theory PrioG+ −
imports PrioGDef + −
begin+ −
+ −
lemma runing_ready: "runing s \<subseteq> readys s"+ −
by (auto simp only:runing_def readys_def)+ −
+ −
lemma wq_v_neq:+ −
"cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"+ −
by (auto simp:wq_def Let_def cp_def split:list.splits)+ −
+ −
lemma wq_distinct: "vt step s \<Longrightarrow> distinct (wq s cs)"+ −
proof(erule_tac vt.induct, simp add:wq_def)+ −
fix s e+ −
assume h1: "step s e"+ −
and h2: "distinct (wq s cs)"+ −
thus "distinct (wq (e # s) cs)"+ −
proof(induct rule:step.induct, auto simp: wq_def Let_def split:list.splits)+ −
fix thread s+ −
assume h1: "(Cs cs, Th thread) \<notin> (depend s)\<^sup>+"+ −
and h2: "thread \<in> set (waiting_queue (schs s) cs)"+ −
and h3: "thread \<in> runing s"+ −
show "False" + −
proof -+ −
from h3 have "\<And> cs. thread \<in> set (waiting_queue (schs s) cs) \<Longrightarrow> + −
thread = hd ((waiting_queue (schs s) cs))" + −
by (simp add:runing_def readys_def s_waiting_def wq_def)+ −
from this [OF h2] have "thread = hd (waiting_queue (schs s) cs)" .+ −
with h2+ −
have "(Cs cs, Th thread) \<in> (depend s)"+ −
by (simp add:s_depend_def s_holding_def wq_def cs_holding_def)+ −
with h1 show False by auto+ −
qed+ −
next+ −
fix thread s a list+ −
assume dst: "distinct list"+ −
show "distinct (SOME q. distinct q \<and> set q = set list)"+ −
proof(rule someI2)+ −
from dst show "distinct list \<and> set list = set list" by auto+ −
next+ −
fix q assume "distinct q \<and> set q = set list"+ −
thus "distinct q" by auto+ −
qed+ −
qed+ −
qed+ −
+ −
lemma step_back_vt: "vt ccs (e#s) \<Longrightarrow> vt ccs s"+ −
by(ind_cases "vt ccs (e#s)", simp)+ −
+ −
lemma step_back_step: "vt ccs (e#s) \<Longrightarrow> ccs s e"+ −
by(ind_cases "vt ccs (e#s)", simp)+ −
+ −
lemma block_pre: + −
fixes thread cs s+ −
assumes vt_e: "vt step (e#s)"+ −
and s_ni: "thread \<notin> set (wq s cs)"+ −
and s_i: "thread \<in> set (wq (e#s) cs)"+ −
shows "e = P thread cs"+ −
proof -+ −
show ?thesis+ −
proof(cases e)+ −
case (P th cs)+ −
with assms+ −
show ?thesis+ −
by (auto simp:wq_def Let_def split:if_splits)+ −
next+ −
case (Create th prio)+ −
with assms show ?thesis+ −
by (auto simp:wq_def Let_def split:if_splits)+ −
next+ −
case (Exit th)+ −
with assms show ?thesis+ −
by (auto simp:wq_def Let_def split:if_splits)+ −
next+ −
case (Set th prio)+ −
with assms show ?thesis+ −
by (auto simp:wq_def Let_def split:if_splits)+ −
next+ −
case (V th cs)+ −
with assms show ?thesis+ −
apply (auto simp:wq_def Let_def split:if_splits)+ −
proof -+ −
fix q qs+ −
assume h1: "thread \<notin> set (waiting_queue (schs s) cs)"+ −
and h2: "q # qs = waiting_queue (schs s) cs"+ −
and h3: "thread \<in> set (SOME q. distinct q \<and> set q = set qs)"+ −
and vt: "vt step (V th cs # s)"+ −
from h1 and h2[symmetric] have "thread \<notin> set (q # qs)" by simp+ −
moreover have "thread \<in> set qs"+ −
proof -+ −
have "set (SOME q. distinct q \<and> set q = set qs) = set qs"+ −
proof(rule someI2)+ −
from wq_distinct [OF step_back_vt[OF vt], of cs]+ −
and h2[symmetric, folded wq_def]+ −
show "distinct qs \<and> set qs = set qs" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set qs"+ −
thus "set x = set qs" by auto+ −
qed+ −
with h3 show ?thesis by simp+ −
qed+ −
ultimately show "False" by auto+ −
qed+ −
qed+ −
qed+ −
+ −
lemma p_pre: "\<lbrakk>vt step ((P thread cs)#s)\<rbrakk> \<Longrightarrow> + −
thread \<in> runing s \<and> (Cs cs, Th thread) \<notin> (depend s)^+"+ −
apply (ind_cases "vt step ((P thread cs)#s)")+ −
apply (ind_cases "step s (P thread cs)")+ −
by auto+ −
+ −
lemma abs1:+ −
fixes e es+ −
assumes ein: "e \<in> set es"+ −
and neq: "hd es \<noteq> hd (es @ [x])"+ −
shows "False"+ −
proof -+ −
from ein have "es \<noteq> []" by auto+ −
then obtain e ess where "es = e # ess" by (cases es, auto)+ −
with neq show ?thesis by auto+ −
qed+ −
+ −
lemma q_head: "Q (hd es) \<Longrightarrow> hd es = hd [th\<leftarrow>es . Q th]"+ −
by (cases es, auto)+ −
+ −
inductive_cases evt_cons: "vt cs (a#s)"+ −
+ −
lemma abs2:+ −
assumes vt: "vt step (e#s)"+ −
and inq: "thread \<in> set (wq s cs)"+ −
and nh: "thread = hd (wq s cs)"+ −
and qt: "thread \<noteq> hd (wq (e#s) cs)"+ −
and inq': "thread \<in> set (wq (e#s) cs)"+ −
shows "False"+ −
proof -+ −
from assms show "False"+ −
apply (cases e)+ −
apply ((simp split:if_splits add:Let_def wq_def)[1])++ −
apply (insert abs1, fast)[1]+ −
apply (auto simp:wq_def simp:Let_def split:if_splits list.splits)+ −
proof -+ −
fix th qs+ −
assume vt: "vt step (V th cs # s)"+ −
and th_in: "thread \<in> set (SOME q. distinct q \<and> set q = set qs)"+ −
and eq_wq: "waiting_queue (schs s) cs = thread # qs"+ −
show "False"+ −
proof -+ −
from wq_distinct[OF step_back_vt[OF vt], of cs]+ −
and eq_wq[folded wq_def] have "distinct (thread#qs)" by simp+ −
moreover have "thread \<in> set qs"+ −
proof -+ −
have "set (SOME q. distinct q \<and> set q = set qs) = set qs"+ −
proof(rule someI2)+ −
from wq_distinct [OF step_back_vt[OF vt], of cs]+ −
and eq_wq [folded wq_def]+ −
show "distinct qs \<and> set qs = set qs" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set qs"+ −
thus "set x = set qs" by auto+ −
qed+ −
with th_in show ?thesis by auto+ −
qed+ −
ultimately show ?thesis by auto+ −
qed+ −
qed+ −
qed+ −
+ −
lemma vt_moment: "\<And> t. \<lbrakk>vt cs s; t \<le> length s\<rbrakk> \<Longrightarrow> vt cs (moment t s)"+ −
proof(induct s, simp)+ −
fix a s t+ −
assume h: "\<And>t.\<lbrakk>vt cs s; t \<le> length s\<rbrakk> \<Longrightarrow> vt cs (moment t s)"+ −
and vt_a: "vt cs (a # s)"+ −
and le_t: "t \<le> length (a # s)"+ −
show "vt cs (moment t (a # s))"+ −
proof(cases "t = length (a#s)")+ −
case True+ −
from True have "moment t (a#s) = a#s" by simp+ −
with vt_a show ?thesis by simp+ −
next+ −
case False+ −
with le_t have le_t1: "t \<le> length s" by simp+ −
from vt_a have "vt cs s"+ −
by (erule_tac evt_cons, simp)+ −
from h [OF this le_t1] have "vt cs (moment t s)" .+ −
moreover have "moment t (a#s) = moment t s"+ −
proof -+ −
from moment_app [OF le_t1, of "[a]"] + −
show ?thesis by simp+ −
qed+ −
ultimately show ?thesis by auto+ −
qed+ −
qed+ −
+ −
(* Wrong:+ −
lemma \<lbrakk>thread \<in> set (waiting_queue cs1 s); thread \<in> set (waiting_queue cs2 s)\<rbrakk> \<Longrightarrow> cs1 = cs2"+ −
*)+ −
+ −
lemma waiting_unique_pre:+ −
fixes cs1 cs2 s thread+ −
assumes vt: "vt step s"+ −
and h11: "thread \<in> set (wq s cs1)"+ −
and h12: "thread \<noteq> hd (wq s cs1)"+ −
assumes h21: "thread \<in> set (wq s cs2)"+ −
and h22: "thread \<noteq> hd (wq s cs2)"+ −
and neq12: "cs1 \<noteq> cs2"+ −
shows "False"+ −
proof -+ −
let "?Q cs s" = "thread \<in> set (wq s cs) \<and> thread \<noteq> hd (wq s cs)"+ −
from h11 and h12 have q1: "?Q cs1 s" by simp+ −
from h21 and h22 have q2: "?Q cs2 s" by simp+ −
have nq1: "\<not> ?Q cs1 []" by (simp add:wq_def)+ −
have nq2: "\<not> ?Q cs2 []" by (simp add:wq_def)+ −
from p_split [of "?Q cs1", OF q1 nq1]+ −
obtain t1 where lt1: "t1 < length s"+ −
and np1: "\<not>(thread \<in> set (wq (moment t1 s) cs1) \<and>+ −
thread \<noteq> hd (wq (moment t1 s) cs1))"+ −
and nn1: "(\<forall>i'>t1. thread \<in> set (wq (moment i' s) cs1) \<and>+ −
thread \<noteq> hd (wq (moment i' s) cs1))" by auto+ −
from p_split [of "?Q cs2", OF q2 nq2]+ −
obtain t2 where lt2: "t2 < length s"+ −
and np2: "\<not>(thread \<in> set (wq (moment t2 s) cs2) \<and>+ −
thread \<noteq> hd (wq (moment t2 s) cs2))"+ −
and nn2: "(\<forall>i'>t2. thread \<in> set (wq (moment i' s) cs2) \<and>+ −
thread \<noteq> hd (wq (moment i' s) cs2))" by auto+ −
show ?thesis+ −
proof -+ −
{ + −
assume lt12: "t1 < t2"+ −
let ?t3 = "Suc t2"+ −
from lt2 have le_t3: "?t3 \<le> length s" by auto+ −
from moment_plus [OF this] + −
obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto+ −
have "t2 < ?t3" by simp+ −
from nn2 [rule_format, OF this] and eq_m+ −
have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and+ −
h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto+ −
have vt_e: "vt step (e#moment t2 s)"+ −
proof -+ −
from vt_moment [OF vt le_t3]+ −
have "vt step (moment ?t3 s)" .+ −
with eq_m show ?thesis by simp+ −
qed+ −
have ?thesis+ −
proof(cases "thread \<in> set (wq (moment t2 s) cs2)")+ −
case True+ −
from True and np2 have eq_th: "thread = hd (wq (moment t2 s) cs2)"+ −
by auto+ −
from abs2 [OF vt_e True eq_th h2 h1]+ −
show ?thesis by auto+ −
next+ −
case False+ −
from block_pre [OF vt_e False h1]+ −
have "e = P thread cs2" .+ −
with vt_e have "vt step ((P thread cs2)# moment t2 s)" by simp+ −
from p_pre [OF this] have "thread \<in> runing (moment t2 s)" by simp+ −
with runing_ready have "thread \<in> readys (moment t2 s)" by auto+ −
with nn1 [rule_format, OF lt12]+ −
show ?thesis by (simp add:readys_def s_waiting_def, auto)+ −
qed+ −
} moreover {+ −
assume lt12: "t2 < t1"+ −
let ?t3 = "Suc t1"+ −
from lt1 have le_t3: "?t3 \<le> length s" by auto+ −
from moment_plus [OF this] + −
obtain e where eq_m: "moment ?t3 s = e#moment t1 s" by auto+ −
have lt_t3: "t1 < ?t3" by simp+ −
from nn1 [rule_format, OF this] and eq_m+ −
have h1: "thread \<in> set (wq (e#moment t1 s) cs1)" and+ −
h2: "thread \<noteq> hd (wq (e#moment t1 s) cs1)" by auto+ −
have vt_e: "vt step (e#moment t1 s)"+ −
proof -+ −
from vt_moment [OF vt le_t3]+ −
have "vt step (moment ?t3 s)" .+ −
with eq_m show ?thesis by simp+ −
qed+ −
have ?thesis+ −
proof(cases "thread \<in> set (wq (moment t1 s) cs1)")+ −
case True+ −
from True and np1 have eq_th: "thread = hd (wq (moment t1 s) cs1)"+ −
by auto+ −
from abs2 [OF vt_e True eq_th h2 h1]+ −
show ?thesis by auto+ −
next+ −
case False+ −
from block_pre [OF vt_e False h1]+ −
have "e = P thread cs1" .+ −
with vt_e have "vt step ((P thread cs1)# moment t1 s)" by simp+ −
from p_pre [OF this] have "thread \<in> runing (moment t1 s)" by simp+ −
with runing_ready have "thread \<in> readys (moment t1 s)" by auto+ −
with nn2 [rule_format, OF lt12]+ −
show ?thesis by (simp add:readys_def s_waiting_def, auto)+ −
qed+ −
} moreover {+ −
assume eqt12: "t1 = t2"+ −
let ?t3 = "Suc t1"+ −
from lt1 have le_t3: "?t3 \<le> length s" by auto+ −
from moment_plus [OF this] + −
obtain e where eq_m: "moment ?t3 s = e#moment t1 s" by auto+ −
have lt_t3: "t1 < ?t3" by simp+ −
from nn1 [rule_format, OF this] and eq_m+ −
have h1: "thread \<in> set (wq (e#moment t1 s) cs1)" and+ −
h2: "thread \<noteq> hd (wq (e#moment t1 s) cs1)" by auto+ −
have vt_e: "vt step (e#moment t1 s)"+ −
proof -+ −
from vt_moment [OF vt le_t3]+ −
have "vt step (moment ?t3 s)" .+ −
with eq_m show ?thesis by simp+ −
qed+ −
have ?thesis+ −
proof(cases "thread \<in> set (wq (moment t1 s) cs1)")+ −
case True+ −
from True and np1 have eq_th: "thread = hd (wq (moment t1 s) cs1)"+ −
by auto+ −
from abs2 [OF vt_e True eq_th h2 h1]+ −
show ?thesis by auto+ −
next+ −
case False+ −
from block_pre [OF vt_e False h1]+ −
have eq_e1: "e = P thread cs1" .+ −
have lt_t3: "t1 < ?t3" by simp+ −
with eqt12 have "t2 < ?t3" by simp+ −
from nn2 [rule_format, OF this] and eq_m and eqt12+ −
have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and+ −
h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto+ −
show ?thesis+ −
proof(cases "thread \<in> set (wq (moment t2 s) cs2)")+ −
case True+ −
from True and np2 have eq_th: "thread = hd (wq (moment t2 s) cs2)"+ −
by auto+ −
from vt_e and eqt12 have "vt step (e#moment t2 s)" by simp + −
from abs2 [OF this True eq_th h2 h1]+ −
show ?thesis .+ −
next+ −
case False+ −
have vt_e: "vt step (e#moment t2 s)"+ −
proof -+ −
from vt_moment [OF vt le_t3] eqt12+ −
have "vt step (moment (Suc t2) s)" by auto+ −
with eq_m eqt12 show ?thesis by simp+ −
qed+ −
from block_pre [OF vt_e False h1]+ −
have "e = P thread cs2" .+ −
with eq_e1 neq12 show ?thesis by auto+ −
qed+ −
qed+ −
} ultimately show ?thesis by arith+ −
qed+ −
qed+ −
+ −
lemma waiting_unique:+ −
fixes s cs1 cs2+ −
assumes "vt step s"+ −
and "waiting s th cs1"+ −
and "waiting s th cs2"+ −
shows "cs1 = cs2"+ −
proof -+ −
from waiting_unique_pre and prems+ −
show ?thesis+ −
by (auto simp add:s_waiting_def)+ −
qed+ −
+ −
lemma held_unique:+ −
assumes "vt step s"+ −
and "holding s th1 cs"+ −
and "holding s th2 cs"+ −
shows "th1 = th2"+ −
proof -+ −
from prems show ?thesis+ −
unfolding s_holding_def+ −
by auto+ −
qed+ −
+ −
lemma birthtime_lt: "th \<in> threads s \<Longrightarrow> birthtime th s < length s"+ −
apply (induct s, auto)+ −
by (case_tac a, auto split:if_splits)+ −
+ −
lemma birthtime_unique: + −
"\<lbrakk>birthtime th1 s = birthtime th2 s; th1 \<in> threads s; th2 \<in> threads s\<rbrakk>+ −
\<Longrightarrow> th1 = th2"+ −
apply (induct s, auto)+ −
by (case_tac a, auto split:if_splits dest:birthtime_lt)+ −
+ −
lemma preced_unique : + −
assumes pcd_eq: "preced th1 s = preced th2 s"+ −
and th_in1: "th1 \<in> threads s"+ −
and th_in2: " th2 \<in> threads s"+ −
shows "th1 = th2"+ −
proof -+ −
from pcd_eq have "birthtime th1 s = birthtime th2 s" by (simp add:preced_def)+ −
from birthtime_unique [OF this th_in1 th_in2]+ −
show ?thesis .+ −
qed+ −
+ −
lemma preced_linorder: + −
assumes neq_12: "th1 \<noteq> th2"+ −
and th_in1: "th1 \<in> threads s"+ −
and th_in2: " th2 \<in> threads s"+ −
shows "preced th1 s < preced th2 s \<or> preced th1 s > preced th2 s"+ −
proof -+ −
from preced_unique [OF _ th_in1 th_in2] and neq_12 + −
have "preced th1 s \<noteq> preced th2 s" by auto+ −
thus ?thesis by auto+ −
qed+ −
+ −
lemma unique_minus:+ −
fixes x y z r+ −
assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"+ −
and xy: "(x, y) \<in> r"+ −
and xz: "(x, z) \<in> r^+"+ −
and neq: "y \<noteq> z"+ −
shows "(y, z) \<in> r^+"+ −
proof -+ −
from xz and neq show ?thesis+ −
proof(induct)+ −
case (base ya)+ −
have "(x, ya) \<in> r" by fact+ −
from unique [OF xy this] have "y = ya" .+ −
with base show ?case by auto+ −
next+ −
case (step ya z)+ −
show ?case+ −
proof(cases "y = ya")+ −
case True+ −
from step True show ?thesis by simp+ −
next+ −
case False+ −
from step False+ −
show ?thesis by auto+ −
qed+ −
qed+ −
qed+ −
+ −
lemma unique_base:+ −
fixes r x y z+ −
assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"+ −
and xy: "(x, y) \<in> r"+ −
and xz: "(x, z) \<in> r^+"+ −
and neq_yz: "y \<noteq> z"+ −
shows "(y, z) \<in> r^+"+ −
proof -+ −
from xz neq_yz show ?thesis+ −
proof(induct)+ −
case (base ya)+ −
from xy unique base show ?case by auto+ −
next+ −
case (step ya z)+ −
show ?case+ −
proof(cases "y = ya")+ −
case True+ −
from True step show ?thesis by auto+ −
next+ −
case False+ −
from False step + −
have "(y, ya) \<in> r\<^sup>+" by auto+ −
with step show ?thesis by auto+ −
qed+ −
qed+ −
qed+ −
+ −
lemma unique_chain:+ −
fixes r x y z+ −
assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"+ −
and xy: "(x, y) \<in> r^+"+ −
and xz: "(x, z) \<in> r^+"+ −
and neq_yz: "y \<noteq> z"+ −
shows "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+"+ −
proof -+ −
from xy xz neq_yz show ?thesis+ −
proof(induct)+ −
case (base y)+ −
have h1: "(x, y) \<in> r" and h2: "(x, z) \<in> r\<^sup>+" and h3: "y \<noteq> z" using base by auto+ −
from unique_base [OF _ h1 h2 h3] and unique show ?case by auto+ −
next+ −
case (step y za)+ −
show ?case+ −
proof(cases "y = z")+ −
case True+ −
from True step show ?thesis by auto+ −
next+ −
case False+ −
from False step have "(y, z) \<in> r\<^sup>+ \<or> (z, y) \<in> r\<^sup>+" by auto+ −
thus ?thesis+ −
proof+ −
assume "(z, y) \<in> r\<^sup>+"+ −
with step have "(z, za) \<in> r\<^sup>+" by auto+ −
thus ?thesis by auto+ −
next+ −
assume h: "(y, z) \<in> r\<^sup>+"+ −
from step have yza: "(y, za) \<in> r" by simp+ −
from step have "za \<noteq> z" by simp+ −
from unique_minus [OF _ yza h this] and unique+ −
have "(za, z) \<in> r\<^sup>+" by auto+ −
thus ?thesis by auto+ −
qed+ −
qed+ −
qed+ −
qed+ −
+ −
lemma depend_set_unchanged: "(depend (Set th prio # s)) = depend s"+ −
apply (unfold s_depend_def s_waiting_def wq_def)+ −
by (simp add:Let_def)+ −
+ −
lemma depend_create_unchanged: "(depend (Create th prio # s)) = depend s"+ −
apply (unfold s_depend_def s_waiting_def wq_def)+ −
by (simp add:Let_def)+ −
+ −
lemma depend_exit_unchanged: "(depend (Exit th # s)) = depend s"+ −
apply (unfold s_depend_def s_waiting_def wq_def)+ −
by (simp add:Let_def)+ −
+ −
+ −
+ −
lemma step_v_hold_inv[elim_format]:+ −
"\<And>c t. \<lbrakk>vt step (V th cs # s); + −
\<not> holding (wq s) t c; holding (wq (V th cs # s)) t c\<rbrakk> \<Longrightarrow> next_th s th cs t \<and> c = cs"+ −
proof -+ −
fix c t+ −
assume vt: "vt step (V th cs # s)"+ −
and nhd: "\<not> holding (wq s) t c"+ −
and hd: "holding (wq (V th cs # s)) t c"+ −
show "next_th s th cs t \<and> c = cs"+ −
proof(cases "c = cs")+ −
case False+ −
with nhd hd show ?thesis+ −
by (unfold cs_holding_def wq_def, auto simp:Let_def)+ −
next+ −
case True+ −
with step_back_step [OF vt] + −
have "step s (V th c)" by simp+ −
hence "next_th s th cs t"+ −
proof(cases)+ −
assume "holding s th c"+ −
with nhd hd show ?thesis+ −
apply (unfold s_holding_def cs_holding_def wq_def next_th_def,+ −
auto simp:Let_def split:list.splits if_splits)+ −
proof -+ −
assume " hd (SOME q. distinct q \<and> q = []) \<in> set (SOME q. distinct q \<and> q = [])"+ −
moreover have "\<dots> = set []"+ −
proof(rule someI2)+ −
show "distinct [] \<and> [] = []" by auto+ −
next+ −
fix x assume "distinct x \<and> x = []"+ −
thus "set x = set []" by auto+ −
qed+ −
ultimately show False by auto+ −
next+ −
assume " hd (SOME q. distinct q \<and> q = []) \<in> set (SOME q. distinct q \<and> q = [])"+ −
moreover have "\<dots> = set []"+ −
proof(rule someI2)+ −
show "distinct [] \<and> [] = []" by auto+ −
next+ −
fix x assume "distinct x \<and> x = []"+ −
thus "set x = set []" by auto+ −
qed+ −
ultimately show False by auto+ −
qed+ −
qed+ −
with True show ?thesis by auto+ −
qed+ −
qed+ −
+ −
lemma step_v_wait_inv[elim_format]:+ −
"\<And>t c. \<lbrakk>vt step (V th cs # s); \<not> waiting (wq (V th cs # s)) t c; waiting (wq s) t c+ −
\<rbrakk>+ −
\<Longrightarrow> (next_th s th cs t \<and> cs = c)"+ −
proof -+ −
fix t c + −
assume vt: "vt step (V th cs # s)"+ −
and nw: "\<not> waiting (wq (V th cs # s)) t c"+ −
and wt: "waiting (wq s) t c"+ −
show "next_th s th cs t \<and> cs = c"+ −
proof(cases "cs = c")+ −
case False+ −
with nw wt show ?thesis+ −
by (auto simp:cs_waiting_def wq_def Let_def)+ −
next+ −
case True+ −
from nw[folded True] wt[folded True]+ −
have "next_th s th cs t"+ −
apply (unfold next_th_def, auto simp:cs_waiting_def wq_def Let_def split:list.splits)+ −
proof -+ −
fix a list+ −
assume t_in: "t \<in> set list"+ −
and t_ni: "t \<notin> set (SOME q. distinct q \<and> set q = set list)"+ −
and eq_wq: "waiting_queue (schs s) cs = a # list"+ −
have " set (SOME q. distinct q \<and> set q = set list) = set list"+ −
proof(rule someI2)+ −
from wq_distinct[OF step_back_vt[OF vt], of cs] and eq_wq[folded wq_def]+ −
show "distinct list \<and> set list = set list" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set list \<Longrightarrow> set x = set list"+ −
by auto+ −
qed+ −
with t_ni and t_in show "a = th" by auto+ −
next+ −
fix a list+ −
assume t_in: "t \<in> set list"+ −
and t_ni: "t \<notin> set (SOME q. distinct q \<and> set q = set list)"+ −
and eq_wq: "waiting_queue (schs s) cs = a # list"+ −
have " set (SOME q. distinct q \<and> set q = set list) = set list"+ −
proof(rule someI2)+ −
from wq_distinct[OF step_back_vt[OF vt], of cs] and eq_wq[folded wq_def]+ −
show "distinct list \<and> set list = set list" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set list \<Longrightarrow> set x = set list"+ −
by auto+ −
qed+ −
with t_ni and t_in show "t = hd (SOME q. distinct q \<and> set q = set list)" by auto+ −
next+ −
fix a list+ −
assume eq_wq: "waiting_queue (schs s) cs = a # list"+ −
from step_back_step[OF vt]+ −
show "a = th"+ −
proof(cases)+ −
assume "holding s th cs"+ −
with eq_wq show ?thesis+ −
by (unfold s_holding_def wq_def, auto)+ −
qed+ −
qed+ −
with True show ?thesis by simp+ −
qed+ −
qed+ −
+ −
lemma step_v_not_wait[consumes 3]:+ −
"\<lbrakk>vt step (V th cs # s); next_th s th cs t; waiting (wq (V th cs # s)) t cs\<rbrakk> \<Longrightarrow> False"+ −
by (unfold next_th_def cs_waiting_def wq_def, auto simp:Let_def)+ −
+ −
lemma step_v_release:+ −
"\<lbrakk>vt step (V th cs # s); holding (wq (V th cs # s)) th cs\<rbrakk> \<Longrightarrow> False"+ −
proof -+ −
assume vt: "vt step (V th cs # s)"+ −
and hd: "holding (wq (V th cs # s)) th cs"+ −
from step_back_step [OF vt] and hd+ −
show "False"+ −
proof(cases)+ −
assume "holding (wq (V th cs # s)) th cs" and "holding s th cs"+ −
thus ?thesis+ −
apply (unfold s_holding_def wq_def cs_holding_def)+ −
apply (auto simp:Let_def split:list.splits)+ −
proof -+ −
fix list+ −
assume eq_wq[folded wq_def]: + −
"waiting_queue (schs s) cs = hd (SOME q. distinct q \<and> set q = set list) # list"+ −
and hd_in: "hd (SOME q. distinct q \<and> set q = set list)+ −
\<in> set (SOME q. distinct q \<and> set q = set list)"+ −
have "set (SOME q. distinct q \<and> set q = set list) = set list"+ −
proof(rule someI2)+ −
from wq_distinct[OF step_back_vt[OF vt], of cs] and eq_wq+ −
show "distinct list \<and> set list = set list" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set list \<Longrightarrow> set x = set list"+ −
by auto+ −
qed+ −
moreover have "distinct (hd (SOME q. distinct q \<and> set q = set list) # list)"+ −
proof -+ −
from wq_distinct[OF step_back_vt[OF vt], of cs] and eq_wq+ −
show ?thesis by auto+ −
qed+ −
moreover note eq_wq and hd_in+ −
ultimately show "False" by auto+ −
qed+ −
qed+ −
qed+ −
+ −
lemma step_v_get_hold:+ −
"\<And>th'. \<lbrakk>vt step (V th cs # s); \<not> holding (wq (V th cs # s)) th' cs; next_th s th cs th'\<rbrakk> \<Longrightarrow> False"+ −
apply (unfold cs_holding_def next_th_def wq_def,+ −
auto simp:Let_def)+ −
proof -+ −
fix rest+ −
assume vt: "vt step (V th cs # s)"+ −
and eq_wq[folded wq_def]: " waiting_queue (schs s) cs = th # rest"+ −
and nrest: "rest \<noteq> []"+ −
and ni: "hd (SOME q. distinct q \<and> set q = set rest)+ −
\<notin> set (SOME q. distinct q \<and> set q = set rest)"+ −
have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"+ −
proof(rule someI2)+ −
from wq_distinct[OF step_back_vt[OF vt], of cs] and eq_wq+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set rest"+ −
hence "set x = set rest" by auto+ −
with nrest+ −
show "x \<noteq> []" by (case_tac x, auto)+ −
qed+ −
with ni show "False" by auto+ −
qed+ −
+ −
lemma step_v_release_inv[elim_format]:+ −
"\<And>c t. \<lbrakk>vt step (V th cs # s); \<not> holding (wq (V th cs # s)) t c; holding (wq s) t c\<rbrakk> \<Longrightarrow> + −
c = cs \<and> t = th"+ −
apply (unfold cs_holding_def wq_def, auto simp:Let_def split:if_splits list.splits)+ −
proof -+ −
fix a list+ −
assume vt: "vt step (V th cs # s)" and eq_wq: "waiting_queue (schs s) cs = a # list"+ −
from step_back_step [OF vt] show "a = th"+ −
proof(cases)+ −
assume "holding s th cs" with eq_wq+ −
show ?thesis+ −
by (unfold s_holding_def wq_def, auto)+ −
qed+ −
next+ −
fix a list+ −
assume vt: "vt step (V th cs # s)" and eq_wq: "waiting_queue (schs s) cs = a # list"+ −
from step_back_step [OF vt] show "a = th"+ −
proof(cases)+ −
assume "holding s th cs" with eq_wq+ −
show ?thesis+ −
by (unfold s_holding_def wq_def, auto)+ −
qed+ −
qed+ −
+ −
lemma step_v_waiting_mono:+ −
"\<And>t c. \<lbrakk>vt step (V th cs # s); waiting (wq (V th cs # s)) t c\<rbrakk> \<Longrightarrow> waiting (wq s) t c"+ −
proof -+ −
fix t c+ −
let ?s' = "(V th cs # s)"+ −
assume vt: "vt step ?s'" + −
and wt: "waiting (wq ?s') t c"+ −
show "waiting (wq s) t c"+ −
proof(cases "c = cs")+ −
case False+ −
assume neq_cs: "c \<noteq> cs"+ −
hence "waiting (wq ?s') t c = waiting (wq s) t c"+ −
by (unfold cs_waiting_def wq_def, auto simp:Let_def)+ −
with wt show ?thesis by simp+ −
next+ −
case True+ −
with wt show ?thesis+ −
apply (unfold cs_waiting_def wq_def, auto simp:Let_def split:list.splits)+ −
proof -+ −
fix a list+ −
assume not_in: "t \<notin> set list"+ −
and is_in: "t \<in> set (SOME q. distinct q \<and> set q = set list)"+ −
and eq_wq: "waiting_queue (schs s) cs = a # list"+ −
have "set (SOME q. distinct q \<and> set q = set list) = set list"+ −
proof(rule someI2)+ −
from wq_distinct [OF step_back_vt[OF vt], of cs]+ −
and eq_wq[folded wq_def]+ −
show "distinct list \<and> set list = set list" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set list"+ −
thus "set x = set list" by auto+ −
qed+ −
with not_in is_in show "t = a" by auto+ −
next+ −
fix list+ −
assume is_waiting: "waiting (wq (V th cs # s)) t cs"+ −
and eq_wq: "waiting_queue (schs s) cs = t # list"+ −
hence "t \<in> set list"+ −
apply (unfold wq_def, auto simp:Let_def cs_waiting_def)+ −
proof -+ −
assume " t \<in> set (SOME q. distinct q \<and> set q = set list)"+ −
moreover have "\<dots> = set list" + −
proof(rule someI2)+ −
from wq_distinct [OF step_back_vt[OF vt], of cs]+ −
and eq_wq[folded wq_def]+ −
show "distinct list \<and> set list = set list" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set list" + −
thus "set x = set list" by auto+ −
qed+ −
ultimately show "t \<in> set list" by simp+ −
qed+ −
with eq_wq and wq_distinct [OF step_back_vt[OF vt], of cs, unfolded wq_def]+ −
show False by auto+ −
qed+ −
qed+ −
qed+ −
+ −
lemma step_depend_v:+ −
fixes th::thread+ −
assumes vt:+ −
"vt step (V th cs#s)"+ −
shows "+ −
depend (V th cs # s) =+ −
depend s - {(Cs cs, Th th)} -+ −
{(Th th', Cs cs) |th'. next_th s th cs th'} \<union>+ −
{(Cs cs, Th th') |th'. next_th s th cs th'}"+ −
apply (insert vt, unfold s_depend_def) + −
apply (auto split:if_splits list.splits simp:Let_def)+ −
apply (auto elim: step_v_waiting_mono step_v_hold_inv + −
step_v_release step_v_wait_inv+ −
step_v_get_hold step_v_release_inv)+ −
apply (erule_tac step_v_not_wait, auto)+ −
done+ −
+ −
lemma step_depend_p:+ −
"vt step (P th cs#s) \<Longrightarrow>+ −
depend (P th cs # s) = (if (wq s cs = []) then depend s \<union> {(Cs cs, Th th)}+ −
else depend s \<union> {(Th th, Cs cs)})"+ −
apply(simp only: s_depend_def wq_def)+ −
apply (auto split:list.splits prod.splits simp:Let_def wq_def cs_waiting_def cs_holding_def)+ −
apply(case_tac "csa = cs", auto)+ −
apply(fold wq_def)+ −
apply(drule_tac step_back_step)+ −
apply(ind_cases " step s (P (hd (wq s cs)) cs)")+ −
apply(auto simp:s_depend_def wq_def cs_holding_def)+ −
done+ −
+ −
lemma simple_A:+ −
fixes A+ −
assumes h: "\<And> x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> x = y"+ −
shows "A = {} \<or> (\<exists> a. A = {a})"+ −
proof(cases "A = {}")+ −
case True thus ?thesis by simp+ −
next+ −
case False then obtain a where "a \<in> A" by auto+ −
with h have "A = {a}" by auto+ −
thus ?thesis by simp+ −
qed+ −
+ −
lemma depend_target_th: "(Th th, x) \<in> depend (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"+ −
by (unfold s_depend_def, auto)+ −
+ −
lemma acyclic_depend: + −
fixes s+ −
assumes vt: "vt step s"+ −
shows "acyclic (depend s)"+ −
proof -+ −
from vt show ?thesis+ −
proof(induct)+ −
case (vt_cons s e)+ −
assume ih: "acyclic (depend s)"+ −
and stp: "step s e"+ −
and vt: "vt step s"+ −
show ?case+ −
proof(cases e)+ −
case (Create th prio)+ −
with ih+ −
show ?thesis by (simp add:depend_create_unchanged)+ −
next+ −
case (Exit th)+ −
with ih show ?thesis by (simp add:depend_exit_unchanged)+ −
next+ −
case (V th cs)+ −
from V vt stp have vtt: "vt step (V th cs#s)" by auto+ −
from step_depend_v [OF this]+ −
have eq_de: + −
"depend (e # s) = + −
depend s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>+ −
{(Cs cs, Th th') |th'. next_th s th cs th'}"+ −
(is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V)+ −
from ih have ac: "acyclic (?A - ?B - ?C)" by (auto elim:acyclic_subset)+ −
from step_back_step [OF vtt]+ −
have "step s (V th cs)" .+ −
thus ?thesis+ −
proof(cases)+ −
assume "holding s th cs"+ −
hence th_in: "th \<in> set (wq s cs)" and+ −
eq_hd: "th = hd (wq s cs)" by (unfold s_holding_def, auto)+ −
then obtain rest where+ −
eq_wq: "wq s cs = th#rest"+ −
by (cases "wq s cs", auto)+ −
show ?thesis+ −
proof(cases "rest = []")+ −
case False+ −
let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"+ −
from eq_wq False have eq_D: "?D = {(Cs cs, Th ?th')}"+ −
by (unfold next_th_def, auto)+ −
let ?E = "(?A - ?B - ?C)"+ −
have "(Th ?th', Cs cs) \<notin> ?E\<^sup>*"+ −
proof+ −
assume "(Th ?th', Cs cs) \<in> ?E\<^sup>*"+ −
hence " (Th ?th', Cs cs) \<in> ?E\<^sup>+" by (simp add: rtrancl_eq_or_trancl)+ −
from tranclD [OF this]+ −
obtain x where th'_e: "(Th ?th', x) \<in> ?E" by blast+ −
hence th_d: "(Th ?th', x) \<in> ?A" by simp+ −
from depend_target_th [OF this]+ −
obtain cs' where eq_x: "x = Cs cs'" by auto+ −
with th_d have "(Th ?th', Cs cs') \<in> ?A" by simp+ −
hence wt_th': "waiting s ?th' cs'"+ −
unfolding s_depend_def s_waiting_def cs_waiting_def by simp+ −
hence "cs' = cs"+ −
proof(rule waiting_unique [OF vt])+ −
from eq_wq wq_distinct[OF vt, of cs]+ −
show "waiting s ?th' cs" + −
apply (unfold s_waiting_def, auto)+ −
proof -+ −
assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"+ −
and eq_wq: "wq s cs = th # rest"+ −
have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"+ −
proof(rule someI2)+ −
from wq_distinct[OF vt, of cs] and eq_wq+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set rest"+ −
with False show "x \<noteq> []" by auto+ −
qed+ −
hence "hd (SOME q. distinct q \<and> set q = set rest) \<in> + −
set (SOME q. distinct q \<and> set q = set rest)" by auto+ −
moreover have "\<dots> = set rest" + −
proof(rule someI2)+ −
from wq_distinct[OF vt, of cs] and eq_wq+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto+ −
qed+ −
moreover note hd_in+ −
ultimately show "hd (SOME q. distinct q \<and> set q = set rest) = th" by auto+ −
next+ −
assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"+ −
and eq_wq: "wq s cs = hd (SOME q. distinct q \<and> set q = set rest) # rest"+ −
have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"+ −
proof(rule someI2)+ −
from wq_distinct[OF vt, of cs] and eq_wq+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set rest"+ −
with False show "x \<noteq> []" by auto+ −
qed+ −
hence "hd (SOME q. distinct q \<and> set q = set rest) \<in> + −
set (SOME q. distinct q \<and> set q = set rest)" by auto+ −
moreover have "\<dots> = set rest" + −
proof(rule someI2)+ −
from wq_distinct[OF vt, of cs] and eq_wq+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto+ −
qed+ −
moreover note hd_in+ −
ultimately show False by auto+ −
qed+ −
qed+ −
with th'_e eq_x have "(Th ?th', Cs cs) \<in> ?E" by simp+ −
with False+ −
show "False" by (auto simp: next_th_def eq_wq)+ −
qed+ −
with acyclic_insert[symmetric] and ac+ −
and eq_de eq_D show ?thesis by auto+ −
next+ −
case True+ −
with eq_wq+ −
have eq_D: "?D = {}"+ −
by (unfold next_th_def, auto)+ −
with eq_de ac+ −
show ?thesis by auto+ −
qed + −
qed+ −
next+ −
case (P th cs)+ −
from P vt stp have vtt: "vt step (P th cs#s)" by auto+ −
from step_depend_p [OF this] P+ −
have "depend (e # s) = + −
(if wq s cs = [] then depend s \<union> {(Cs cs, Th th)} else + −
depend s \<union> {(Th th, Cs cs)})" (is "?L = ?R")+ −
by simp+ −
moreover have "acyclic ?R"+ −
proof(cases "wq s cs = []")+ −
case True+ −
hence eq_r: "?R = depend s \<union> {(Cs cs, Th th)}" by simp+ −
have "(Th th, Cs cs) \<notin> (depend s)\<^sup>*"+ −
proof+ −
assume "(Th th, Cs cs) \<in> (depend s)\<^sup>*"+ −
hence "(Th th, Cs cs) \<in> (depend s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl)+ −
from tranclD2 [OF this]+ −
obtain x where "(x, Cs cs) \<in> depend s" by auto+ −
with True show False by (auto simp:s_depend_def cs_waiting_def)+ −
qed+ −
with acyclic_insert ih eq_r show ?thesis by auto+ −
next+ −
case False+ −
hence eq_r: "?R = depend s \<union> {(Th th, Cs cs)}" by simp+ −
have "(Cs cs, Th th) \<notin> (depend s)\<^sup>*"+ −
proof+ −
assume "(Cs cs, Th th) \<in> (depend s)\<^sup>*"+ −
hence "(Cs cs, Th th) \<in> (depend s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl)+ −
moreover from step_back_step [OF vtt] have "step s (P th cs)" .+ −
ultimately show False+ −
proof -+ −
show " \<lbrakk>(Cs cs, Th th) \<in> (depend s)\<^sup>+; step s (P th cs)\<rbrakk> \<Longrightarrow> False"+ −
by (ind_cases "step s (P th cs)", simp)+ −
qed+ −
qed+ −
with acyclic_insert ih eq_r show ?thesis by auto+ −
qed+ −
ultimately show ?thesis by simp+ −
next+ −
case (Set thread prio)+ −
with ih+ −
thm depend_set_unchanged+ −
show ?thesis by (simp add:depend_set_unchanged)+ −
qed+ −
next+ −
case vt_nil+ −
show "acyclic (depend ([]::state))"+ −
by (auto simp: s_depend_def cs_waiting_def + −
cs_holding_def wq_def acyclic_def)+ −
qed+ −
qed+ −
+ −
lemma finite_depend: + −
fixes s+ −
assumes vt: "vt step s"+ −
shows "finite (depend s)"+ −
proof -+ −
from vt show ?thesis+ −
proof(induct)+ −
case (vt_cons s e)+ −
assume ih: "finite (depend s)"+ −
and stp: "step s e"+ −
and vt: "vt step s"+ −
show ?case+ −
proof(cases e)+ −
case (Create th prio)+ −
with ih+ −
show ?thesis by (simp add:depend_create_unchanged)+ −
next+ −
case (Exit th)+ −
with ih show ?thesis by (simp add:depend_exit_unchanged)+ −
next+ −
case (V th cs)+ −
from V vt stp have vtt: "vt step (V th cs#s)" by auto+ −
from step_depend_v [OF this]+ −
have eq_de: "depend (e # s) = + −
depend s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>+ −
{(Cs cs, Th th') |th'. next_th s th cs th'}+ −
"+ −
(is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V)+ −
moreover from ih have ac: "finite (?A - ?B - ?C)" by simp+ −
moreover have "finite ?D"+ −
proof -+ −
have "?D = {} \<or> (\<exists> a. ?D = {a})" + −
by (unfold next_th_def, auto)+ −
thus ?thesis+ −
proof+ −
assume h: "?D = {}"+ −
show ?thesis by (unfold h, simp)+ −
next+ −
assume "\<exists> a. ?D = {a}"+ −
thus ?thesis by auto+ −
qed+ −
qed+ −
ultimately show ?thesis by simp+ −
next+ −
case (P th cs)+ −
from P vt stp have vtt: "vt step (P th cs#s)" by auto+ −
from step_depend_p [OF this] P+ −
have "depend (e # s) = + −
(if wq s cs = [] then depend s \<union> {(Cs cs, Th th)} else + −
depend s \<union> {(Th th, Cs cs)})" (is "?L = ?R")+ −
by simp+ −
moreover have "finite ?R"+ −
proof(cases "wq s cs = []")+ −
case True+ −
hence eq_r: "?R = depend s \<union> {(Cs cs, Th th)}" by simp+ −
with True and ih show ?thesis by auto+ −
next+ −
case False+ −
hence "?R = depend s \<union> {(Th th, Cs cs)}" by simp+ −
with False and ih show ?thesis by auto+ −
qed+ −
ultimately show ?thesis by auto+ −
next+ −
case (Set thread prio)+ −
with ih+ −
show ?thesis by (simp add:depend_set_unchanged)+ −
qed+ −
next+ −
case vt_nil+ −
show "finite (depend ([]::state))"+ −
by (auto simp: s_depend_def cs_waiting_def + −
cs_holding_def wq_def acyclic_def)+ −
qed+ −
qed+ −
+ −
text {* Several useful lemmas *}+ −
+ −
lemma wf_dep_converse: + −
fixes s+ −
assumes vt: "vt step s"+ −
shows "wf ((depend s)^-1)"+ −
proof(rule finite_acyclic_wf_converse)+ −
from finite_depend [OF vt]+ −
show "finite (depend s)" .+ −
next+ −
from acyclic_depend[OF vt]+ −
show "acyclic (depend s)" .+ −
qed+ −
+ −
lemma hd_np_in: "x \<in> set l \<Longrightarrow> hd l \<in> set l"+ −
by (induct l, auto)+ −
+ −
lemma th_chasing: "(Th th, Cs cs) \<in> depend (s::state) \<Longrightarrow> \<exists> th'. (Cs cs, Th th') \<in> depend s"+ −
by (auto simp:s_depend_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)+ −
+ −
lemma wq_threads: + −
fixes s cs+ −
assumes vt: "vt step s"+ −
and h: "th \<in> set (wq s cs)"+ −
shows "th \<in> threads s"+ −
proof -+ −
from vt and h show ?thesis+ −
proof(induct arbitrary: th cs)+ −
case (vt_cons s e)+ −
assume ih: "\<And>th cs. th \<in> set (wq s cs) \<Longrightarrow> th \<in> threads s"+ −
and stp: "step s e"+ −
and vt: "vt step s"+ −
and h: "th \<in> set (wq (e # s) cs)"+ −
show ?case+ −
proof(cases e)+ −
case (Create th' prio)+ −
with ih h show ?thesis+ −
by (auto simp:wq_def Let_def)+ −
next+ −
case (Exit th')+ −
with stp ih h show ?thesis+ −
apply (auto simp:wq_def Let_def)+ −
apply (ind_cases "step s (Exit th')")+ −
apply (auto simp:runing_def readys_def s_holding_def s_waiting_def holdents_def+ −
s_depend_def s_holding_def cs_holding_def)+ −
by (fold wq_def, auto)+ −
next+ −
case (V th' cs')+ −
show ?thesis+ −
proof(cases "cs' = cs")+ −
case False+ −
with h+ −
show ?thesis+ −
apply(unfold wq_def V, auto simp:Let_def V split:prod.splits, fold wq_def)+ −
by (drule_tac ih, simp)+ −
next+ −
case True+ −
from h+ −
show ?thesis+ −
proof(unfold V wq_def)+ −
assume th_in: "th \<in> set (waiting_queue (schs (V th' cs' # s)) cs)" (is "th \<in> set ?l")+ −
show "th \<in> threads (V th' cs' # s)"+ −
proof(cases "cs = cs'")+ −
case False+ −
hence "?l = waiting_queue (schs s) cs" by (simp add:Let_def)+ −
with th_in have " th \<in> set (wq s cs)" + −
by (fold wq_def, simp)+ −
from ih [OF this] show ?thesis by simp+ −
next+ −
case True+ −
show ?thesis+ −
proof(cases "waiting_queue (schs s) cs'")+ −
case Nil+ −
with h V show ?thesis+ −
apply (auto simp:wq_def Let_def split:if_splits)+ −
by (fold wq_def, drule_tac ih, simp)+ −
next+ −
case (Cons a rest)+ −
assume eq_wq: "waiting_queue (schs s) cs' = a # rest"+ −
with h V show ?thesis+ −
apply (auto simp:Let_def wq_def split:if_splits)+ −
proof -+ −
assume th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"+ −
have "set (SOME q. distinct q \<and> set q = set rest) = set rest" + −
proof(rule someI2)+ −
from wq_distinct[OF vt, of cs'] and eq_wq[folded wq_def]+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"+ −
by auto+ −
qed+ −
with eq_wq th_in have "th \<in> set (waiting_queue (schs s) cs')" by auto+ −
from ih[OF this[folded wq_def]] show "th \<in> threads s" .+ −
next+ −
assume th_in: "th \<in> set (waiting_queue (schs s) cs)"+ −
from ih[OF this[folded wq_def]]+ −
show "th \<in> threads s" .+ −
qed+ −
qed+ −
qed+ −
qed+ −
qed+ −
next+ −
case (P th' cs')+ −
from h stp+ −
show ?thesis+ −
apply (unfold P wq_def)+ −
apply (auto simp:Let_def split:if_splits, fold wq_def)+ −
apply (auto intro:ih)+ −
apply(ind_cases "step s (P th' cs')")+ −
by (unfold runing_def readys_def, auto)+ −
next+ −
case (Set thread prio)+ −
with ih h show ?thesis+ −
by (auto simp:wq_def Let_def)+ −
qed+ −
next+ −
case vt_nil+ −
thus ?case by (auto simp:wq_def)+ −
qed+ −
qed+ −
+ −
lemma range_in: "\<lbrakk>vt step s; (Th th) \<in> Range (depend (s::state))\<rbrakk> \<Longrightarrow> th \<in> threads s"+ −
apply(unfold s_depend_def cs_waiting_def cs_holding_def)+ −
by (auto intro:wq_threads)+ −
+ −
lemma readys_v_eq:+ −
fixes th thread cs rest+ −
assumes vt: "vt step s"+ −
and neq_th: "th \<noteq> thread"+ −
and eq_wq: "wq s cs = thread#rest"+ −
and not_in: "th \<notin> set rest"+ −
shows "(th \<in> readys (V thread cs#s)) = (th \<in> readys s)"+ −
proof -+ −
from prems show ?thesis+ −
apply (auto simp:readys_def)+ −
apply (case_tac "cs = csa", simp add:s_waiting_def)+ −
apply (erule_tac x = csa in allE)+ −
apply (simp add:s_waiting_def wq_def Let_def split:if_splits)+ −
apply (case_tac "csa = cs", simp)+ −
apply (erule_tac x = cs in allE)+ −
apply (auto simp:s_waiting_def wq_def Let_def split:list.splits)+ −
proof -+ −
assume th_nin: "th \<notin> set rest"+ −
and th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"+ −
and eq_wq: "waiting_queue (schs s) cs = thread # rest"+ −
have "set (SOME q. distinct q \<and> set q = set rest) = set rest"+ −
proof(rule someI2)+ −
from wq_distinct[OF vt, of cs] and eq_wq[folded wq_def]+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto+ −
qed+ −
with th_nin th_in show False by auto+ −
qed+ −
qed+ −
+ −
lemma chain_building:+ −
assumes vt: "vt step s"+ −
shows "node \<in> Domain (depend s) \<longrightarrow> (\<exists> th'. th' \<in> readys s \<and> (node, Th th') \<in> (depend s)^+)"+ −
proof -+ −
from wf_dep_converse [OF vt]+ −
have h: "wf ((depend s)\<inverse>)" .+ −
show ?thesis+ −
proof(induct rule:wf_induct [OF h])+ −
fix x+ −
assume ih [rule_format]: + −
"\<forall>y. (y, x) \<in> (depend s)\<inverse> \<longrightarrow> + −
y \<in> Domain (depend s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (y, Th th') \<in> (depend s)\<^sup>+)"+ −
show "x \<in> Domain (depend s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (depend s)\<^sup>+)"+ −
proof+ −
assume x_d: "x \<in> Domain (depend s)"+ −
show "\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (depend s)\<^sup>+"+ −
proof(cases x)+ −
case (Th th)+ −
from x_d Th obtain cs where x_in: "(Th th, Cs cs) \<in> depend s" by (auto simp:s_depend_def)+ −
with Th have x_in_r: "(Cs cs, x) \<in> (depend s)^-1" by simp+ −
from th_chasing [OF x_in] obtain th' where "(Cs cs, Th th') \<in> depend s" by blast+ −
hence "Cs cs \<in> Domain (depend s)" by auto+ −
from ih [OF x_in_r this] obtain th'+ −
where th'_ready: " th' \<in> readys s" and cs_in: "(Cs cs, Th th') \<in> (depend s)\<^sup>+" by auto+ −
have "(x, Th th') \<in> (depend s)\<^sup>+" using Th x_in cs_in by auto+ −
with th'_ready show ?thesis by auto+ −
next+ −
case (Cs cs)+ −
from x_d Cs obtain th' where th'_d: "(Th th', x) \<in> (depend s)^-1" by (auto simp:s_depend_def)+ −
show ?thesis+ −
proof(cases "th' \<in> readys s")+ −
case True+ −
from True and th'_d show ?thesis by auto+ −
next+ −
case False+ −
from th'_d and range_in [OF vt] have "th' \<in> threads s" by auto+ −
with False have "Th th' \<in> Domain (depend s)" + −
by (auto simp:readys_def s_waiting_def s_depend_def cs_waiting_def Domain_def)+ −
from ih [OF th'_d this]+ −
obtain th'' where + −
th''_r: "th'' \<in> readys s" and + −
th''_in: "(Th th', Th th'') \<in> (depend s)\<^sup>+" by auto+ −
from th'_d and th''_in + −
have "(x, Th th'') \<in> (depend s)\<^sup>+" by auto+ −
with th''_r show ?thesis by auto+ −
qed+ −
qed+ −
qed+ −
qed+ −
qed+ −
+ −
lemma th_chain_to_ready:+ −
fixes s th+ −
assumes vt: "vt step s"+ −
and th_in: "th \<in> threads s"+ −
shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (depend s)^+)"+ −
proof(cases "th \<in> readys s")+ −
case True+ −
thus ?thesis by auto+ −
next+ −
case False+ −
from False and th_in have "Th th \<in> Domain (depend s)" + −
by (auto simp:readys_def s_waiting_def s_depend_def cs_waiting_def Domain_def)+ −
from chain_building [rule_format, OF vt this]+ −
show ?thesis by auto+ −
qed+ −
+ −
lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"+ −
by (unfold s_waiting_def cs_waiting_def, auto)+ −
+ −
lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"+ −
by (unfold s_holding_def cs_holding_def, simp)+ −
+ −
lemma holding_unique: "\<lbrakk>holding (s::state) th1 cs; holding s th2 cs\<rbrakk> \<Longrightarrow> th1 = th2"+ −
by (unfold s_holding_def cs_holding_def, auto)+ −
+ −
lemma unique_depend: "\<lbrakk>vt step s; (n, n1) \<in> depend s; (n, n2) \<in> depend s\<rbrakk> \<Longrightarrow> n1 = n2"+ −
apply(unfold s_depend_def, auto, fold waiting_eq holding_eq)+ −
by(auto elim:waiting_unique holding_unique)+ −
+ −
lemma trancl_split: "(a, b) \<in> r^+ \<Longrightarrow> \<exists> c. (a, c) \<in> r"+ −
by (induct rule:trancl_induct, auto)+ −
+ −
lemma dchain_unique:+ −
assumes vt: "vt step s"+ −
and th1_d: "(n, Th th1) \<in> (depend s)^+"+ −
and th1_r: "th1 \<in> readys s"+ −
and th2_d: "(n, Th th2) \<in> (depend s)^+"+ −
and th2_r: "th2 \<in> readys s"+ −
shows "th1 = th2"+ −
proof -+ −
{ assume neq: "th1 \<noteq> th2"+ −
hence "Th th1 \<noteq> Th th2" by simp+ −
from unique_chain [OF _ th1_d th2_d this] and unique_depend [OF vt]+ −
have "(Th th1, Th th2) \<in> (depend s)\<^sup>+ \<or> (Th th2, Th th1) \<in> (depend s)\<^sup>+" by auto+ −
hence "False"+ −
proof+ −
assume "(Th th1, Th th2) \<in> (depend s)\<^sup>+"+ −
from trancl_split [OF this]+ −
obtain n where dd: "(Th th1, n) \<in> depend s" by auto+ −
then obtain cs where eq_n: "n = Cs cs"+ −
by (auto simp:s_depend_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)+ −
from dd eq_n have "th1 \<notin> readys s"+ −
by (auto simp:readys_def s_depend_def s_waiting_def cs_waiting_def)+ −
with th1_r show ?thesis by auto+ −
next+ −
assume "(Th th2, Th th1) \<in> (depend s)\<^sup>+"+ −
from trancl_split [OF this]+ −
obtain n where dd: "(Th th2, n) \<in> depend s" by auto+ −
then obtain cs where eq_n: "n = Cs cs"+ −
by (auto simp:s_depend_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)+ −
from dd eq_n have "th2 \<notin> readys s"+ −
by (auto simp:readys_def s_depend_def s_waiting_def cs_waiting_def)+ −
with th2_r show ?thesis by auto+ −
qed+ −
} thus ?thesis by auto+ −
qed+ −
+ −
+ −
lemma step_holdents_p_add:+ −
fixes th cs s+ −
assumes vt: "vt step (P th cs#s)"+ −
and "wq s cs = []"+ −
shows "holdents (P th cs#s) th = holdents s th \<union> {cs}"+ −
proof -+ −
from prems show ?thesis+ −
unfolding holdents_def step_depend_p[OF vt] by auto+ −
qed+ −
+ −
lemma step_holdents_p_eq:+ −
fixes th cs s+ −
assumes vt: "vt step (P th cs#s)"+ −
and "wq s cs \<noteq> []"+ −
shows "holdents (P th cs#s) th = holdents s th"+ −
proof -+ −
from prems show ?thesis+ −
unfolding holdents_def step_depend_p[OF vt] by auto+ −
qed+ −
+ −
+ −
lemma finite_holding:+ −
fixes s th cs+ −
assumes vt: "vt step s"+ −
shows "finite (holdents s th)"+ −
proof -+ −
let ?F = "\<lambda> (x, y). the_cs x"+ −
from finite_depend [OF vt]+ −
have "finite (depend s)" .+ −
hence "finite (?F `(depend s))" by simp+ −
moreover have "{cs . (Cs cs, Th th) \<in> depend s} \<subseteq> \<dots>" + −
proof -+ −
{ have h: "\<And> a A f. a \<in> A \<Longrightarrow> f a \<in> f ` A" by auto+ −
fix x assume "(Cs x, Th th) \<in> depend s"+ −
hence "?F (Cs x, Th th) \<in> ?F `(depend s)" by (rule h)+ −
moreover have "?F (Cs x, Th th) = x" by simp+ −
ultimately have "x \<in> (\<lambda>(x, y). the_cs x) ` depend s" by simp + −
} thus ?thesis by auto+ −
qed+ −
ultimately show ?thesis by (unfold holdents_def, auto intro:finite_subset)+ −
qed+ −
+ −
lemma cntCS_v_dec: + −
fixes s thread cs+ −
assumes vtv: "vt step (V thread cs#s)"+ −
shows "(cntCS (V thread cs#s) thread + 1) = cntCS s thread"+ −
proof -+ −
from step_back_step[OF vtv]+ −
have cs_in: "cs \<in> holdents s thread" + −
apply (cases, unfold holdents_def s_depend_def, simp)+ −
by (unfold cs_holding_def s_holding_def, auto)+ −
moreover have cs_not_in: + −
"(holdents (V thread cs#s) thread) = holdents s thread - {cs}"+ −
apply (insert wq_distinct[OF step_back_vt[OF vtv], of cs])+ −
apply (unfold holdents_def, unfold step_depend_v[OF vtv],+ −
auto simp:next_th_def)+ −
proof -+ −
fix rest+ −
assume dst: "distinct (rest::thread list)"+ −
and ne: "rest \<noteq> []"+ −
and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"+ −
moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"+ −
proof(rule someI2)+ −
from dst show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto+ −
qed+ −
ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> + −
set (SOME q. distinct q \<and> set q = set rest)" by simp+ −
moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"+ −
proof(rule someI2)+ −
from dst show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
fix x assume " distinct x \<and> set x = set rest" with ne+ −
show "x \<noteq> []" by auto+ −
qed+ −
ultimately + −
show "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> depend s"+ −
by auto+ −
next+ −
fix rest+ −
assume dst: "distinct (rest::thread list)"+ −
and ne: "rest \<noteq> []"+ −
and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"+ −
moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"+ −
proof(rule someI2)+ −
from dst show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto+ −
qed+ −
ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> + −
set (SOME q. distinct q \<and> set q = set rest)" by simp+ −
moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"+ −
proof(rule someI2)+ −
from dst show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
fix x assume " distinct x \<and> set x = set rest" with ne+ −
show "x \<noteq> []" by auto+ −
qed+ −
ultimately show "False" by auto + −
qed+ −
ultimately + −
have "holdents s thread = insert cs (holdents (V thread cs#s) thread)"+ −
by auto+ −
moreover have "card \<dots> = + −
Suc (card ((holdents (V thread cs#s) thread) - {cs}))"+ −
proof(rule card_insert)+ −
from finite_holding [OF vtv]+ −
show " finite (holdents (V thread cs # s) thread)" .+ −
qed+ −
moreover from cs_not_in + −
have "cs \<notin> (holdents (V thread cs#s) thread)" by auto+ −
ultimately show ?thesis by (simp add:cntCS_def)+ −
qed + −
+ −
lemma cnp_cnv_cncs:+ −
fixes s th+ −
assumes vt: "vt step s"+ −
shows "cntP s th = cntV s th + (if (th \<in> readys s \<or> th \<notin> threads s) + −
then cntCS s th else cntCS s th + 1)"+ −
proof -+ −
from vt show ?thesis+ −
proof(induct arbitrary:th)+ −
case (vt_cons s e)+ −
assume vt: "vt step s"+ −
and ih: "\<And>th. cntP s th = cntV s th ++ −
(if (th \<in> readys s \<or> th \<notin> threads s) then cntCS s th else cntCS s th + 1)"+ −
and stp: "step s e"+ −
from stp show ?case+ −
proof(cases)+ −
case (thread_create thread prio)+ −
assume eq_e: "e = Create thread prio"+ −
and not_in: "thread \<notin> threads s"+ −
show ?thesis+ −
proof -+ −
{ fix cs + −
assume "thread \<in> set (wq s cs)"+ −
from wq_threads [OF vt this] have "thread \<in> threads s" .+ −
with not_in have "False" by simp+ −
} with eq_e have eq_readys: "readys (e#s) = readys s \<union> {thread}"+ −
by (auto simp:readys_def threads.simps s_waiting_def + −
wq_def cs_waiting_def Let_def)+ −
from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)+ −
from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)+ −
have eq_cncs: "cntCS (e#s) th = cntCS s th"+ −
unfolding cntCS_def holdents_def+ −
by (simp add:depend_create_unchanged eq_e)+ −
{ assume "th \<noteq> thread"+ −
with eq_readys eq_e+ −
have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = + −
(th \<in> readys (s) \<or> th \<notin> threads (s))" + −
by (simp add:threads.simps)+ −
with eq_cnp eq_cnv eq_cncs ih not_in+ −
have ?thesis by simp+ −
} moreover {+ −
assume eq_th: "th = thread"+ −
with not_in ih have " cntP s th = cntV s th + cntCS s th" by simp+ −
moreover from eq_th and eq_readys have "th \<in> readys (e#s)" by simp+ −
moreover note eq_cnp eq_cnv eq_cncs+ −
ultimately have ?thesis by auto+ −
} ultimately show ?thesis by blast+ −
qed+ −
next+ −
case (thread_exit thread)+ −
assume eq_e: "e = Exit thread" + −
and is_runing: "thread \<in> runing s"+ −
and no_hold: "holdents s thread = {}"+ −
from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)+ −
from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)+ −
have eq_cncs: "cntCS (e#s) th = cntCS s th"+ −
unfolding cntCS_def holdents_def+ −
by (simp add:depend_exit_unchanged eq_e)+ −
{ assume "th \<noteq> thread"+ −
with eq_e+ −
have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = + −
(th \<in> readys (s) \<or> th \<notin> threads (s))" + −
apply (simp add:threads.simps readys_def)+ −
apply (subst s_waiting_def)+ −
apply (subst (1 2) wq_def)+ −
apply (simp add:Let_def)+ −
apply (subst s_waiting_def, simp)+ −
by (fold wq_def, simp)+ −
with eq_cnp eq_cnv eq_cncs ih+ −
have ?thesis by simp+ −
} moreover {+ −
assume eq_th: "th = thread"+ −
with ih is_runing have " cntP s th = cntV s th + cntCS s th" + −
by (simp add:runing_def)+ −
moreover from eq_th eq_e have "th \<notin> threads (e#s)"+ −
by simp+ −
moreover note eq_cnp eq_cnv eq_cncs+ −
ultimately have ?thesis by auto+ −
} ultimately show ?thesis by blast+ −
next+ −
case (thread_P thread cs)+ −
assume eq_e: "e = P thread cs"+ −
and is_runing: "thread \<in> runing s"+ −
and no_dep: "(Cs cs, Th thread) \<notin> (depend s)\<^sup>+"+ −
from prems have vtp: "vt step (P thread cs#s)" by auto+ −
show ?thesis + −
proof -+ −
{ have hh: "\<And> A B C. (B = C) \<Longrightarrow> (A \<and> B) = (A \<and> C)" by blast+ −
assume neq_th: "th \<noteq> thread"+ −
with eq_e+ −
have eq_readys: "(th \<in> readys (e#s)) = (th \<in> readys (s))"+ −
apply (simp add:readys_def s_waiting_def wq_def Let_def)+ −
apply (rule_tac hh, clarify)+ −
apply (intro iffI allI, clarify)+ −
apply (erule_tac x = csa in allE, auto)+ −
apply (subgoal_tac "waiting_queue (schs s) cs \<noteq> []", auto)+ −
apply (erule_tac x = cs in allE, auto)+ −
by (case_tac "(waiting_queue (schs s) cs)", auto)+ −
moreover from neq_th eq_e have "cntCS (e # s) th = cntCS s th"+ −
apply (simp add:cntCS_def holdents_def)+ −
by (unfold step_depend_p [OF vtp], auto)+ −
moreover from eq_e neq_th have "cntP (e # s) th = cntP s th"+ −
by (simp add:cntP_def count_def)+ −
moreover from eq_e neq_th have "cntV (e#s) th = cntV s th"+ −
by (simp add:cntV_def count_def)+ −
moreover from eq_e neq_th have "threads (e#s) = threads s" by simp+ −
moreover note ih [of th] + −
ultimately have ?thesis by simp+ −
} moreover {+ −
assume eq_th: "th = thread"+ −
have ?thesis+ −
proof -+ −
from eq_e eq_th have eq_cnp: "cntP (e # s) th = 1 + (cntP s th)" + −
by (simp add:cntP_def count_def)+ −
from eq_e eq_th have eq_cnv: "cntV (e#s) th = cntV s th"+ −
by (simp add:cntV_def count_def)+ −
show ?thesis+ −
proof (cases "wq s cs = []")+ −
case True+ −
with is_runing+ −
have "th \<in> readys (e#s)"+ −
apply (unfold eq_e wq_def, unfold readys_def s_depend_def)+ −
apply (simp add: wq_def[symmetric] runing_def eq_th s_waiting_def)+ −
by (auto simp:readys_def wq_def Let_def s_waiting_def wq_def)+ −
moreover have "cntCS (e # s) th = 1 + cntCS s th"+ −
proof -+ −
have "card {csa. csa = cs \<or> (Cs csa, Th thread) \<in> depend s} =+ −
Suc (card {cs. (Cs cs, Th thread) \<in> depend s})" (is "card ?L = Suc (card ?R)")+ −
proof -+ −
have "?L = insert cs ?R" by auto+ −
moreover have "card \<dots> = Suc (card (?R - {cs}))" + −
proof(rule card_insert)+ −
from finite_holding [OF vt, of thread]+ −
show " finite {cs. (Cs cs, Th thread) \<in> depend s}"+ −
by (unfold holdents_def, simp)+ −
qed+ −
moreover have "?R - {cs} = ?R"+ −
proof -+ −
have "cs \<notin> ?R"+ −
proof+ −
assume "cs \<in> {cs. (Cs cs, Th thread) \<in> depend s}"+ −
with no_dep show False by auto+ −
qed+ −
thus ?thesis by auto+ −
qed+ −
ultimately show ?thesis by auto+ −
qed+ −
thus ?thesis+ −
apply (unfold eq_e eq_th cntCS_def)+ −
apply (simp add: holdents_def)+ −
by (unfold step_depend_p [OF vtp], auto simp:True)+ −
qed+ −
moreover from is_runing have "th \<in> readys s"+ −
by (simp add:runing_def eq_th)+ −
moreover note eq_cnp eq_cnv ih [of th]+ −
ultimately show ?thesis by auto+ −
next+ −
case False+ −
have eq_wq: "wq (e#s) cs = wq s cs @ [th]"+ −
by (unfold eq_th eq_e wq_def, auto simp:Let_def)+ −
have "th \<notin> readys (e#s)"+ −
proof+ −
assume "th \<in> readys (e#s)"+ −
hence "\<forall>cs. \<not> waiting (e # s) th cs" by (simp add:readys_def)+ −
from this[rule_format, of cs] have " \<not> waiting (e # s) th cs" .+ −
hence "th \<in> set (wq (e#s) cs) \<Longrightarrow> th = hd (wq (e#s) cs)" + −
by (simp add:s_waiting_def)+ −
moreover from eq_wq have "th \<in> set (wq (e#s) cs)" by auto+ −
ultimately have "th = hd (wq (e#s) cs)" by blast+ −
with eq_wq have "th = hd (wq s cs @ [th])" by simp+ −
hence "th = hd (wq s cs)" using False by auto+ −
with False eq_wq wq_distinct [OF vtp, of cs]+ −
show False by (fold eq_e, auto)+ −
qed+ −
moreover from is_runing have "th \<in> threads (e#s)" + −
by (unfold eq_e, auto simp:runing_def readys_def eq_th)+ −
moreover have "cntCS (e # s) th = cntCS s th"+ −
apply (unfold cntCS_def holdents_def eq_e step_depend_p[OF vtp])+ −
by (auto simp:False)+ −
moreover note eq_cnp eq_cnv ih[of th]+ −
moreover from is_runing have "th \<in> readys s"+ −
by (simp add:runing_def eq_th)+ −
ultimately show ?thesis by auto+ −
qed+ −
qed+ −
} ultimately show ?thesis by blast+ −
qed+ −
next+ −
case (thread_V thread cs)+ −
from prems have vtv: "vt step (V thread cs # s)" by auto+ −
assume eq_e: "e = V thread cs"+ −
and is_runing: "thread \<in> runing s"+ −
and hold: "holding s thread cs"+ −
from hold obtain rest + −
where eq_wq: "wq s cs = thread # rest"+ −
by (case_tac "wq s cs", auto simp:s_holding_def)+ −
have eq_threads: "threads (e#s) = threads s" by (simp add: eq_e)+ −
have eq_set: "set (SOME q. distinct q \<and> set q = set rest) = set rest"+ −
proof(rule someI2)+ −
from wq_distinct[OF step_back_vt[OF vtv], of cs] and eq_wq+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"+ −
by auto+ −
qed+ −
show ?thesis+ −
proof -+ −
{ assume eq_th: "th = thread"+ −
from eq_th have eq_cnp: "cntP (e # s) th = cntP s th"+ −
by (unfold eq_e, simp add:cntP_def count_def)+ −
moreover from eq_th have eq_cnv: "cntV (e#s) th = 1 + cntV s th"+ −
by (unfold eq_e, simp add:cntV_def count_def)+ −
moreover from cntCS_v_dec [OF vtv] + −
have "cntCS (e # s) thread + 1 = cntCS s thread"+ −
by (simp add:eq_e)+ −
moreover from is_runing have rd_before: "thread \<in> readys s"+ −
by (unfold runing_def, simp)+ −
moreover have "thread \<in> readys (e # s)"+ −
proof -+ −
from is_runing+ −
have "thread \<in> threads (e#s)" + −
by (unfold eq_e, auto simp:runing_def readys_def)+ −
moreover have "\<forall> cs1. \<not> waiting (e#s) thread cs1"+ −
proof+ −
fix cs1+ −
{ assume eq_cs: "cs1 = cs" + −
have "\<not> waiting (e # s) thread cs1"+ −
proof -+ −
from eq_wq+ −
have "thread \<notin> set (wq (e#s) cs1)"+ −
apply(unfold eq_e wq_def eq_cs s_holding_def)+ −
apply (auto simp:Let_def)+ −
proof -+ −
assume "thread \<in> set (SOME q. distinct q \<and> set q = set rest)"+ −
with eq_set have "thread \<in> set rest" by simp+ −
with wq_distinct[OF step_back_vt[OF vtv], of cs]+ −
and eq_wq show False by auto+ −
qed+ −
thus ?thesis by (simp add:s_waiting_def)+ −
qed+ −
} moreover {+ −
assume neq_cs: "cs1 \<noteq> cs"+ −
have "\<not> waiting (e # s) thread cs1" + −
proof -+ −
from wq_v_neq [OF neq_cs[symmetric]]+ −
have "wq (V thread cs # s) cs1 = wq s cs1" .+ −
moreover have "\<not> waiting s thread cs1" + −
proof -+ −
from runing_ready and is_runing+ −
have "thread \<in> readys s" by auto+ −
thus ?thesis by (simp add:readys_def)+ −
qed+ −
ultimately show ?thesis + −
by (auto simp:s_waiting_def eq_e)+ −
qed+ −
} ultimately show "\<not> waiting (e # s) thread cs1" by blast+ −
qed+ −
ultimately show ?thesis by (simp add:readys_def)+ −
qed+ −
moreover note eq_th ih+ −
ultimately have ?thesis by auto+ −
} moreover {+ −
assume neq_th: "th \<noteq> thread"+ −
from neq_th eq_e have eq_cnp: "cntP (e # s) th = cntP s th" + −
by (simp add:cntP_def count_def)+ −
from neq_th eq_e have eq_cnv: "cntV (e # s) th = cntV s th" + −
by (simp add:cntV_def count_def)+ −
have ?thesis+ −
proof(cases "th \<in> set rest")+ −
case False+ −
have "(th \<in> readys (e # s)) = (th \<in> readys s)"+ −
apply (insert step_back_vt[OF vtv])+ −
by (unfold eq_e, rule readys_v_eq [OF _ neq_th eq_wq False], auto)+ −
moreover have "cntCS (e#s) th = cntCS s th"+ −
apply (insert neq_th, unfold eq_e cntCS_def holdents_def step_depend_v[OF vtv], auto)+ −
proof -+ −
have "{csa. (Cs csa, Th th) \<in> depend s \<or> csa = cs \<and> next_th s thread cs th} =+ −
{cs. (Cs cs, Th th) \<in> depend s}"+ −
proof -+ −
from False eq_wq+ −
have " next_th s thread cs th \<Longrightarrow> (Cs cs, Th th) \<in> depend s"+ −
apply (unfold next_th_def, auto)+ −
proof -+ −
assume ne: "rest \<noteq> []"+ −
and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"+ −
and eq_wq: "wq s cs = thread # rest"+ −
from eq_set ni have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> + −
set (SOME q. distinct q \<and> set q = set rest)+ −
" by simp+ −
moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"+ −
proof(rule someI2)+ −
from wq_distinct[OF step_back_vt[OF vtv], of cs] and eq_wq+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set rest"+ −
with ne show "x \<noteq> []" by auto+ −
qed+ −
ultimately show + −
"(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> depend s"+ −
by auto+ −
qed + −
thus ?thesis by auto+ −
qed+ −
thus "card {csa. (Cs csa, Th th) \<in> depend s \<or> csa = cs \<and> next_th s thread cs th} =+ −
card {cs. (Cs cs, Th th) \<in> depend s}" by simp + −
qed+ −
moreover note ih eq_cnp eq_cnv eq_threads+ −
ultimately show ?thesis by auto+ −
next+ −
case True+ −
assume th_in: "th \<in> set rest"+ −
show ?thesis+ −
proof(cases "next_th s thread cs th")+ −
case False+ −
with eq_wq and th_in have + −
neq_hd: "th \<noteq> hd (SOME q. distinct q \<and> set q = set rest)" (is "th \<noteq> hd ?rest")+ −
by (auto simp:next_th_def)+ −
have "(th \<in> readys (e # s)) = (th \<in> readys s)"+ −
proof -+ −
from eq_wq and th_in+ −
have "\<not> th \<in> readys s"+ −
apply (auto simp:readys_def s_waiting_def)+ −
apply (rule_tac x = cs in exI, auto)+ −
by (insert wq_distinct[OF step_back_vt[OF vtv], of cs], auto)+ −
moreover + −
from eq_wq and th_in and neq_hd+ −
have "\<not> (th \<in> readys (e # s))"+ −
apply (auto simp:readys_def s_waiting_def eq_e wq_def Let_def split:list.splits)+ −
by (rule_tac x = cs in exI, auto simp:eq_set)+ −
ultimately show ?thesis by auto+ −
qed+ −
moreover have "cntCS (e#s) th = cntCS s th" + −
proof -+ −
from eq_wq and th_in and neq_hd+ −
have "(holdents (e # s) th) = (holdents s th)"+ −
apply (unfold eq_e step_depend_v[OF vtv], + −
auto simp:next_th_def eq_set s_depend_def holdents_def wq_def+ −
Let_def cs_holding_def)+ −
by (insert wq_distinct[OF step_back_vt[OF vtv], of cs], auto simp:wq_def)+ −
thus ?thesis by (simp add:cntCS_def)+ −
qed+ −
moreover note ih eq_cnp eq_cnv eq_threads+ −
ultimately show ?thesis by auto+ −
next+ −
case True+ −
let ?rest = " (SOME q. distinct q \<and> set q = set rest)"+ −
let ?t = "hd ?rest"+ −
from True eq_wq th_in neq_th+ −
have "th \<in> readys (e # s)"+ −
apply (auto simp:eq_e readys_def s_waiting_def wq_def+ −
Let_def next_th_def)+ −
proof -+ −
assume eq_wq: "waiting_queue (schs s) cs = thread # rest"+ −
and t_in: "?t \<in> set rest"+ −
show "?t \<in> threads s"+ −
proof(rule wq_threads[OF step_back_vt[OF vtv]])+ −
from eq_wq and t_in+ −
show "?t \<in> set (wq s cs)" by (auto simp:wq_def)+ −
qed+ −
next+ −
fix csa+ −
assume eq_wq: "waiting_queue (schs s) cs = thread # rest"+ −
and t_in: "?t \<in> set rest"+ −
and neq_cs: "csa \<noteq> cs"+ −
and t_in': "?t \<in> set (waiting_queue (schs s) csa)"+ −
show "?t = hd (waiting_queue (schs s) csa)"+ −
proof -+ −
{ assume neq_hd': "?t \<noteq> hd (waiting_queue (schs s) csa)"+ −
from wq_distinct[OF step_back_vt[OF vtv], of cs] and + −
eq_wq[folded wq_def] and t_in eq_wq+ −
have "?t \<noteq> thread" by auto+ −
with eq_wq and t_in+ −
have w1: "waiting s ?t cs"+ −
by (auto simp:s_waiting_def wq_def)+ −
from t_in' neq_hd'+ −
have w2: "waiting s ?t csa"+ −
by (auto simp:s_waiting_def wq_def)+ −
from waiting_unique[OF step_back_vt[OF vtv] w1 w2]+ −
and neq_cs have "False" by auto+ −
} thus ?thesis by auto+ −
qed+ −
qed+ −
moreover have "cntP s th = cntV s th + cntCS s th + 1"+ −
proof -+ −
have "th \<notin> readys s" + −
proof -+ −
from True eq_wq neq_th th_in+ −
show ?thesis+ −
apply (unfold readys_def s_waiting_def, auto)+ −
by (rule_tac x = cs in exI, auto)+ −
qed+ −
moreover have "th \<in> threads s"+ −
proof -+ −
from th_in eq_wq+ −
have "th \<in> set (wq s cs)" by simp+ −
from wq_threads [OF step_back_vt[OF vtv] this] + −
show ?thesis .+ −
qed+ −
ultimately show ?thesis using ih by auto+ −
qed+ −
moreover from True neq_th have "cntCS (e # s) th = 1 + cntCS s th"+ −
apply (unfold cntCS_def holdents_def eq_e step_depend_v[OF vtv], auto)+ −
proof -+ −
show "card {csa. (Cs csa, Th th) \<in> depend s \<or> csa = cs} =+ −
Suc (card {cs. (Cs cs, Th th) \<in> depend s})"+ −
(is "card ?A = Suc (card ?B)")+ −
proof -+ −
have "?A = insert cs ?B" by auto+ −
hence "card ?A = card (insert cs ?B)" by simp+ −
also have "\<dots> = Suc (card ?B)"+ −
proof(rule card_insert_disjoint)+ −
have "?B \<subseteq> ((\<lambda> (x, y). the_cs x) ` depend s)" + −
apply (auto simp:image_def)+ −
by (rule_tac x = "(Cs x, Th th)" in bexI, auto)+ −
with finite_depend[OF step_back_vt[OF vtv]]+ −
show "finite {cs. (Cs cs, Th th) \<in> depend s}" by (auto intro:finite_subset)+ −
next+ −
show "cs \<notin> {cs. (Cs cs, Th th) \<in> depend s}"+ −
proof+ −
assume "cs \<in> {cs. (Cs cs, Th th) \<in> depend s}"+ −
hence "(Cs cs, Th th) \<in> depend s" by simp+ −
with True neq_th eq_wq show False+ −
by (auto simp:next_th_def s_depend_def cs_holding_def)+ −
qed+ −
qed+ −
finally show ?thesis .+ −
qed+ −
qed+ −
moreover note eq_cnp eq_cnv+ −
ultimately show ?thesis by simp+ −
qed+ −
qed+ −
} ultimately show ?thesis by blast+ −
qed+ −
next+ −
case (thread_set thread prio)+ −
assume eq_e: "e = Set thread prio"+ −
and is_runing: "thread \<in> runing s"+ −
show ?thesis+ −
proof -+ −
from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)+ −
from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)+ −
have eq_cncs: "cntCS (e#s) th = cntCS s th"+ −
unfolding cntCS_def holdents_def+ −
by (simp add:depend_set_unchanged eq_e)+ −
from eq_e have eq_readys: "readys (e#s) = readys s" + −
by (simp add:readys_def cs_waiting_def s_waiting_def wq_def,+ −
auto simp:Let_def)+ −
{ assume "th \<noteq> thread"+ −
with eq_readys eq_e+ −
have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = + −
(th \<in> readys (s) \<or> th \<notin> threads (s))" + −
by (simp add:threads.simps)+ −
with eq_cnp eq_cnv eq_cncs ih is_runing+ −
have ?thesis by simp+ −
} moreover {+ −
assume eq_th: "th = thread"+ −
with is_runing ih have " cntP s th = cntV s th + cntCS s th" + −
by (unfold runing_def, auto)+ −
moreover from eq_th and eq_readys is_runing have "th \<in> readys (e#s)"+ −
by (simp add:runing_def)+ −
moreover note eq_cnp eq_cnv eq_cncs+ −
ultimately have ?thesis by auto+ −
} ultimately show ?thesis by blast+ −
qed + −
qed+ −
next+ −
case vt_nil+ −
show ?case + −
by (unfold cntP_def cntV_def cntCS_def, + −
auto simp:count_def holdents_def s_depend_def wq_def cs_holding_def)+ −
qed+ −
qed+ −
+ −
lemma not_thread_cncs:+ −
fixes th s+ −
assumes vt: "vt step s"+ −
and not_in: "th \<notin> threads s" + −
shows "cntCS s th = 0"+ −
proof -+ −
from vt not_in show ?thesis+ −
proof(induct arbitrary:th)+ −
case (vt_cons s e th)+ −
assume vt: "vt step s"+ −
and ih: "\<And>th. th \<notin> threads s \<Longrightarrow> cntCS s th = 0"+ −
and stp: "step s e"+ −
and not_in: "th \<notin> threads (e # s)"+ −
from stp show ?case+ −
proof(cases)+ −
case (thread_create thread prio)+ −
assume eq_e: "e = Create thread prio"+ −
and not_in': "thread \<notin> threads s"+ −
have "cntCS (e # s) th = cntCS s th"+ −
apply (unfold eq_e cntCS_def holdents_def)+ −
by (simp add:depend_create_unchanged)+ −
moreover have "th \<notin> threads s" + −
proof -+ −
from not_in eq_e show ?thesis by simp+ −
qed+ −
moreover note ih ultimately show ?thesis by auto+ −
next+ −
case (thread_exit thread)+ −
assume eq_e: "e = Exit thread"+ −
and nh: "holdents s thread = {}"+ −
have eq_cns: "cntCS (e # s) th = cntCS s th"+ −
apply (unfold eq_e cntCS_def holdents_def)+ −
by (simp add:depend_exit_unchanged)+ −
show ?thesis+ −
proof(cases "th = thread")+ −
case True+ −
have "cntCS s th = 0" by (unfold cntCS_def, auto simp:nh True)+ −
with eq_cns show ?thesis by simp+ −
next+ −
case False+ −
with not_in and eq_e+ −
have "th \<notin> threads s" by simp+ −
from ih[OF this] and eq_cns show ?thesis by simp+ −
qed+ −
next+ −
case (thread_P thread cs)+ −
assume eq_e: "e = P thread cs"+ −
and is_runing: "thread \<in> runing s"+ −
from prems have vtp: "vt step (P thread cs#s)" by auto+ −
have neq_th: "th \<noteq> thread" + −
proof -+ −
from not_in eq_e have "th \<notin> threads s" by simp+ −
moreover from is_runing have "thread \<in> threads s"+ −
by (simp add:runing_def readys_def)+ −
ultimately show ?thesis by auto+ −
qed+ −
hence "cntCS (e # s) th = cntCS s th "+ −
apply (unfold cntCS_def holdents_def eq_e)+ −
by (unfold step_depend_p[OF vtp], auto)+ −
moreover have "cntCS s th = 0"+ −
proof(rule ih)+ −
from not_in eq_e show "th \<notin> threads s" by simp+ −
qed+ −
ultimately show ?thesis by simp+ −
next+ −
case (thread_V thread cs)+ −
assume eq_e: "e = V thread cs"+ −
and is_runing: "thread \<in> runing s"+ −
and hold: "holding s thread cs"+ −
have neq_th: "th \<noteq> thread" + −
proof -+ −
from not_in eq_e have "th \<notin> threads s" by simp+ −
moreover from is_runing have "thread \<in> threads s"+ −
by (simp add:runing_def readys_def)+ −
ultimately show ?thesis by auto+ −
qed+ −
from prems have vtv: "vt step (V thread cs#s)" by auto+ −
from hold obtain rest + −
where eq_wq: "wq s cs = thread # rest"+ −
by (case_tac "wq s cs", auto simp:s_holding_def)+ −
from not_in eq_e eq_wq+ −
have "\<not> next_th s thread cs th"+ −
apply (auto simp:next_th_def)+ −
proof -+ −
assume ne: "rest \<noteq> []"+ −
and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> threads s" (is "?t \<notin> threads s")+ −
have "?t \<in> set rest"+ −
proof(rule someI2)+ −
from wq_distinct[OF step_back_vt[OF vtv], of cs] and eq_wq+ −
show "distinct rest \<and> set rest = set rest" by auto+ −
next+ −
fix x assume "distinct x \<and> set x = set rest" with ne+ −
show "hd x \<in> set rest" by (cases x, auto)+ −
qed+ −
with eq_wq have "?t \<in> set (wq s cs)" by simp+ −
from wq_threads[OF step_back_vt[OF vtv], OF this] and ni+ −
show False by auto+ −
qed+ −
moreover note neq_th eq_wq+ −
ultimately have "cntCS (e # s) th = cntCS s th"+ −
by (unfold eq_e cntCS_def holdents_def step_depend_v[OF vtv], auto)+ −
moreover have "cntCS s th = 0"+ −
proof(rule ih)+ −
from not_in eq_e show "th \<notin> threads s" by simp+ −
qed+ −
ultimately show ?thesis by simp+ −
next+ −
case (thread_set thread prio)+ −
print_facts+ −
assume eq_e: "e = Set thread prio"+ −
and is_runing: "thread \<in> runing s"+ −
from not_in and eq_e have "th \<notin> threads s" by auto+ −
from ih [OF this] and eq_e+ −
show ?thesis + −
apply (unfold eq_e cntCS_def holdents_def)+ −
by (simp add:depend_set_unchanged)+ −
qed+ −
next+ −
case vt_nil+ −
show ?case+ −
by (unfold cntCS_def, + −
auto simp:count_def holdents_def s_depend_def wq_def cs_holding_def)+ −
qed+ −
qed+ −
+ −
lemma eq_waiting: "waiting (wq (s::state)) th cs = waiting s th cs"+ −
by (auto simp:s_waiting_def cs_waiting_def)+ −
+ −
lemma dm_depend_threads:+ −
fixes th s+ −
assumes vt: "vt step s"+ −
and in_dom: "(Th th) \<in> Domain (depend s)"+ −
shows "th \<in> threads s"+ −
proof -+ −
from in_dom obtain n where "(Th th, n) \<in> depend s" by auto+ −
moreover from depend_target_th[OF this] obtain cs where "n = Cs cs" by auto+ −
ultimately have "(Th th, Cs cs) \<in> depend s" by simp+ −
hence "th \<in> set (wq s cs)"+ −
by (unfold s_depend_def, auto simp:cs_waiting_def)+ −
from wq_threads [OF vt this] show ?thesis .+ −
qed+ −
+ −
lemma cp_eq_cpreced: "cp s th = cpreced s (wq s) th"+ −
proof(unfold cp_def wq_def, induct s)+ −
case (Cons e s')+ −
show ?case+ −
by (auto simp:Let_def)+ −
next+ −
case Nil+ −
show ?case by (auto simp:Let_def)+ −
qed+ −
+ −
+ −
lemma runing_unique:+ −
fixes th1 th2 s+ −
assumes vt: "vt step s"+ −
and runing_1: "th1 \<in> runing s"+ −
and runing_2: "th2 \<in> runing s"+ −
shows "th1 = th2"+ −
proof -+ −
from runing_1 and runing_2 have "cp s th1 = cp s th2"+ −
by (unfold runing_def, simp)+ −
hence eq_max: "Max ((\<lambda>th. preced th s) ` ({th1} \<union> dependents (wq s) th1)) =+ −
Max ((\<lambda>th. preced th s) ` ({th2} \<union> dependents (wq s) th2))"+ −
(is "Max (?f ` ?A) = Max (?f ` ?B)")+ −
by (unfold cp_eq_cpreced cpreced_def)+ −
obtain th1' where th1_in: "th1' \<in> ?A" and eq_f_th1: "?f th1' = Max (?f ` ?A)"+ −
proof -+ −
have h1: "finite (?f ` ?A)"+ −
proof -+ −
have "finite ?A" + −
proof -+ −
have "finite (dependents (wq s) th1)"+ −
proof-+ −
have "finite {th'. (Th th', Th th1) \<in> (depend (wq s))\<^sup>+}"+ −
proof -+ −
let ?F = "\<lambda> (x, y). the_th x"+ −
have "{th'. (Th th', Th th1) \<in> (depend (wq s))\<^sup>+} \<subseteq> ?F ` ((depend (wq s))\<^sup>+)"+ −
apply (auto simp:image_def)+ −
by (rule_tac x = "(Th x, Th th1)" in bexI, auto)+ −
moreover have "finite \<dots>"+ −
proof -+ −
from finite_depend[OF vt] have "finite (depend s)" .+ −
hence "finite ((depend (wq s))\<^sup>+)"+ −
apply (unfold finite_trancl)+ −
by (auto simp: s_depend_def cs_depend_def wq_def)+ −
thus ?thesis by auto+ −
qed+ −
ultimately show ?thesis by (auto intro:finite_subset)+ −
qed+ −
thus ?thesis by (simp add:cs_dependents_def)+ −
qed+ −
thus ?thesis by simp+ −
qed+ −
thus ?thesis by auto+ −
qed+ −
moreover have h2: "(?f ` ?A) \<noteq> {}"+ −
proof -+ −
have "?A \<noteq> {}" by simp+ −
thus ?thesis by simp+ −
qed+ −
from Max_in [OF h1 h2]+ −
have "Max (?f ` ?A) \<in> (?f ` ?A)" .+ −
thus ?thesis by (auto intro:that)+ −
qed+ −
obtain th2' where th2_in: "th2' \<in> ?B" and eq_f_th2: "?f th2' = Max (?f ` ?B)"+ −
proof -+ −
have h1: "finite (?f ` ?B)"+ −
proof -+ −
have "finite ?B" + −
proof -+ −
have "finite (dependents (wq s) th2)"+ −
proof-+ −
have "finite {th'. (Th th', Th th2) \<in> (depend (wq s))\<^sup>+}"+ −
proof -+ −
let ?F = "\<lambda> (x, y). the_th x"+ −
have "{th'. (Th th', Th th2) \<in> (depend (wq s))\<^sup>+} \<subseteq> ?F ` ((depend (wq s))\<^sup>+)"+ −
apply (auto simp:image_def)+ −
by (rule_tac x = "(Th x, Th th2)" in bexI, auto)+ −
moreover have "finite \<dots>"+ −
proof -+ −
from finite_depend[OF vt] have "finite (depend s)" .+ −
hence "finite ((depend (wq s))\<^sup>+)"+ −
apply (unfold finite_trancl)+ −
by (auto simp: s_depend_def cs_depend_def wq_def)+ −
thus ?thesis by auto+ −
qed+ −
ultimately show ?thesis by (auto intro:finite_subset)+ −
qed+ −
thus ?thesis by (simp add:cs_dependents_def)+ −
qed+ −
thus ?thesis by simp+ −
qed+ −
thus ?thesis by auto+ −
qed+ −
moreover have h2: "(?f ` ?B) \<noteq> {}"+ −
proof -+ −
have "?B \<noteq> {}" by simp+ −
thus ?thesis by simp+ −
qed+ −
from Max_in [OF h1 h2]+ −
have "Max (?f ` ?B) \<in> (?f ` ?B)" .+ −
thus ?thesis by (auto intro:that)+ −
qed+ −
from eq_f_th1 eq_f_th2 eq_max + −
have eq_preced: "preced th1' s = preced th2' s" by auto+ −
hence eq_th12: "th1' = th2'"+ −
proof (rule preced_unique)+ −
from th1_in have "th1' = th1 \<or> (th1' \<in> dependents (wq s) th1)" by simp+ −
thus "th1' \<in> threads s"+ −
proof+ −
assume "th1' \<in> dependents (wq s) th1"+ −
hence "(Th th1') \<in> Domain ((depend s)^+)"+ −
apply (unfold cs_dependents_def cs_depend_def s_depend_def)+ −
by (auto simp:Domain_def)+ −
hence "(Th th1') \<in> Domain (depend s)" by (simp add:trancl_domain)+ −
from dm_depend_threads[OF vt this] show ?thesis .+ −
next+ −
assume "th1' = th1"+ −
with runing_1 show ?thesis+ −
by (unfold runing_def readys_def, auto)+ −
qed+ −
next+ −
from th2_in have "th2' = th2 \<or> (th2' \<in> dependents (wq s) th2)" by simp+ −
thus "th2' \<in> threads s"+ −
proof+ −
assume "th2' \<in> dependents (wq s) th2"+ −
hence "(Th th2') \<in> Domain ((depend s)^+)"+ −
apply (unfold cs_dependents_def cs_depend_def s_depend_def)+ −
by (auto simp:Domain_def)+ −
hence "(Th th2') \<in> Domain (depend s)" by (simp add:trancl_domain)+ −
from dm_depend_threads[OF vt this] show ?thesis .+ −
next+ −
assume "th2' = th2"+ −
with runing_2 show ?thesis+ −
by (unfold runing_def readys_def, auto)+ −
qed+ −
qed+ −
from th1_in have "th1' = th1 \<or> th1' \<in> dependents (wq s) th1" by simp+ −
thus ?thesis+ −
proof+ −
assume eq_th': "th1' = th1"+ −
from th2_in have "th2' = th2 \<or> th2' \<in> dependents (wq s) th2" by simp+ −
thus ?thesis+ −
proof+ −
assume "th2' = th2" thus ?thesis using eq_th' eq_th12 by simp+ −
next+ −
assume "th2' \<in> dependents (wq s) th2"+ −
with eq_th12 eq_th' have "th1 \<in> dependents (wq s) th2" by simp+ −
hence "(Th th1, Th th2) \<in> (depend s)^+"+ −
by (unfold cs_dependents_def s_depend_def cs_depend_def, simp)+ −
hence "Th th1 \<in> Domain ((depend s)^+)" using Domain_def [of "(depend s)^+"]+ −
by auto+ −
hence "Th th1 \<in> Domain (depend s)" by (simp add:trancl_domain)+ −
then obtain n where d: "(Th th1, n) \<in> depend s" by (auto simp:Domain_def)+ −
from depend_target_th [OF this]+ −
obtain cs' where "n = Cs cs'" by auto+ −
with d have "(Th th1, Cs cs') \<in> depend s" by simp+ −
with runing_1 have "False"+ −
apply (unfold runing_def readys_def s_depend_def)+ −
by (auto simp:eq_waiting)+ −
thus ?thesis by simp+ −
qed+ −
next+ −
assume th1'_in: "th1' \<in> dependents (wq s) th1"+ −
from th2_in have "th2' = th2 \<or> th2' \<in> dependents (wq s) th2" by simp+ −
thus ?thesis + −
proof+ −
assume "th2' = th2"+ −
with th1'_in eq_th12 have "th2 \<in> dependents (wq s) th1" by simp+ −
hence "(Th th2, Th th1) \<in> (depend s)^+"+ −
by (unfold cs_dependents_def s_depend_def cs_depend_def, simp)+ −
hence "Th th2 \<in> Domain ((depend s)^+)" using Domain_def [of "(depend s)^+"]+ −
by auto+ −
hence "Th th2 \<in> Domain (depend s)" by (simp add:trancl_domain)+ −
then obtain n where d: "(Th th2, n) \<in> depend s" by (auto simp:Domain_def)+ −
from depend_target_th [OF this]+ −
obtain cs' where "n = Cs cs'" by auto+ −
with d have "(Th th2, Cs cs') \<in> depend s" by simp+ −
with runing_2 have "False"+ −
apply (unfold runing_def readys_def s_depend_def)+ −
by (auto simp:eq_waiting)+ −
thus ?thesis by simp+ −
next+ −
assume "th2' \<in> dependents (wq s) th2"+ −
with eq_th12 have "th1' \<in> dependents (wq s) th2" by simp+ −
hence h1: "(Th th1', Th th2) \<in> (depend s)^+"+ −
by (unfold cs_dependents_def s_depend_def cs_depend_def, simp)+ −
from th1'_in have h2: "(Th th1', Th th1) \<in> (depend s)^+"+ −
by (unfold cs_dependents_def s_depend_def cs_depend_def, simp)+ −
show ?thesis+ −
proof(rule dchain_unique[OF vt h1 _ h2, symmetric])+ −
from runing_1 show "th1 \<in> readys s" by (simp add:runing_def)+ −
from runing_2 show "th2 \<in> readys s" by (simp add:runing_def) + −
qed+ −
qed+ −
qed+ −
qed+ −
+ −
lemma create_pre:+ −
assumes stp: "step s e"+ −
and not_in: "th \<notin> threads s"+ −
and is_in: "th \<in> threads (e#s)"+ −
obtains prio where "e = Create th prio"+ −
proof -+ −
from assms + −
show ?thesis+ −
proof(cases)+ −
case (thread_create thread prio)+ −
with is_in not_in have "e = Create th prio" by simp+ −
from that[OF this] show ?thesis .+ −
next+ −
case (thread_exit thread)+ −
with assms show ?thesis by (auto intro!:that)+ −
next+ −
case (thread_P thread)+ −
with assms show ?thesis by (auto intro!:that)+ −
next+ −
case (thread_V thread)+ −
with assms show ?thesis by (auto intro!:that)+ −
next + −
case (thread_set thread)+ −
with assms show ?thesis by (auto intro!:that)+ −
qed+ −
qed+ −
+ −
lemma length_down_to_in: + −
assumes le_ij: "i \<le> j"+ −
and le_js: "j \<le> length s"+ −
shows "length (down_to j i s) = j - i"+ −
proof -+ −
have "length (down_to j i s) = length (from_to i j (rev s))"+ −
by (unfold down_to_def, auto)+ −
also have "\<dots> = j - i"+ −
proof(rule length_from_to_in[OF le_ij])+ −
from le_js show "j \<le> length (rev s)" by simp+ −
qed+ −
finally show ?thesis .+ −
qed+ −
+ −
+ −
lemma moment_head: + −
assumes le_it: "Suc i \<le> length t"+ −
obtains e where "moment (Suc i) t = e#moment i t"+ −
proof -+ −
have "i \<le> Suc i" by simp+ −
from length_down_to_in [OF this le_it]+ −
have "length (down_to (Suc i) i t) = 1" by auto+ −
then obtain e where "down_to (Suc i) i t = [e]"+ −
apply (cases "(down_to (Suc i) i t)") by auto+ −
moreover have "down_to (Suc i) 0 t = down_to (Suc i) i t @ down_to i 0 t"+ −
by (rule down_to_conc[symmetric], auto)+ −
ultimately have eq_me: "moment (Suc i) t = e#(moment i t)"+ −
by (auto simp:down_to_moment)+ −
from that [OF this] show ?thesis .+ −
qed+ −
+ −
lemma cnp_cnv_eq:+ −
fixes th s+ −
assumes "vt step s"+ −
and "th \<notin> threads s"+ −
shows "cntP s th = cntV s th"+ −
proof -+ −
from assms show ?thesis+ −
proof(induct)+ −
case (vt_cons s e)+ −
have ih: "th \<notin> threads s \<Longrightarrow> cntP s th = cntV s th" by fact+ −
have not_in: "th \<notin> threads (e # s)" by fact+ −
have "step s e" by fact+ −
thus ?case proof(cases)+ −
case (thread_create thread prio)+ −
assume eq_e: "e = Create thread prio"+ −
hence "thread \<in> threads (e#s)" by simp+ −
with not_in and eq_e have "th \<notin> threads s" by auto+ −
from ih [OF this] show ?thesis using eq_e+ −
by (auto simp:cntP_def cntV_def count_def)+ −
next+ −
case (thread_exit thread)+ −
assume eq_e: "e = Exit thread"+ −
and not_holding: "holdents s thread = {}"+ −
have vt_s: "vt step s" by fact+ −
from finite_holding[OF vt_s] have "finite (holdents s thread)" .+ −
with not_holding have "cntCS s thread = 0" by (unfold cntCS_def, auto)+ −
moreover have "thread \<in> readys s" using thread_exit by (auto simp:runing_def)+ −
moreover note cnp_cnv_cncs[OF vt_s, of thread]+ −
ultimately have eq_thread: "cntP s thread = cntV s thread" by auto+ −
show ?thesis+ −
proof(cases "th = thread")+ −
case True+ −
with eq_thread eq_e show ?thesis + −
by (auto simp:cntP_def cntV_def count_def)+ −
next+ −
case False+ −
with not_in and eq_e have "th \<notin> threads s" by simp+ −
from ih[OF this] and eq_e show ?thesis + −
by (auto simp:cntP_def cntV_def count_def)+ −
qed+ −
next+ −
case (thread_P thread cs)+ −
assume eq_e: "e = P thread cs"+ −
have "thread \<in> runing s" by fact+ −
with not_in eq_e have neq_th: "thread \<noteq> th" + −
by (auto simp:runing_def readys_def)+ −
from not_in eq_e have "th \<notin> threads s" by simp+ −
from ih[OF this] and neq_th and eq_e show ?thesis+ −
by (auto simp:cntP_def cntV_def count_def)+ −
next+ −
case (thread_V thread cs)+ −
assume eq_e: "e = V thread cs"+ −
have "thread \<in> runing s" by fact+ −
with not_in eq_e have neq_th: "thread \<noteq> th" + −
by (auto simp:runing_def readys_def)+ −
from not_in eq_e have "th \<notin> threads s" by simp+ −
from ih[OF this] and neq_th and eq_e show ?thesis+ −
by (auto simp:cntP_def cntV_def count_def)+ −
next+ −
case (thread_set thread prio)+ −
assume eq_e: "e = Set thread prio"+ −
and "thread \<in> runing s"+ −
hence "thread \<in> threads (e#s)" + −
by (simp add:runing_def readys_def)+ −
with not_in and eq_e have "th \<notin> threads s" by auto+ −
from ih [OF this] show ?thesis using eq_e+ −
by (auto simp:cntP_def cntV_def count_def) + −
qed+ −
next+ −
case vt_nil+ −
show ?case by (auto simp:cntP_def cntV_def count_def)+ −
qed+ −
qed+ −
+ −
lemma eq_depend: + −
"depend (wq s) = depend s"+ −
by (unfold cs_depend_def s_depend_def, auto)+ −
+ −
lemma count_eq_dependents:+ −
assumes vt: "vt step s"+ −
and eq_pv: "cntP s th = cntV s th"+ −
shows "dependents (wq s) th = {}"+ −
proof -+ −
from cnp_cnv_cncs[OF vt] and eq_pv+ −
have "cntCS s th = 0" + −
by (auto split:if_splits)+ −
moreover have "finite {cs. (Cs cs, Th th) \<in> depend s}"+ −
proof -+ −
from finite_holding[OF vt, of th] show ?thesis+ −
by (simp add:holdents_def)+ −
qed+ −
ultimately have h: "{cs. (Cs cs, Th th) \<in> depend s} = {}"+ −
by (unfold cntCS_def holdents_def cs_dependents_def, auto)+ −
show ?thesis+ −
proof(unfold cs_dependents_def)+ −
{ assume "{th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+} \<noteq> {}"+ −
then obtain th' where "(Th th', Th th) \<in> (depend (wq s))\<^sup>+" by auto+ −
hence "False"+ −
proof(cases)+ −
assume "(Th th', Th th) \<in> depend (wq s)"+ −
thus "False" by (auto simp:cs_depend_def)+ −
next+ −
fix c+ −
assume "(c, Th th) \<in> depend (wq s)"+ −
with h and eq_depend show "False"+ −
by (cases c, auto simp:cs_depend_def)+ −
qed+ −
} thus "{th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+} = {}" by auto+ −
qed+ −
qed+ −
+ −
lemma dependents_threads:+ −
fixes s th+ −
assumes vt: "vt step s"+ −
shows "dependents (wq s) th \<subseteq> threads s"+ −
proof+ −
{ fix th th'+ −
assume h: "th \<in> {th'a. (Th th'a, Th th') \<in> (depend (wq s))\<^sup>+}"+ −
have "Th th \<in> Domain (depend s)"+ −
proof -+ −
from h obtain th' where "(Th th, Th th') \<in> (depend (wq s))\<^sup>+" by auto+ −
hence "(Th th) \<in> Domain ( (depend (wq s))\<^sup>+)" by (auto simp:Domain_def)+ −
with trancl_domain have "(Th th) \<in> Domain (depend (wq s))" by simp+ −
thus ?thesis using eq_depend by simp+ −
qed+ −
from dm_depend_threads[OF vt this]+ −
have "th \<in> threads s" .+ −
} note hh = this+ −
fix th1 + −
assume "th1 \<in> dependents (wq s) th"+ −
hence "th1 \<in> {th'a. (Th th'a, Th th) \<in> (depend (wq s))\<^sup>+}"+ −
by (unfold cs_dependents_def, simp)+ −
from hh [OF this] show "th1 \<in> threads s" .+ −
qed+ −
+ −
lemma finite_threads:+ −
assumes vt: "vt step s"+ −
shows "finite (threads s)"+ −
proof -+ −
from vt show ?thesis+ −
proof(induct)+ −
case (vt_cons s e)+ −
assume vt: "vt step s"+ −
and step: "step s e"+ −
and ih: "finite (threads s)"+ −
from step+ −
show ?case+ −
proof(cases)+ −
case (thread_create thread prio)+ −
assume eq_e: "e = Create thread prio"+ −
with ih+ −
show ?thesis by (unfold eq_e, auto)+ −
next+ −
case (thread_exit thread)+ −
assume eq_e: "e = Exit thread"+ −
with ih show ?thesis + −
by (unfold eq_e, auto)+ −
next+ −
case (thread_P thread cs)+ −
assume eq_e: "e = P thread cs"+ −
with ih show ?thesis by (unfold eq_e, auto)+ −
next+ −
case (thread_V thread cs)+ −
assume eq_e: "e = V thread cs"+ −
with ih show ?thesis by (unfold eq_e, auto)+ −
next + −
case (thread_set thread prio)+ −
from vt_cons thread_set show ?thesis by simp+ −
qed+ −
next+ −
case vt_nil+ −
show ?case by (auto)+ −
qed+ −
qed+ −
+ −
lemma Max_f_mono:+ −
assumes seq: "A \<subseteq> B"+ −
and np: "A \<noteq> {}"+ −
and fnt: "finite B"+ −
shows "Max (f ` A) \<le> Max (f ` B)"+ −
proof(rule Max_mono)+ −
from seq show "f ` A \<subseteq> f ` B" by auto+ −
next+ −
from np show "f ` A \<noteq> {}" by auto+ −
next+ −
from fnt and seq show "finite (f ` B)" by auto+ −
qed+ −
+ −
lemma cp_le:+ −
assumes vt: "vt step s"+ −
and th_in: "th \<in> threads s"+ −
shows "cp s th \<le> Max ((\<lambda> th. (preced th s)) ` threads s)"+ −
proof(unfold cp_eq_cpreced cpreced_def cs_dependents_def)+ −
show "Max ((\<lambda>th. preced th s) ` ({th} \<union> {th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+}))+ −
\<le> Max ((\<lambda>th. preced th s) ` threads s)"+ −
(is "Max (?f ` ?A) \<le> Max (?f ` ?B)")+ −
proof(rule Max_f_mono)+ −
show "{th} \<union> {th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+} \<noteq> {}" by simp+ −
next+ −
from finite_threads [OF vt]+ −
show "finite (threads s)" .+ −
next+ −
from th_in+ −
show "{th} \<union> {th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+} \<subseteq> threads s"+ −
apply (auto simp:Domain_def)+ −
apply (rule_tac dm_depend_threads[OF vt])+ −
apply (unfold trancl_domain [of "depend s", symmetric])+ −
by (unfold cs_depend_def s_depend_def, auto simp:Domain_def)+ −
qed+ −
qed+ −
+ −
lemma le_cp:+ −
assumes vt: "vt step s"+ −
shows "preced th s \<le> cp s th"+ −
proof(unfold cp_eq_cpreced preced_def cpreced_def, simp)+ −
show "Prc (original_priority th s) (birthtime th s)+ −
\<le> Max (insert (Prc (original_priority th s) (birthtime th s))+ −
((\<lambda>th. Prc (original_priority th s) (birthtime th s)) ` dependents (wq s) th))"+ −
(is "?l \<le> Max (insert ?l ?A)")+ −
proof(cases "?A = {}")+ −
case False+ −
have "finite ?A" (is "finite (?f ` ?B)")+ −
proof -+ −
have "finite ?B" + −
proof-+ −
have "finite {th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+}"+ −
proof -+ −
let ?F = "\<lambda> (x, y). the_th x"+ −
have "{th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+} \<subseteq> ?F ` ((depend (wq s))\<^sup>+)"+ −
apply (auto simp:image_def)+ −
by (rule_tac x = "(Th x, Th th)" in bexI, auto)+ −
moreover have "finite \<dots>"+ −
proof -+ −
from finite_depend[OF vt] have "finite (depend s)" .+ −
hence "finite ((depend (wq s))\<^sup>+)"+ −
apply (unfold finite_trancl)+ −
by (auto simp: s_depend_def cs_depend_def wq_def)+ −
thus ?thesis by auto+ −
qed+ −
ultimately show ?thesis by (auto intro:finite_subset)+ −
qed+ −
thus ?thesis by (simp add:cs_dependents_def)+ −
qed+ −
thus ?thesis by simp+ −
qed+ −
from Max_insert [OF this False, of ?l] show ?thesis by auto+ −
next+ −
case True+ −
thus ?thesis by auto+ −
qed+ −
qed+ −
+ −
lemma max_cp_eq: + −
assumes vt: "vt step s"+ −
shows "Max ((cp s) ` threads s) = Max ((\<lambda> th. (preced th s)) ` threads s)"+ −
(is "?l = ?r")+ −
proof(cases "threads s = {}")+ −
case True+ −
thus ?thesis by auto+ −
next+ −
case False+ −
have "?l \<in> ((cp s) ` threads s)"+ −
proof(rule Max_in)+ −
from finite_threads[OF vt] + −
show "finite (cp s ` threads s)" by auto+ −
next+ −
from False show "cp s ` threads s \<noteq> {}" by auto+ −
qed+ −
then obtain th + −
where th_in: "th \<in> threads s" and eq_l: "?l = cp s th" by auto+ −
have "\<dots> \<le> ?r" by (rule cp_le[OF vt th_in])+ −
moreover have "?r \<le> cp s th" (is "Max (?f ` ?A) \<le> cp s th")+ −
proof -+ −
have "?r \<in> (?f ` ?A)"+ −
proof(rule Max_in)+ −
from finite_threads[OF vt]+ −
show " finite ((\<lambda>th. preced th s) ` threads s)" by auto+ −
next+ −
from False show " (\<lambda>th. preced th s) ` threads s \<noteq> {}" by auto+ −
qed+ −
then obtain th' where + −
th_in': "th' \<in> ?A " and eq_r: "?r = ?f th'" by auto+ −
from le_cp [OF vt, of th'] eq_r+ −
have "?r \<le> cp s th'" by auto+ −
moreover have "\<dots> \<le> cp s th"+ −
proof(fold eq_l)+ −
show " cp s th' \<le> Max (cp s ` threads s)"+ −
proof(rule Max_ge)+ −
from th_in' show "cp s th' \<in> cp s ` threads s"+ −
by auto+ −
next+ −
from finite_threads[OF vt]+ −
show "finite (cp s ` threads s)" by auto+ −
qed+ −
qed+ −
ultimately show ?thesis by auto+ −
qed+ −
ultimately show ?thesis using eq_l by auto+ −
qed+ −
+ −
lemma max_cp_readys_threads_pre:+ −
assumes vt: "vt step s"+ −
and np: "threads s \<noteq> {}"+ −
shows "Max (cp s ` readys s) = Max (cp s ` threads s)"+ −
proof(unfold max_cp_eq[OF vt])+ −
show "Max (cp s ` readys s) = Max ((\<lambda>th. preced th s) ` threads s)"+ −
proof -+ −
let ?p = "Max ((\<lambda>th. preced th s) ` threads s)" + −
let ?f = "(\<lambda>th. preced th s)"+ −
have "?p \<in> ((\<lambda>th. preced th s) ` threads s)"+ −
proof(rule Max_in)+ −
from finite_threads[OF vt] show "finite (?f ` threads s)" by simp+ −
next+ −
from np show "?f ` threads s \<noteq> {}" by simp+ −
qed+ −
then obtain tm where tm_max: "?f tm = ?p" and tm_in: "tm \<in> threads s"+ −
by (auto simp:Image_def)+ −
from th_chain_to_ready [OF vt tm_in]+ −
have "tm \<in> readys s \<or> (\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (depend s)\<^sup>+)" .+ −
thus ?thesis+ −
proof+ −
assume "\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (depend s)\<^sup>+ "+ −
then obtain th' where th'_in: "th' \<in> readys s" + −
and tm_chain:"(Th tm, Th th') \<in> (depend s)\<^sup>+" by auto+ −
have "cp s th' = ?f tm"+ −
proof(subst cp_eq_cpreced, subst cpreced_def, rule Max_eqI)+ −
from dependents_threads[OF vt] finite_threads[OF vt]+ −
show "finite ((\<lambda>th. preced th s) ` ({th'} \<union> dependents (wq s) th'))" + −
by (auto intro:finite_subset)+ −
next+ −
fix p assume p_in: "p \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependents (wq s) th')"+ −
from tm_max have " preced tm s = Max ((\<lambda>th. preced th s) ` threads s)" .+ −
moreover have "p \<le> \<dots>"+ −
proof(rule Max_ge)+ −
from finite_threads[OF vt]+ −
show "finite ((\<lambda>th. preced th s) ` threads s)" by simp+ −
next+ −
from p_in and th'_in and dependents_threads[OF vt, of th']+ −
show "p \<in> (\<lambda>th. preced th s) ` threads s"+ −
by (auto simp:readys_def)+ −
qed+ −
ultimately show "p \<le> preced tm s" by auto+ −
next+ −
show "preced tm s \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependents (wq s) th')"+ −
proof -+ −
from tm_chain+ −
have "tm \<in> dependents (wq s) th'"+ −
by (unfold cs_dependents_def s_depend_def cs_depend_def, auto)+ −
thus ?thesis by auto+ −
qed+ −
qed+ −
with tm_max+ −
have h: "cp s th' = Max ((\<lambda>th. preced th s) ` threads s)" by simp+ −
show ?thesis+ −
proof (fold h, rule Max_eqI)+ −
fix q + −
assume "q \<in> cp s ` readys s"+ −
then obtain th1 where th1_in: "th1 \<in> readys s"+ −
and eq_q: "q = cp s th1" by auto+ −
show "q \<le> cp s th'"+ −
apply (unfold h eq_q)+ −
apply (unfold cp_eq_cpreced cpreced_def)+ −
apply (rule Max_mono)+ −
proof -+ −
from dependents_threads [OF vt, of th1] th1_in+ −
show "(\<lambda>th. preced th s) ` ({th1} \<union> dependents (wq s) th1) \<subseteq> + −
(\<lambda>th. preced th s) ` threads s"+ −
by (auto simp:readys_def)+ −
next+ −
show "(\<lambda>th. preced th s) ` ({th1} \<union> dependents (wq s) th1) \<noteq> {}" by simp+ −
next+ −
from finite_threads[OF vt] + −
show " finite ((\<lambda>th. preced th s) ` threads s)" by simp+ −
qed+ −
next+ −
from finite_threads[OF vt]+ −
show "finite (cp s ` readys s)" by (auto simp:readys_def)+ −
next+ −
from th'_in+ −
show "cp s th' \<in> cp s ` readys s" by simp+ −
qed+ −
next+ −
assume tm_ready: "tm \<in> readys s"+ −
show ?thesis+ −
proof(fold tm_max)+ −
have cp_eq_p: "cp s tm = preced tm s"+ −
proof(unfold cp_eq_cpreced cpreced_def, rule Max_eqI)+ −
fix y + −
assume hy: "y \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependents (wq s) tm)"+ −
show "y \<le> preced tm s"+ −
proof -+ −
{ fix y'+ −
assume hy' : "y' \<in> ((\<lambda>th. preced th s) ` dependents (wq s) tm)"+ −
have "y' \<le> preced tm s"+ −
proof(unfold tm_max, rule Max_ge)+ −
from hy' dependents_threads[OF vt, of tm]+ −
show "y' \<in> (\<lambda>th. preced th s) ` threads s" by auto+ −
next+ −
from finite_threads[OF vt] + −
show "finite ((\<lambda>th. preced th s) ` threads s)" by simp+ −
qed+ −
} with hy show ?thesis by auto+ −
qed+ −
next+ −
from dependents_threads[OF vt, of tm] finite_threads[OF vt]+ −
show "finite ((\<lambda>th. preced th s) ` ({tm} \<union> dependents (wq s) tm))"+ −
by (auto intro:finite_subset)+ −
next+ −
show "preced tm s \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependents (wq s) tm)"+ −
by simp+ −
qed + −
moreover have "Max (cp s ` readys s) = cp s tm"+ −
proof(rule Max_eqI)+ −
from tm_ready show "cp s tm \<in> cp s ` readys s" by simp+ −
next+ −
from finite_threads[OF vt]+ −
show "finite (cp s ` readys s)" by (auto simp:readys_def)+ −
next+ −
fix y assume "y \<in> cp s ` readys s"+ −
then obtain th1 where th1_readys: "th1 \<in> readys s"+ −
and h: "y = cp s th1" by auto+ −
show "y \<le> cp s tm"+ −
apply(unfold cp_eq_p h)+ −
apply(unfold cp_eq_cpreced cpreced_def tm_max, rule Max_mono)+ −
proof -+ −
from finite_threads[OF vt]+ −
show "finite ((\<lambda>th. preced th s) ` threads s)" by simp+ −
next+ −
show "(\<lambda>th. preced th s) ` ({th1} \<union> dependents (wq s) th1) \<noteq> {}"+ −
by simp+ −
next+ −
from dependents_threads[OF vt, of th1] th1_readys+ −
show "(\<lambda>th. preced th s) ` ({th1} \<union> dependents (wq s) th1) + −
\<subseteq> (\<lambda>th. preced th s) ` threads s"+ −
by (auto simp:readys_def)+ −
qed+ −
qed+ −
ultimately show " Max (cp s ` readys s) = preced tm s" by simp+ −
qed + −
qed+ −
qed+ −
qed+ −
+ −
lemma max_cp_readys_threads:+ −
assumes vt: "vt step s"+ −
shows "Max (cp s ` readys s) = Max (cp s ` threads s)"+ −
proof(cases "threads s = {}")+ −
case True+ −
thus ?thesis + −
by (auto simp:readys_def)+ −
next+ −
case False+ −
show ?thesis by (rule max_cp_readys_threads_pre[OF vt False])+ −
qed+ −
+ −
lemma readys_threads:+ −
shows "readys s \<subseteq> threads s"+ −
proof+ −
fix th+ −
assume "th \<in> readys s"+ −
thus "th \<in> threads s"+ −
by (unfold readys_def, auto)+ −
qed+ −
+ −
lemma eq_holding: "holding (wq s) th cs = holding s th cs"+ −
apply (unfold s_holding_def cs_holding_def, simp)+ −
done+ −
+ −
lemma f_image_eq:+ −
assumes h: "\<And> a. a \<in> A \<Longrightarrow> f a = g a"+ −
shows "f ` A = g ` A"+ −
proof+ −
show "f ` A \<subseteq> g ` A"+ −
by(rule image_subsetI, auto intro:h)+ −
next+ −
show "g ` A \<subseteq> f ` A"+ −
by(rule image_subsetI, auto intro:h[symmetric])+ −
qed+ −
+ −
end+ −