made the theories compatible with the existing developments in the AFP; old theories are in the directory Attic
(* Author: Christian Urban, Xingyuan Zhang, Chunhan Wu *)+ −
theory More_Regular_Set+ −
imports "Regular_Exp" "Folds"+ −
begin+ −
+ −
text {* Some properties of operator @{text "@@"}. *}+ −
+ −
notation + −
conc (infixr "\<cdot>" 100) and+ −
star ("_\<star>" [101] 102)+ −
+ −
lemma conc_add_left:+ −
assumes a: "A = B"+ −
shows "C \<cdot> A = C \<cdot> B"+ −
using a by simp+ −
+ −
lemma star_cases:+ −
shows "A\<star> = {[]} \<union> A \<cdot> A\<star>"+ −
proof+ −
{ fix x+ −
have "x \<in> A\<star> \<Longrightarrow> x \<in> {[]} \<union> A \<cdot> A\<star>"+ −
unfolding conc_def+ −
by (induct rule: star_induct) (auto)+ −
}+ −
then show "A\<star> \<subseteq> {[]} \<union> A \<cdot> A\<star>" by auto+ −
next+ −
show "{[]} \<union> A \<cdot> A\<star> \<subseteq> A\<star>"+ −
unfolding conc_def by auto+ −
qed+ −
+ −
lemma star_decom: + −
assumes a: "x \<in> A\<star>" "x \<noteq> []"+ −
shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>"+ −
using a+ −
by (induct rule: star_induct) (blast)++ −
+ −
lemma seq_pow_comm:+ −
shows "A \<cdot> (A ^^ n) = (A ^^ n) \<cdot> A"+ −
by (induct n) (simp_all add: conc_assoc[symmetric])+ −
+ −
lemma seq_star_comm:+ −
shows "A \<cdot> A\<star> = A\<star> \<cdot> A"+ −
unfolding star_def seq_pow_comm conc_UNION_distrib+ −
by simp+ −
+ −
+ −
text {* Two lemmas about the length of strings in @{text "A \<up> n"} *}+ −
+ −
lemma pow_length:+ −
assumes a: "[] \<notin> A"+ −
and b: "s \<in> A ^^ Suc n"+ −
shows "n < length s"+ −
using b+ −
proof (induct n arbitrary: s)+ −
case 0+ −
have "s \<in> A ^^ Suc 0" by fact+ −
with a have "s \<noteq> []" by auto+ −
then show "0 < length s" by auto+ −
next+ −
case (Suc n)+ −
have ih: "\<And>s. s \<in> A ^^ Suc n \<Longrightarrow> n < length s" by fact+ −
have "s \<in> A ^^ Suc (Suc n)" by fact+ −
then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A ^^ Suc n"+ −
by (auto simp add: conc_def)+ −
from ih ** have "n < length s2" by simp+ −
moreover have "0 < length s1" using * a by auto+ −
ultimately show "Suc n < length s" unfolding eq + −
by (simp only: length_append)+ −
qed+ −
+ −
lemma seq_pow_length:+ −
assumes a: "[] \<notin> A"+ −
and b: "s \<in> B \<cdot> (A ^^ Suc n)"+ −
shows "n < length s"+ −
proof -+ −
from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A ^^ Suc n"+ −
unfolding Seq_def by auto+ −
from * have " n < length s2" by (rule pow_length[OF a])+ −
then show "n < length s" using eq by simp+ −
qed+ −
+ −
+ −
section {* A modified version of Arden's lemma *}+ −
+ −
text {* A helper lemma for Arden *}+ −
+ −
lemma arden_helper:+ −
assumes eq: "X = X \<cdot> A \<union> B"+ −
shows "X = X \<cdot> (A ^^ Suc n) \<union> (\<Union>m\<in>{0..n}. B \<cdot> (A ^^ m))"+ −
proof (induct n)+ −
case 0 + −
show "X = X \<cdot> (A ^^ Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B \<cdot> (A ^^ m))"+ −
using eq by simp+ −
next+ −
case (Suc n)+ −
have ih: "X = X \<cdot> (A ^^ Suc n) \<union> (\<Union>m\<in>{0..n}. B \<cdot> (A ^^ m))" by fact+ −
also have "\<dots> = (X \<cdot> A \<union> B) \<cdot> (A ^^ Suc n) \<union> (\<Union>m\<in>{0..n}. B \<cdot> (A ^^ m))" using eq by simp+ −
also have "\<dots> = X \<cdot> (A ^^ Suc (Suc n)) \<union> (B \<cdot> (A ^^ Suc n)) \<union> (\<Union>m\<in>{0..n}. B \<cdot> (A ^^ m))"+ −
by (simp add: conc_Un_distrib conc_assoc)+ −
also have "\<dots> = X \<cdot> (A ^^ Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B \<cdot> (A ^^ m))"+ −
by (auto simp add: le_Suc_eq)+ −
finally show "X = X \<cdot> (A ^^ Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B \<cdot> (A ^^ m))" .+ −
qed+ −
+ −
theorem arden:+ −
assumes nemp: "[] \<notin> A"+ −
shows "X = X \<cdot> A \<union> B \<longleftrightarrow> X = B \<cdot> A\<star>"+ −
proof+ −
assume eq: "X = B \<cdot> A\<star>"+ −
have "A\<star> = {[]} \<union> A\<star> \<cdot> A" + −
unfolding seq_star_comm[symmetric]+ −
by (rule star_cases)+ −
then have "B \<cdot> A\<star> = B \<cdot> ({[]} \<union> A\<star> \<cdot> A)"+ −
by (rule conc_add_left)+ −
also have "\<dots> = B \<union> B \<cdot> (A\<star> \<cdot> A)"+ −
unfolding conc_Un_distrib by simp+ −
also have "\<dots> = B \<union> (B \<cdot> A\<star>) \<cdot> A" + −
by (simp only: conc_assoc)+ −
finally show "X = X \<cdot> A \<union> B" + −
using eq by blast + −
next+ −
assume eq: "X = X \<cdot> A \<union> B"+ −
{ fix n::nat+ −
have "B \<cdot> (A ^^ n) \<subseteq> X" using arden_helper[OF eq, of "n"] by auto }+ −
then have "B \<cdot> A\<star> \<subseteq> X" + −
unfolding conc_def star_def UNION_def by auto+ −
moreover+ −
{ fix s::"'a list"+ −
obtain k where "k = length s" by auto+ −
then have not_in: "s \<notin> X \<cdot> (A ^^ Suc k)" + −
using seq_pow_length[OF nemp] by blast+ −
assume "s \<in> X"+ −
then have "s \<in> X \<cdot> (A ^^ Suc k) \<union> (\<Union>m\<in>{0..k}. B \<cdot> (A ^^ m))"+ −
using arden_helper[OF eq, of "k"] by auto+ −
then have "s \<in> (\<Union>m\<in>{0..k}. B \<cdot> (A ^^ m))" using not_in by auto+ −
moreover+ −
have "(\<Union>m\<in>{0..k}. B \<cdot> (A ^^ m)) \<subseteq> (\<Union>n. B \<cdot> (A ^^ n))" by auto+ −
ultimately + −
have "s \<in> B \<cdot> A\<star>" + −
unfolding conc_Un_distrib star_def by auto }+ −
then have "X \<subseteq> B \<cdot> A\<star>" by auto+ −
ultimately + −
show "X = B \<cdot> A\<star>" by simp+ −
qed+ −
+ −
+ −
text {* Plus-combination for a set of regular expressions *}+ −
+ −
abbreviation+ −
Setalt ("\<Uplus>_" [1000] 999) + −
where+ −
"\<Uplus>A \<equiv> folds Plus Zero A"+ −
+ −
text {* + −
For finite sets, @{term Setalt} is preserved under @{term lang}.+ −
*}+ −
+ −
lemma folds_alt_simp [simp]:+ −
fixes rs::"('a rexp) set"+ −
assumes a: "finite rs"+ −
shows "lang (\<Uplus>rs) = \<Union> (lang ` rs)"+ −
unfolding folds_def+ −
apply(rule set_eqI)+ −
apply(rule someI2_ex)+ −
apply(rule_tac finite_imp_fold_graph[OF a])+ −
apply(erule fold_graph.induct)+ −
apply(auto)+ −
done+ −
+ −
end+ −