Myhill.thy
author urbanc
Fri, 28 Jan 2011 19:17:40 +0000
changeset 47 bea2466a6084
parent 45 7aa6c20e6d31
child 48 61d9684a557a
permissions -rw-r--r--
slightly tuned the main lemma and the finiteness proofs

theory Myhill
  imports Myhill_1
begin

section {* Direction: @{text "regular language \<Rightarrow>finite partition"} *}

subsection {* The scheme for this direction *}

text {* 
  The following convenient notation @{text "x \<approx>Lang y"} means:
  string @{text "x"} and @{text "y"} are equivalent with respect to 
  language @{text "Lang"}.
  *}

definition
  str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _")
where
  "x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)"

text {*
  The basic idea to show the finiteness of the partition induced by relation @{text "\<approx>Lang"}
  is to attach a tag @{text "tag(x)"} to every string @{text "x"}, the set of tags are carfully 
  choosen, so that the range of tagging function @{text "tag"} (denoted @{text "range(tag)"}) is finite. 
  If strings with the same tag are equivlent with respect @{text "\<approx>Lang"},
  i.e. @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"} (this property is named `injectivity' in the following), 
  then it can be proved that: the partition given rise by @{text "(\<approx>Lang)"} is finite. 
  
  There are two arguments for this. The first goes as the following:
  \begin{enumerate}
    \item First, the tagging function @{text "tag"} induces an equivalent relation @{text "(=tag=)"} 
          (defiintion of @{text "f_eq_rel"} and lemma @{text "equiv_f_eq_rel"}).
    \item It is shown that: if the range of @{text "tag"} is finite, 
           the partition given rise by @{text "(=tag=)"} is finite (lemma @{text "finite_eq_f_rel"}).
    \item It is proved that if equivalent relation @{text "R1"} is more refined than @{text "R2"}
           (expressed as @{text "R1 \<subseteq> R2"}),
           and the partition induced by @{text "R1"} is finite, then the partition induced by @{text "R2"}
           is finite as well (lemma @{text "refined_partition_finite"}).
    \item The injectivity assumption @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"} implies that
            @{text "(=tag=)"} is more refined than @{text "(\<approx>Lang)"}.
    \item Combining the points above, we have: the partition induced by language @{text "Lang"}
          is finite (lemma @{text "tag_finite_imageD"}).
  \end{enumerate}
*}

definition 
   f_eq_rel ("=_=")
where
   "(=f=) = {(x, y) | x y. f x = f y}"

lemma equiv_f_eq_rel:"equiv UNIV (=f=)"
  by (auto simp:equiv_def f_eq_rel_def refl_on_def sym_def trans_def)

lemma finite_range_image: "finite (range f) \<Longrightarrow> finite (f ` A)"
  by (rule_tac B = "{y. \<exists>x. y = f x}" in finite_subset, auto simp:image_def)

lemma finite_eq_f_rel:
  assumes rng_fnt: "finite (range tag)"
  shows "finite (UNIV // (=tag=))"
proof -
  let "?f" =  "op ` tag" and ?A = "(UNIV // (=tag=))"
  show ?thesis
  proof (rule_tac f = "?f" and A = ?A in finite_imageD) 
    -- {* 
      The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}:
      *}
    show "finite (?f ` ?A)" 
    proof -
      have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def)
      moreover from rng_fnt have "finite (Pow (range tag))" by simp
      ultimately have "finite (range ?f)"
        by (auto simp only:image_def intro:finite_subset)
      from finite_range_image [OF this] show ?thesis .
    qed
  next
    -- {* 
      The injectivity of @{text "f"}-image is a consequence of the definition of @{text "(=tag=)"}:
      *}
    show "inj_on ?f ?A" 
    proof-
      { fix X Y
        assume X_in: "X \<in> ?A"
          and  Y_in: "Y \<in> ?A"
          and  tag_eq: "?f X = ?f Y"
        have "X = Y"
        proof -
          from X_in Y_in tag_eq 
          obtain x y 
            where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y"
            unfolding quotient_def Image_def str_eq_rel_def 
                                   str_eq_def image_def f_eq_rel_def
            apply simp by blast
          with X_in Y_in show ?thesis 
            by (auto simp:quotient_def str_eq_rel_def str_eq_def f_eq_rel_def) 
        qed
      } thus ?thesis unfolding inj_on_def by auto
    qed
  qed
qed

lemma finite_image_finite: "\<lbrakk>\<forall> x \<in> A. f x \<in> B; finite B\<rbrakk> \<Longrightarrow> finite (f ` A)"
  by (rule finite_subset [of _ B], auto)

lemma refined_partition_finite:
  fixes R1 R2 A
  assumes fnt: "finite (A // R1)"
  and refined: "R1 \<subseteq> R2"
  and eq1: "equiv A R1" and eq2: "equiv A R2"
  shows "finite (A // R2)"
proof -
  let ?f = "\<lambda> X. {R1 `` {x} | x. x \<in> X}" 
    and ?A = "(A // R2)" and ?B = "(A // R1)"
  show ?thesis
  proof(rule_tac f = ?f and A = ?A in finite_imageD)
    show "finite (?f ` ?A)"
    proof(rule finite_subset [of _ "Pow ?B"])
      from fnt show "finite (Pow (A // R1))" by simp
    next
      from eq2
      show " ?f ` A // R2 \<subseteq> Pow ?B"
        apply (unfold image_def Pow_def quotient_def, auto)
        by (rule_tac x = xb in bexI, simp, 
                 unfold equiv_def sym_def refl_on_def, blast)
    qed
  next
    show "inj_on ?f ?A"
    proof -
      { fix X Y
        assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A" 
          and eq_f: "?f X = ?f Y" (is "?L = ?R")
        have "X = Y" using X_in
        proof(rule quotientE)
          fix x
          assume "X = R2 `` {x}" and "x \<in> A" with eq2
          have x_in: "x \<in> X" 
            by (unfold equiv_def quotient_def refl_on_def, auto)
          with eq_f have "R1 `` {x} \<in> ?R" by auto
          then obtain y where 
            y_in: "y \<in> Y" and eq_r: "R1 `` {x} = R1 ``{y}" by auto
          have "(x, y) \<in> R1"
          proof -
            from x_in X_in y_in Y_in eq2
            have "x \<in> A" and "y \<in> A" 
              by (unfold equiv_def quotient_def refl_on_def, auto)
            from eq_equiv_class_iff [OF eq1 this] and eq_r
            show ?thesis by simp
          qed
          with refined have xy_r2: "(x, y) \<in> R2" by auto
          from quotient_eqI [OF eq2 X_in Y_in x_in y_in this]
          show ?thesis .
        qed
      } thus ?thesis by (auto simp:inj_on_def)
    qed
  qed
qed

lemma equiv_lang_eq: "equiv UNIV (\<approx>Lang)"
  apply (unfold equiv_def str_eq_rel_def sym_def refl_on_def trans_def)
  by blast

lemma tag_finite_imageD:
  fixes tag
  assumes rng_fnt: "finite (range tag)" 
  -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *}
  and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>Lang n"
  -- {* And strings with same tag are equivalent *}
  shows "finite (UNIV // (\<approx>Lang))"
proof -
  let ?R1 = "(=tag=)"
  show ?thesis
  proof(rule_tac refined_partition_finite [of _ ?R1])
    from finite_eq_f_rel [OF rng_fnt]
     show "finite (UNIV // =tag=)" . 
   next
     from same_tag_eqvt
     show "(=tag=) \<subseteq> (\<approx>Lang)"
       by (auto simp:f_eq_rel_def str_eq_def)
   next
     from equiv_f_eq_rel
     show "equiv UNIV (=tag=)" by blast
   next
     from equiv_lang_eq
     show "equiv UNIV (\<approx>Lang)" by blast
  qed
qed

text {*
  A more concise, but less intelligible argument for @{text "tag_finite_imageD"} 
  is given as the following. The basic idea is still using standard library 
  lemma @{thm [source] "finite_imageD"}:
  \[
  @{thm "finite_imageD" [no_vars]}
  \]
  which says: if the image of injective function @{text "f"} over set @{text "A"} is 
  finite, then @{text "A"} must be finte, as we did in the lemmas above.
  *}

lemma 
  fixes tag
  assumes rng_fnt: "finite (range tag)" 
  -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *}
  and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>Lang n"
  -- {* And strings with same tag are equivalent *}
  shows "finite (UNIV // (\<approx>Lang))"
  -- {* Then the partition generated by @{text "(\<approx>Lang)"} is finite. *}
proof -
  -- {* The particular @{text "f"} and @{text "A"} used in @{thm [source] "finite_imageD"} are:*}
  let "?f" =  "op ` tag" and ?A = "(UNIV // \<approx>Lang)"
  show ?thesis
  proof (rule_tac f = "?f" and A = ?A in finite_imageD) 
    -- {* 
      The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}:
      *}
    show "finite (?f ` ?A)" 
    proof -
      have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def)
      moreover from rng_fnt have "finite (Pow (range tag))" by simp
      ultimately have "finite (range ?f)"
        by (auto simp only:image_def intro:finite_subset)
      from finite_range_image [OF this] show ?thesis .
    qed
  next
    -- {* 
      The injectivity of @{text "f"} is the consequence of assumption @{text "same_tag_eqvt"}:
      *}
    show "inj_on ?f ?A" 
    proof-
      { fix X Y
        assume X_in: "X \<in> ?A"
          and  Y_in: "Y \<in> ?A"
          and  tag_eq: "?f X = ?f Y"
        have "X = Y"
        proof -
          from X_in Y_in tag_eq 
          obtain x y where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y"
            unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def
            apply simp by blast 
          from same_tag_eqvt [OF eq_tg] have "x \<approx>Lang y" .
          with X_in Y_in x_in y_in
          show ?thesis by (auto simp:quotient_def str_eq_rel_def str_eq_def) 
        qed
      } thus ?thesis unfolding inj_on_def by auto
    qed
  qed
qed

subsection {* Lemmas for basic cases *}

subsection {* The case for @{const "NULL"} *}

lemma quot_null_eq:
  shows "(UNIV // \<approx>{}) = ({UNIV}::lang set)"
  unfolding quotient_def Image_def str_eq_rel_def by auto

lemma quot_null_finiteI [intro]:
  shows "finite ((UNIV // \<approx>{})::lang set)"
unfolding quot_null_eq by simp


subsection {* The case for @{const "EMPTY"} *}


lemma quot_empty_subset:
  "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}"
proof
  fix x
  assume "x \<in> UNIV // \<approx>{[]}"
  then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" 
    unfolding quotient_def Image_def by blast
  show "x \<in> {{[]}, UNIV - {[]}}"
  proof (cases "y = []")
    case True with h
    have "x = {[]}" by (auto simp: str_eq_rel_def)
    thus ?thesis by simp
  next
    case False with h
    have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def)
    thus ?thesis by simp
  qed
qed

lemma quot_empty_finiteI [intro]:
  shows "finite (UNIV // (\<approx>{[]}))"
by (rule finite_subset[OF quot_empty_subset]) (simp)


subsection {* The case for @{const "CHAR"} *}

lemma quot_char_subset:
  "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"
proof 
  fix x 
  assume "x \<in> UNIV // \<approx>{[c]}"
  then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}" 
    unfolding quotient_def Image_def by blast
  show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}"
  proof -
    { assume "y = []" hence "x = {[]}" using h 
        by (auto simp:str_eq_rel_def)
    } moreover {
      assume "y = [c]" hence "x = {[c]}" using h 
        by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def)
    } moreover {
      assume "y \<noteq> []" and "y \<noteq> [c]"
      hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto)
      moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])" 
        by (case_tac p, auto)
      ultimately have "x = UNIV - {[],[c]}" using h
        by (auto simp add:str_eq_rel_def)
    } ultimately show ?thesis by blast
  qed
qed

lemma quot_char_finiteI [intro]:
  shows "finite (UNIV // (\<approx>{[c]}))"
by (rule finite_subset[OF quot_char_subset]) (simp)



subsection {* The case for @{text "SEQ"}*}

definition 
  tag_str_SEQ :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang set)"
where
  "tag_str_SEQ L1 L2 = (\<lambda>x. (\<approx>L1 `` {x}, {(\<approx>L2 `` {x - xa}) | xa.  xa \<le> x \<and> xa \<in> L1}))"


lemma append_seq_elim:
  assumes "x @ y \<in> L\<^isub>1 ;; L\<^isub>2"
  shows "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2) \<or> 
          (\<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2)"
proof-
  from assms obtain s\<^isub>1 s\<^isub>2 
    where "x @ y = s\<^isub>1 @ s\<^isub>2" 
    and in_seq: "s\<^isub>1 \<in> L\<^isub>1 \<and> s\<^isub>2 \<in> L\<^isub>2" 
    by (auto simp:Seq_def)
  hence "(x \<le> s\<^isub>1 \<and> (s\<^isub>1 - x) @ s\<^isub>2 = y) \<or> (s\<^isub>1 \<le> x \<and> (x - s\<^isub>1) @ y = s\<^isub>2)"
    using app_eq_dest by auto
  moreover have "\<lbrakk>x \<le> s\<^isub>1; (s\<^isub>1 - x) @ s\<^isub>2 = y\<rbrakk> \<Longrightarrow> 
                       \<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2" 
    using in_seq by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE)
  moreover have "\<lbrakk>s\<^isub>1 \<le> x; (x - s\<^isub>1) @ y = s\<^isub>2\<rbrakk> \<Longrightarrow> 
                    \<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2" 
    using in_seq by (rule_tac x = s\<^isub>1 in exI, auto)
  ultimately show ?thesis by blast
qed

lemma tag_str_SEQ_injI:
  "tag_str_SEQ L\<^isub>1 L\<^isub>2 m = tag_str_SEQ L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 ;; L\<^isub>2) n"
proof-
  { fix x y z
    assume xz_in_seq: "x @ z \<in> L\<^isub>1 ;; L\<^isub>2"
    and tag_xy: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y"
    have"y @ z \<in> L\<^isub>1 ;; L\<^isub>2" 
    proof-
      have "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2) \<or> 
               (\<exists> za \<le> z. (x @ za) \<in> L\<^isub>1 \<and> (z - za) \<in> L\<^isub>2)"
        using xz_in_seq append_seq_elim by simp
      moreover {
        fix xa
        assume h1: "xa \<le> x" and h2: "xa \<in> L\<^isub>1" and h3: "(x - xa) @ z \<in> L\<^isub>2"
        obtain ya where "ya \<le> y" and "ya \<in> L\<^isub>1" and "(y - ya) @ z \<in> L\<^isub>2" 
        proof -
          have "\<exists> ya.  ya \<le> y \<and> ya \<in> L\<^isub>1 \<and> (x - xa) \<approx>L\<^isub>2 (y - ya)"
          proof -
            have "{\<approx>L\<^isub>2 `` {x - xa} |xa. xa \<le> x \<and> xa \<in> L\<^isub>1} = 
                  {\<approx>L\<^isub>2 `` {y - xa} |xa. xa \<le> y \<and> xa \<in> L\<^isub>1}" 
                          (is "?Left = ?Right") 
              using h1 tag_xy by (auto simp:tag_str_SEQ_def)
            moreover have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Left" using h1 h2 by auto
            ultimately have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Right" by simp
            thus ?thesis by (auto simp:Image_def str_eq_rel_def str_eq_def)
          qed
          with prems show ?thesis by (auto simp:str_eq_rel_def str_eq_def)
        qed
        hence "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" by (erule_tac prefixE, auto simp:Seq_def)          
      } moreover {
        fix za
        assume h1: "za \<le> z" and h2: "(x @ za) \<in> L\<^isub>1" and h3: "z - za \<in> L\<^isub>2"
        hence "y @ za \<in> L\<^isub>1"
        proof-
          have "\<approx>L\<^isub>1 `` {x} = \<approx>L\<^isub>1 `` {y}" 
            using h1 tag_xy by (auto simp:tag_str_SEQ_def)
          with h2 show ?thesis 
            by (auto simp:Image_def str_eq_rel_def str_eq_def) 
        qed
        with h1 h3 have "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" 
          by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE)
      }
      ultimately show ?thesis by blast
    qed
  } thus "tag_str_SEQ L\<^isub>1 L\<^isub>2 m = tag_str_SEQ L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 ;; L\<^isub>2) n" 
    by (auto simp add: str_eq_def str_eq_rel_def)
qed 

lemma quot_seq_finiteI [intro]:
  fixes L1 L2::"lang"
  assumes fin1: "finite (UNIV // \<approx>L1)" 
  and     fin2: "finite (UNIV // \<approx>L2)" 
  shows "finite (UNIV // \<approx>(L1 ;; L2))"
proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD)
  show "\<And>x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \<Longrightarrow> x \<approx>(L1 ;; L2) y"
    by (rule tag_str_SEQ_injI)
next
  have *: "finite ((UNIV // \<approx>L1) \<times> (Pow (UNIV // \<approx>L2)))" 
    using fin1 fin2 by auto
  show "finite (range (tag_str_SEQ L1 L2))" 
    unfolding tag_str_SEQ_def
    apply(rule finite_subset[OF _ *])
    unfolding quotient_def
    by auto
qed

subsection {* The case for @{const ALT} *}

definition 
  tag_str_ALT :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang)"
where
  "tag_str_ALT L1 L2 = (\<lambda>x. (\<approx>L1 `` {x}, \<approx>L2 `` {x}))"


lemma quot_union_finiteI [intro]:
  fixes L1 L2::"lang"
  assumes finite1: "finite (UNIV // \<approx>L1)"
  and     finite2: "finite (UNIV // \<approx>L2)"
  shows "finite (UNIV // \<approx>(L1 \<union> L2))"
proof (rule_tac tag = "tag_str_ALT L1 L2" in tag_finite_imageD)
  show "\<And>x y. tag_str_ALT L1 L2 x = tag_str_ALT L1 L2 y \<Longrightarrow> x \<approx>(L1 \<union> L2) y"
    unfolding tag_str_ALT_def 
    unfolding str_eq_def
    unfolding Image_def 
    unfolding str_eq_rel_def
    by auto
next
  have *: "finite ((UNIV // \<approx>L1) \<times> (UNIV // \<approx>L2))" 
    using finite1 finite2 by auto
  show "finite (range (tag_str_ALT L1 L2))"
    unfolding tag_str_ALT_def
    apply(rule finite_subset[OF _ *])
    unfolding quotient_def
    by auto
qed

subsection {* The case for @{const "STAR"} *}

text {* 
  This turned out to be the trickiest case. 
  Any string @{text "x"} in language @{text "L\<^isub>1\<star>"}, 
  can be splited into a prefix @{text "xa \<in> L\<^isub>1\<star>"} and a suffix @{text "x - xa \<in> L\<^isub>1"}.
  For one such @{text "x"}, there can be many such splits. The tagging of @{text "x"} is then 
  defined by collecting the @{text "L\<^isub>1"}-state of the suffixes from every possible split.
*} 

definition 
  tag_str_STAR :: "lang \<Rightarrow> string \<Rightarrow> lang set"
where
  "tag_str_STAR L1 = (\<lambda>x. {\<approx>L1 `` {x - xa} | xa. xa < x \<and> xa \<in> L1\<star>})"



text {* A technical lemma. *}
lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> 
           (\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))"
proof (induct rule:finite.induct)
  case emptyI thus ?case by simp
next
  case (insertI A a)
  show ?case
  proof (cases "A = {}")
    case True thus ?thesis by (rule_tac x = a in bexI, auto)
  next
    case False
    with prems obtain max 
      where h1: "max \<in> A" 
      and h2: "\<forall>a\<in>A. f a \<le> f max" by blast
    show ?thesis
    proof (cases "f a \<le> f max")
      assume "f a \<le> f max"
      with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto)
    next
      assume "\<not> (f a \<le> f max)"
      thus ?thesis using h2 by (rule_tac x = a in bexI, auto)
    qed
  qed
qed


text {* Technical lemma. *}
lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}"
apply (induct x rule:rev_induct, simp)
apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}")
by (auto simp:strict_prefix_def)


text {*
  The following lemma @{text "tag_str_STAR_injI"} establishes the injectivity of 
  the tagging function for case @{text "STAR"}.
  *}

lemma tag_str_STAR_injI:
  fixes v w
  assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w"
  shows "(v::string) \<approx>(L\<^isub>1\<star>) w"
proof-
    -- {* 
    \begin{minipage}{0.9\textwidth}
    According to the definition of @{text "\<approx>Lang"}, 
    proving @{text "v \<approx>(L\<^isub>1\<star>) w"} amounts to
    showing: for any string @{text "u"},
    if @{text "v @ u \<in> (L\<^isub>1\<star>)"} then @{text "w @ u \<in> (L\<^isub>1\<star>)"} and vice versa.
    The reasoning pattern for both directions are the same, as derived
    in the following:
    \end{minipage}
    *}
  { fix x y z
    assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" 
      and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y"
    have "y @ z \<in> L\<^isub>1\<star>"
    proof(cases "x = []")
      -- {* 
        The degenerated case when @{text "x"} is a null string is easy to prove:
        *}
      case True
      with tag_xy have "y = []" 
        by (auto simp:tag_str_STAR_def strict_prefix_def)
      thus ?thesis using xz_in_star True by simp
    next
        -- {*
        \begin{minipage}{0.9\textwidth}
        The case when @{text "x"} is not null, and
        @{text "x @ z"} is in @{text "L\<^isub>1\<star>"}, 
        \end{minipage}
        *}
      case False
      obtain x_max 
        where h1: "x_max < x" 
        and h2: "x_max \<in> L\<^isub>1\<star>" 
        and h3: "(x - x_max) @ z \<in> L\<^isub>1\<star>" 
        and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star> 
                                     \<longrightarrow> length xa \<le> length x_max"
      proof-
        let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}"
        have "finite ?S"
          by (rule_tac B = "{xa. xa < x}" in finite_subset, 
                                auto simp:finite_strict_prefix_set)
        moreover have "?S \<noteq> {}" using False xz_in_star
          by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def)
        ultimately have "\<exists> max \<in> ?S. \<forall> a \<in> ?S. length a \<le> length max" 
          using finite_set_has_max by blast
        with prems show ?thesis by blast
      qed
      obtain ya 
        where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" and h7: "(x - x_max) \<approx>L\<^isub>1 (y - ya)"
      proof-
        from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = 
          {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right")
          by (auto simp:tag_str_STAR_def)
        moreover have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?left" using h1 h2 by auto
        ultimately have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?right" by simp
        with prems show ?thesis apply 
          (simp add:Image_def str_eq_rel_def str_eq_def) by blast
      qed      
      have "(y - ya) @ z \<in> L\<^isub>1\<star>" 
      proof-
        from h3 h1 obtain a b where a_in: "a \<in> L\<^isub>1" 
          and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" 
          and ab_max: "(x - x_max) @ z = a @ b" 
          by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE)
        have "(x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z" 
        proof -
          have "((x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z) \<or> 
                            (a < (x - x_max) \<and> ((x - x_max) - a) @ z = b)" 
            using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def)
          moreover { 
            assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b"
            have "False"
            proof -
              let ?x_max' = "x_max @ a"
              have "?x_max' < x" 
                using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) 
              moreover have "?x_max' \<in> L\<^isub>1\<star>" 
                using a_in h2 by (simp add:star_intro3) 
              moreover have "(x - ?x_max') @ z \<in> L\<^isub>1\<star>" 
                using b_eqs b_in np h1 by (simp add:diff_diff_appd)
              moreover have "\<not> (length ?x_max' \<le> length x_max)" 
                using a_neq by simp
              ultimately show ?thesis using h4 by blast
            qed 
          } ultimately show ?thesis by blast
        qed
        then obtain za where z_decom: "z = za @ b" 
          and x_za: "(x - x_max) @ za \<in> L\<^isub>1" 
          using a_in by (auto elim:prefixE)        
        from x_za h7 have "(y - ya) @ za \<in> L\<^isub>1" 
          by (auto simp:str_eq_def str_eq_rel_def)
        with z_decom b_in show ?thesis by (auto dest!:step[of "(y - ya) @ za"])
      qed
      with h5 h6 show ?thesis 
        by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE)
    qed
  } 
  -- {* By instantiating the reasoning pattern just derived for both directions:*} 
  from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]
  -- {* The thesis is proved as a trival consequence: *} 
    show  ?thesis by (unfold str_eq_def str_eq_rel_def, blast)
qed

lemma quot_star_finiteI [intro]:
  fixes L1::"lang"
  assumes finite1: "finite (UNIV // \<approx>L1)"
  shows "finite (UNIV // \<approx>(L1\<star>))"
proof (rule_tac tag = "tag_str_STAR L1" in tag_finite_imageD)
  show "\<And>x y. tag_str_STAR L1 x = tag_str_STAR L1 y \<Longrightarrow> x \<approx>(L1\<star>) y"
    by (rule tag_str_STAR_injI)
next
  have *: "finite (Pow (UNIV // \<approx>L1))" 
    using finite1 by auto
  show "finite (range (tag_str_STAR L1))"
    unfolding tag_str_STAR_def
    apply(rule finite_subset[OF _ *])
    unfolding quotient_def
    by auto
qed


lemma rexp_imp_finite:
  fixes r::"rexp"
  shows "finite (UNIV // \<approx>(L r))"
by (induct r) (auto)

end

(*
lemma refined_quotient_union_eq:
  assumes refined: "R1 \<subseteq> R2"
  and eq1: "equiv A R1" and eq2: "equiv A R2"
  and y_in: "y \<in> A"
  shows "\<Union>{R1 `` {x} | x. x \<in> (R2 `` {y})} = R2 `` {y}"
proof
  show "\<Union>{R1 `` {x} |x. x \<in> R2 `` {y}} \<subseteq> R2 `` {y}" (is "?L \<subseteq> ?R")
  proof -
    { fix z
      assume zl: "z \<in> ?L" and nzr: "z \<notin> ?R"
      have "False"
      proof -
        from zl and eq1 eq2 and y_in 
        obtain x where xy2: "(x, y) \<in> R2" and zx1: "(z, x) \<in> R1"
          by (simp only:equiv_def sym_def, blast)
        have "(z, y) \<in> R2"
        proof -
          from zx1 and refined have "(z, x) \<in> R2" by blast
          moreover from xy2 have "(x, y) \<in> R2" .
          ultimately show ?thesis using eq2
            by (simp only:equiv_def, unfold trans_def, blast)
        qed
        with nzr eq2 show ?thesis by (auto simp:equiv_def sym_def)
      qed
    } thus ?thesis by blast
  qed
next
  show "R2 `` {y} \<subseteq> \<Union>{R1 `` {x} |x. x \<in> R2 `` {y}}" (is "?L \<subseteq> ?R")
  proof
    fix x
    assume x_in: "x \<in> ?L"
    with eq1 eq2 have "x \<in> R1 `` {x}" 
      by (unfold equiv_def refl_on_def, auto)
    with x_in show "x \<in> ?R" by auto
  qed
qed
*)

(*
lemma refined_partition_finite:
  fixes R1 R2 A
  assumes fnt: "finite (A // R1)"
  and refined: "R1 \<subseteq> R2"
  and eq1: "equiv A R1" and eq2: "equiv A R2"
  shows "finite (A // R2)"
proof -
  let ?f = "\<lambda> X. {R1 `` {x} | x. x \<in> X}" 
    and ?A = "(A // R2)" and ?B = "(A // R1)"
  show ?thesis
  proof(rule_tac f = ?f and A = ?A in finite_imageD)
    show "finite (?f ` ?A)"
    proof(rule finite_subset [of _ "Pow ?B"])
      from fnt show "finite (Pow (A // R1))" by simp
    next
      from eq2
      show " ?f ` A // R2 \<subseteq> Pow ?B"
        apply (unfold image_def Pow_def quotient_def, auto)
        by (rule_tac x = xb in bexI, simp, 
                 unfold equiv_def sym_def refl_on_def, blast)
    qed
  next
    show "inj_on ?f ?A"
    proof -
      { fix X Y
        assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A" 
          and eq_f: "?f X = ?f Y" (is "?L = ?R")
        hence "X = Y"
        proof -
          from X_in eq2
          obtain x 
            where x_in: "x \<in> A" 
            and eq_x: "X = R2 `` {x}" (is "X = ?X")
            by (unfold quotient_def equiv_def refl_on_def, auto)
          from Y_in eq2 obtain y 
            where y_in: "y \<in> A"
            and eq_y: "Y = R2 `` {y}" (is "Y = ?Y")
            by (unfold quotient_def equiv_def refl_on_def, auto)
          have "?X = ?Y"
          proof -
            from eq_f have "\<Union> ?L = \<Union> ?R" by auto
            moreover have "\<Union> ?L = ?X"
            proof -
              from eq_x have "\<Union> ?L =  \<Union>{R1 `` {x} |x. x \<in> ?X}" by simp
              also from refined_quotient_union_eq [OF refined eq1 eq2 x_in]
              have "\<dots> = ?X" .
              finally show ?thesis .
            qed
            moreover have "\<Union> ?R = ?Y"
            proof -
              from eq_y have "\<Union> ?R =  \<Union>{R1 `` {y} |y. y \<in> ?Y}" by simp
              also from refined_quotient_union_eq [OF refined eq1 eq2 y_in]
              have "\<dots> = ?Y" .
              finally show ?thesis .
            qed
            ultimately show ?thesis by simp
          qed
          with eq_x eq_y show ?thesis by auto
        qed
      } thus ?thesis by (auto simp:inj_on_def)
    qed
  qed
qed
*)