES"
  shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1" (is "\<exists> ES'. ?P ES'")
proof (cases "card ES = 1")
  case True
  thus ?thesis using history X_in_ES
    by blast
next
  case False  
  thus ?thesis using history iteration_step X_in_ES
    by (rule_tac f = card in wf_iter, auto)
qed
  
lemma last_cl_exists_rexp:
  assumes ES_single: "ES = {(X, xrhs)}" 
  and Inv_ES: "Inv ES"
  shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r")
proof-
  let ?A = "arden_variate X xrhs"
  have "?P (rexp_of_lam ?A)"
  proof -
    have "L (rexp_of_lam ?A) = L (lam_of ?A)"
    proof(rule rexp_of_lam_eq_lam_set)
      show "finite (arden_variate X xrhs)" using Inv_ES ES_single 
        by (rule_tac arden_variate_keeps_finite, auto simp add:Inv_def finite_rhs_def)
    qed
    also have "\<dots> = L ?A"
    proof-
      have "lam_of ?A = ?A"
      proof-
        have "classes_of ?A = {}" using Inv_ES ES_single
          by (simp add:arden_variate_removes_cl self_contained_def Inv_def lefts_of_def) 
        thus ?thesis by (auto simp only:lam_of_def classes_of_def, case_tac x, auto)
      qed
      thus ?thesis by simp
    qed
    also have "\<dots> = X"
    proof(rule arden_variate_keeps_eq [THEN sym])
      show "X = L xrhs" using Inv_ES ES_single by (auto simp only:Inv_def valid_eqns_def)  
    next
      from Inv_ES ES_single show "[] \<notin> L (rexp_of xrhs X)"
        by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def)
    next
      from Inv_ES ES_single show "finite xrhs" by (simp add:Inv_def finite_rhs_def)
    qed
    finally show ?thesis by simp
  qed
  thus ?thesis by auto
qed
   
lemma every_eqcl_has_reg: 
  assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
  and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))"
  shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r")
proof -
  from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV  // (\<approx>Lang)))"
    by (auto simp:eqs_def init_rhs_def)
  then obtain ES xrhs where Inv_ES: "Inv ES" 
    and X_in_ES: "(X, xrhs) \<in> ES"
    and card_ES: "card ES = 1"
    using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc
    by blast
  hence ES_single_equa: "ES = {(X, xrhs)}" 
    by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff) 
  thus ?thesis using Inv_ES
    by (rule last_cl_exists_rexp)
qed

theorem hard_direction: 
  assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
  shows   "\<exists> (reg::rexp). Lang = L reg"
proof -
  have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg" 
    using finite_CS every_eqcl_has_reg by blast
  then obtain f where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)" 
    by (auto dest:bchoice)
  def rs \<equiv> "f ` {X. final X Lang}"  
  have "Lang = \<Union> {X. final X Lang}" using lang_is_union_of_finals by simp
  also have "\<dots> = L (folds ALT NULL rs)" 
  proof -
    have "finite {X. final X Lang}" using finite_CS by (auto simp:final_def)
    thus ?thesis  using f_prop by (auto simp:rs_def final_def)
  qed
  finally show ?thesis by blast
qed 

section {* regular \<Rightarrow> finite*}

lemma quot_empty_subset:
  "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}"
proof
  fix x
  assume "x \<in> UNIV // \<approx>{[]}"
  then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" unfolding quotient_def Image_def by blast
  show "x \<in> {{[]}, UNIV - {[]}}" 
  proof (cases "y = []")
    case True with h
    have "x = {[]}" by (auto simp:str_eq_rel_def str_eq_def)
    thus ?thesis by simp
  next
    case False with h
    have "x = UNIV - {[]}" by (auto simp:str_eq_rel_def str_eq_def)
    thus ?thesis by simp
  qed
qed

lemma quot_char_subset:
  "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"
proof 
  fix x 
  assume "x \<in> UNIV // \<approx>{[c]}"
  then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}" unfolding quotient_def Image_def by blast
  show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}"
  proof -
    { assume "y = []" hence "x = {[]}" using h by (auto simp:str_eq_rel_def str_eq_def)
    } moreover {
      assume "y = [c]" hence "x = {[c]}" using h 
        by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def str_eq_def)
    } moreover {
      assume "y \<noteq> []" and "y \<noteq> [c]"
      hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto)
      moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])" by (case_tac p, auto)
      ultimately have "x = UNIV - {[],[c]}" using h
        by (auto simp add:str_eq_rel_def str_eq_def)
    } ultimately show ?thesis by blast
  qed
qed

text {* *************** Some common lemmas for following ALT, SEQ & STAR cases ******************* *}

lemma finite_tag_imageI: 
  "finite (range tag) \<Longrightarrow> finite (((op `) tag) ` S)"
apply (rule_tac B = "Pow (tag ` UNIV)" in finite_subset)
by (auto simp add:image_def Pow_def)

lemma eq_class_equalI:
  "\<lbrakk>X \<in> UNIV // \<approx>lang; Y \<in> UNIV // \<approx>lang; x \<in> X; y \<in> Y; x \<approx>lang y\<rbrakk> \<Longrightarrow> X = Y"
by (auto simp:quotient_def str_eq_rel_def str_eq_def)

lemma tag_image_injI:
  assumes str_inj: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>lang n"
  shows "inj_on ((op `) tag) (UNIV // \<approx>lang)"
proof-
  { fix X Y
    assume X_in: "X \<in> UNIV // \<approx>lang"
      and  Y_in: "Y \<in> UNIV // \<approx>lang"
      and  tag_eq: "tag ` X = tag ` Y"
    then obtain x y where "x \<in> X" and "y \<in> Y" and "tag x = tag y"
      unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def
      apply simp by blast
    with X_in Y_in str_inj
    have "X = Y" by (rule_tac eq_class_equalI, simp+)
  }
  thus ?thesis unfolding inj_on_def by auto
qed

text {* **************** the SEQ case ************************ *}

(* list_diff:: list substract, once different return tailer *)
fun list_diff :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix "-" 51)
where
  "list_diff []  xs = []" |
  "list_diff (x#xs) [] = x#xs" |
  "list_diff (x#xs) (y#ys) = (if x = y then list_diff xs ys else (x#xs))"

lemma [simp]: "(x @ y) - x = y"
apply (induct x)
by (case_tac y, simp+)

lemma [simp]: "x - x = []"
by (induct x, auto)

lemma [simp]: "x = xa @ y \<Longrightarrow> x - xa = y "
by (induct x, auto)

lemma [simp]: "x - [] = x"
by (induct x, auto)

lemma [simp]: "(x - y = []) \<Longrightarrow> (x \<le> y)"
proof-   
  have "\<exists>xa. x = xa @ (x - y) \<and> xa \<le> y"
    apply (rule list_diff.induct[of _ x y], simp+)
    by (clarsimp, rule_tac x = "y # xa" in exI, simp+)
  thus "(x - y = []) \<Longrightarrow> (x \<le> y)" by simp
qed

lemma diff_prefix:
  "\<lbrakk>c \<le> a - b; b \<le> a\<rbrakk> \<Longrightarrow> b @ c \<le> a"
by (auto elim:prefixE)

lemma diff_diff_appd: 
  "\<lbrakk>c < a - b; b < a\<rbrakk> \<Longrightarrow> (a - b) - c = a - (b @ c)"
apply (clarsimp simp:strict_prefix_def)
by (drule diff_prefix, auto elim:prefixE)

lemma app_eq_cases[rule_format]:
  "\<forall> x . x @ y = m @ n \<longrightarrow> (x \<le> m \<or> m \<le> x)"
apply (induct y, simp)
apply (clarify, drule_tac x = "x @ [a]" in spec)
by (clarsimp, auto simp:prefix_def)

lemma app_eq_dest:
  "x @ y = m @ n \<Longrightarrow> (x \<le> m \<and> (m - x) @ n = y) \<or> (m \<le> x \<and> (x - m) @ y = n)"
by (frule_tac app_eq_cases, auto elim:prefixE)

definition 
  "tag_str_SEQ L\<^isub>1 L\<^isub>2 x \<equiv> ((\<approx>L\<^isub>1) `` {x}, {(\<approx>L\<^isub>2) `` {x - xa}| xa.  xa \<le> x \<and> xa \<in> L\<^isub>1})"

lemma tag_str_seq_range_finite:
  "\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk> \<Longrightarrow> finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))"
apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (Pow (UNIV // \<approx>L\<^isub>2))" in finite_subset)
by (auto simp:tag_str_SEQ_def Image_def quotient_def split:if_splits)

lemma append_seq_elim:
  assumes "x @ y \<in> L\<^isub>1 ;; L\<^isub>2"
  shows "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2) \<or> (\<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2)"
proof-
  from assms obtain s\<^isub>1 s\<^isub>2 where "x @ y = s\<^isub>1 @ s\<^isub>2" and in_seq: "s\<^isub>1 \<in> L\<^isub>1 \<and> s\<^isub>2 \<in> L\<^isub>2" 
    by (auto simp:Seq_def)
  hence "(x \<le> s\<^isub>1 \<and> (s\<^isub>1 - x) @ s\<^isub>2 = y) \<or> (s\<^isub>1 \<le> x \<and> (x - s\<^isub>1) @ y = s\<^isub>2)"
    using app_eq_dest by auto
  moreover have "\<lbrakk>x \<le> s\<^isub>1; (s\<^isub>1 - x) @ s\<^isub>2 = y\<rbrakk> \<Longrightarrow> \<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2" using in_seq
    by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE)
  moreover have "\<lbrakk>s\<^isub>1 \<le> x; (x - s\<^isub>1) @ y = s\<^isub>2\<rbrakk> \<Longrightarrow> \<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2" using in_seq
    by (rule_tac x = s\<^isub>1 in exI, auto)
  ultimately show ?thesis by blast
qed

lemma tag_str_SEQ_injI:
  "tag_str_SEQ L\<^isub>1 L\<^isub>2 m = tag_str_SEQ L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 ;; L\<^isub>2) n"
proof-
  { fix x y z
    assume xz_in_seq: "x @ z \<in> L\<^isub>1 ;; L\<^isub>2"
    and tag_xy: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y"
    have"y @ z \<in> L\<^isub>1 ;; L\<^isub>2" 
    proof-
      have "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2) \<or> (\<exists> za \<le> z. (x @ za) \<in> L\<^isub>1 \<and> (z - za) \<in> L\<^isub>2)"
        using xz_in_seq append_seq_elim by simp
      moreover {
        fix xa
        assume h1: "xa \<le> x" and h2: "xa \<in> L\<^isub>1" and h3: "(x - xa) @ z \<in> L\<^isub>2"
        obtain ya where "ya \<le> y" and "ya \<in> L\<^isub>1" and "(y - ya) @ z \<in> L\<^isub>2" 
        proof -
          have "\<exists> ya.  ya \<le> y \<and> ya \<in> L\<^isub>1 \<and> (x - xa) \<approx>L\<^isub>2 (y - ya)"
          proof -
            have "{\<approx>L\<^isub>2 `` {x - xa} |xa. xa \<le> x \<and> xa \<in> L\<^isub>1} = 
                  {\<approx>L\<^isub>2 `` {y - xa} |xa. xa \<le> y \<and> xa \<in> L\<^isub>1}" (is "?Left = ?Right") 
              using h1 tag_xy by (auto simp:tag_str_SEQ_def)
            moreover have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Left" using h1 h2 by auto
            ultimately have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Right" by simp
            thus ?thesis by (auto simp:Image_def str_eq_rel_def str_eq_def)
          qed
          with prems show ?thesis by (auto simp:str_eq_rel_def str_eq_def)
        qed
        hence "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" by (erule_tac prefixE, auto simp:Seq_def)          
      } moreover {
        fix za
        assume h1: "za \<le> z" and h2: "(x @ za) \<in> L\<^isub>1" and h3: "z - za \<in> L\<^isub>2"
        hence "y @ za \<in> L\<^isub>1"
        proof-
          have "\<approx>L\<^isub>1 `` {x} = \<approx>L\<^isub>1 `` {y}" using h1 tag_xy by (auto simp:tag_str_SEQ_def)
          with h2 show ?thesis by (auto simp:Image_def str_eq_rel_def str_eq_def) 
        qed
        with h1 h3 have "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE)
      }
      ultimately show ?thesis by blast
    qed
  } thus "tag_str_SEQ L\<^isub>1 L\<^isub>2 m = tag_str_SEQ L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 ;; L\<^isub>2) n" 
    by (auto simp add: str_eq_def str_eq_rel_def)
qed 

lemma quot_seq_finiteI:
  assumes finite1: "finite (UNIV // \<approx>(L\<^isub>1::string set))"
  and finite2: "finite (UNIV // \<approx>L\<^isub>2)"
  shows "finite (UNIV // \<approx>(L\<^isub>1 ;; L\<^isub>2))"
proof(rule_tac f = "(op `) (tag_str_SEQ L\<^isub>1 L\<^isub>2)" in finite_imageD)
  show "finite (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2) ` UNIV // \<approx>L\<^isub>1 ;; L\<^isub>2)" using finite1 finite2
    by (auto intro:finite_tag_imageI tag_str_seq_range_finite)
next
  show  "inj_on (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2)) (UNIV // \<approx>L\<^isub>1 ;; L\<^isub>2)"
    apply (rule tag_image_injI)
    apply (rule tag_str_SEQ_injI)
    by (auto intro:tag_image_injI tag_str_SEQ_injI simp:)
qed

text {* **************** the ALT case ************************ *}

definition 
  "tag_str_ALT L\<^isub>1 L\<^isub>2 (x::string) \<equiv> ((\<approx>L\<^isub>1) `` {x}, (\<approx>L\<^isub>2) `` {x})"

lemma tag_str_alt_range_finite:
  "\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk> \<Longrightarrow> finite (range (tag_str_ALT L\<^isub>1 L\<^isub>2))"
apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (UNIV // \<approx>L\<^isub>2)" in finite_subset)
by (auto simp:tag_str_ALT_def Image_def quotient_def)

lemma quot_union_finiteI:
  assumes finite1: "finite (UNIV // \<approx>(L\<^isub>1::string set))"
  and finite2: "finite (UNIV // \<approx>L\<^isub>2)"
  shows "finite (UNIV // \<approx>(L\<^isub>1 \<union> L\<^isub>2))"
proof(rule_tac f = "(op `) (tag_str_ALT L\<^isub>1 L\<^isub>2)" in finite_imageD)
  show "finite (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2) ` UNIV // \<approx>L\<^isub>1 \<union> L\<^isub>2)" using finite1 finite2
    by (auto intro:finite_tag_imageI tag_str_alt_range_finite)
next
  show "inj_on (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2)) (UNIV // \<approx>L\<^isub>1 \<union> L\<^isub>2)"
  proof-
    have "\<And>m n. tag_str_ALT L\<^isub>1 L\<^isub>2 m = tag_str_ALT L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 \<union> L\<^isub>2) n"
      unfolding tag_str_ALT_def str_eq_def Image_def str_eq_rel_def by auto
    thus ?thesis by (auto intro:tag_image_injI)
  qed
qed

text {* **************** the Star case ****************** *}

lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> (\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))"
proof (induct rule:finite.induct)
  case emptyI thus ?case by simp
next
  case (insertI A a)
  show ?case
  proof (cases "A = {}")
    case True thus ?thesis by (rule_tac x = a in bexI, auto)
  next
    case False
    with prems obtain max where h1: "max \<in> A" and h2: "\<forall>a\<in>A. f a \<le> f max" by blast
    show ?thesis
    proof (cases "f a \<le> f max")
      assume "f a \<le> f max"
      with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto)
    next
      assume "\<not> (f a \<le> f max)"
      thus ?thesis using h2 by (rule_tac x = a in bexI, auto)
    qed
  qed
qed

lemma star_intro1[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>"
by (erule Star.induct, auto)

lemma star_intro2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>"
by (drule step[of y lang "[]"], auto simp:start)

lemma star_intro3[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>"
by (erule Star.induct, auto intro:star_intro2)

lemma star_decom: "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> lang \<and> b \<in> lang\<star>)"
by (induct x rule: Star.induct, simp, blast)

lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}"
apply (induct x rule:rev_induct, simp)
apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}")
by (auto simp:strict_prefix_def)

definition 
  "tag_str_STAR L\<^isub>1 x \<equiv> {(\<approx>L\<^isub>1) `` {x - xa} | xa. xa < x \<and> xa \<in> L\<^isub>1\<star>}"

lemma tag_str_star_range_finite:
  "finite (UNIV // \<approx>L\<^isub>1) \<Longrightarrow> finite (range (tag_str_STAR L\<^isub>1))"
apply (rule_tac B = "Pow (UNIV // \<approx>L\<^isub>1)" in finite_subset)
by (auto simp:tag_str_STAR_def Image_def quotient_def split:if_splits)

lemma tag_str_STAR_injI:
  "tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \<Longrightarrow> m \<approx>(L\<^isub>1\<star>) n"
proof-
  { fix x y z
    assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>"
    and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y"
    have "y @ z \<in> L\<^isub>1\<star>"
    proof(cases "x = []")
      case True
      with tag_xy have "y = []" by (auto simp:tag_str_STAR_def strict_prefix_def)
      thus ?thesis using xz_in_star True by simp
    next
      case False
      obtain x_max where h1: "x_max < x" and h2: "x_max \<in> L\<^isub>1\<star>" and h3: "(x - x_max) @ z \<in> L\<^isub>1\<star>" 
        and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star> \<longrightarrow> length xa \<le> length x_max"
      proof-
        let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}"
        have "finite ?S"
          by (rule_tac B = "{xa. xa < x}" in finite_subset, auto simp:finite_strict_prefix_set)
        moreover have "?S \<noteq> {}" using False xz_in_star
          by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def)
        ultimately have "\<exists> max \<in> ?S. \<forall> a \<in> ?S. length a \<le> length max" using finite_set_has_max by blast
        with prems show ?thesis by blast
      qed
      obtain ya where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" and h7: "(x - x_max) \<approx>L\<^isub>1 (y - ya)"
      proof-
        from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = 
          {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right")
          by (auto simp:tag_str_STAR_def)
        moreover have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?left" using h1 h2 by auto
        ultimately have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?right" by simp
        with prems show ?thesis apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast
      qed      
      have "(y - ya) @ z \<in> L\<^isub>1\<star>" 
      proof-
        from h3 h1 obtain a b where a_in: "a \<in> L\<^isub>1" and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" 
          and ab_max: "(x - x_max) @ z = a @ b" 
          by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE)
        have "(x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z" 
        proof -
          have "((x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z) \<or> (a < (x - x_max) \<and> ((x - x_max) - a) @ z = b)" 
            using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def)
          moreover { 
            assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b"
            have "False"
            proof -
              let ?x_max' = "x_max @ a"
              have "?x_max' < x" using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) 
              moreover have "?x_max' \<in> L\<^isub>1\<star>" using a_in h2 by (simp add:star_intro3) 
              moreover have "(x - ?x_max') @ z \<in> L\<^isub>1\<star>" using b_eqs b_in np h1 by (simp add:diff_diff_appd)
              moreover have "\<not> (length ?x_max' \<le> length x_max)" using a_neq by simp
              ultimately show ?thesis using h4 by blast
            qed 
          } ultimately show ?thesis by blast
        qed
        then obtain za where z_decom: "z = za @ b" and x_za: "(x - x_max) @ za \<in> L\<^isub>1" 
          using a_in by (auto elim:prefixE)        
        from x_za h7 have "(y - ya) @ za \<in> L\<^isub>1" by (auto simp:str_eq_def)
        with z_decom b_in show ?thesis by (auto dest!:step[of "(y - ya) @ za"])
      qed
      with h5 h6 show ?thesis by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE)
    qed      
  } thus "tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \<Longrightarrow> m \<approx>(L\<^isub>1\<star>) n"
    by (auto simp add:str_eq_def str_eq_rel_def)
qed

lemma quot_star_finiteI:
  assumes finite: "finite (UNIV // \<approx>(L\<^isub>1::string set))"
  shows "finite (UNIV // \<approx>(L\<^isub>1\<star>))"
proof(rule_tac f = "(op `) (tag_str_STAR L\<^isub>1)" in finite_imageD)
  show "finite (op ` (tag_str_STAR L\<^isub>1) ` UNIV // \<approx>L\<^isub>1\<star>)" using finite
    by (auto intro:finite_tag_imageI tag_str_star_range_finite)
next
  show "inj_on (op ` (tag_str_STAR L\<^isub>1)) (UNIV // \<approx>L\<^isub>1\<star>)"
    by (auto intro:tag_image_injI tag_str_STAR_injI)
qed

text {* **************** the Other Direction ************ *}

lemma other_direction:
  "Lang = L (r::rexp) \<Longrightarrow> finite (UNIV // (\<approx>Lang))"
proof (induct arbitrary:Lang rule:rexp.induct)
  case NULL
  have "UNIV // (\<approx>{}) \<subseteq> {UNIV} "
    by (auto simp:quotient_def str_eq_rel_def str_eq_def)
  with prems show "?case" by (auto intro:finite_subset)
next
  case EMPTY
  have "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}" by (rule quot_empty_subset)
  with prems show ?case by (auto intro:finite_subset)
next
  case (CHAR c)
  have "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" by (rule quot_char_subset)
  with prems show ?case by (auto intro:finite_subset)
next
  case (SEQ r\<^isub>1 r\<^isub>2)
  have "\<lbrakk>finite (UNIV // \<approx>(L r\<^isub>1)); finite (UNIV // \<approx>(L r\<^isub>2))\<rbrakk> \<Longrightarrow> finite (UNIV // \<approx>(L r\<^isub>1 ;; L r\<^isub>2))"
    by (erule quot_seq_finiteI, simp)
  with prems show ?case by simp
next
  case (ALT r\<^isub>1 r\<^isub>2)
  have "\<lbrakk>finite (UNIV // \<approx>(L r\<^isub>1)); finite (UNIV // \<approx>(L r\<^isub>2))\<rbrakk> \<Longrightarrow> finite (UNIV // \<approx>(L r\<^isub>1 \<union> L r\<^isub>2))"
    by (erule quot_union_finiteI, simp)
  with prems show ?case by simp  
next
  case (STAR r)
  have "finite (UNIV // \<approx>(L r)) \<Longrightarrow> finite (UNIV // \<approx>((L r)\<star>))"
    by (erule quot_star_finiteI)
  with prems show ?case by simp
qed 

end