theory Closure2
imports
Closures
Higman
(* "~~/src/HOL/Proofs/Extraction/Higman" *)
begin
section {* Closure under @{text SUBSEQ} and @{text SUPSEQ} *}
(* compatibility with Higman theory by Stefan *)
notation
emb ("_ \<preceq> _")
declare emb0 [intro]
declare emb1 [intro]
declare emb2 [intro]
lemma letter_UNIV:
shows "UNIV = {A, B::letter}"
apply(auto)
apply(case_tac x)
apply(auto)
done
instance letter :: finite
apply(default)
apply(simp add: letter_UNIV)
done
hide_const A
hide_const B
(*
inductive
emb :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<preceq> _")
where
emb0 [intro]: "emb [] y"
| emb1 [intro]: "emb x y \<Longrightarrow> emb x (c # y)"
| emb2 [intro]: "emb x y \<Longrightarrow> emb (c # x) (c # y)"
*)
lemma emb_refl [intro]:
shows "x \<preceq> x"
by (induct x) (auto)
lemma emb_right [intro]:
assumes a: "x \<preceq> y"
shows "x \<preceq> y @ y'"
using a
by (induct arbitrary: y') (auto)
lemma emb_left [intro]:
assumes a: "x \<preceq> y"
shows "x \<preceq> y' @ y"
using a by (induct y') (auto)
lemma emb_appendI [intro]:
assumes a: "x \<preceq> x'"
and b: "y \<preceq> y'"
shows "x @ y \<preceq> x' @ y'"
using a b by (induct) (auto)
lemma emb_cons_leftD:
assumes "a # x \<preceq> y"
shows "\<exists>y1 y2. y = y1 @ [a] @ y2 \<and> x \<preceq> y2"
using assms
apply(induct x\<equiv>"a # x" y\<equiv>"y" arbitrary: a x y)
apply(auto)
apply(metis append_Cons)
done
lemma emb_append_leftD:
assumes "x1 @ x2 \<preceq> y"
shows "\<exists>y1 y2. y = y1 @ y2 \<and> x1 \<preceq> y1 \<and> x2 \<preceq> y2"
using assms
apply(induct x1 arbitrary: x2 y)
apply(auto)
apply(drule emb_cons_leftD)
apply(auto)
apply(drule_tac x="x2" in meta_spec)
apply(drule_tac x="y2" in meta_spec)
apply(auto)
apply(rule_tac x="y1 @ (a # y1a)" in exI)
apply(rule_tac x="y2a" in exI)
apply(auto)
done
lemma emb_trans:
assumes a: "x1 \<preceq> x2"
and b: "x2 \<preceq> x3"
shows "x1 \<preceq> x3"
using a b
apply(induct arbitrary: x3)
apply(metis emb0)
apply(metis emb_cons_leftD emb_left)
apply(drule_tac emb_cons_leftD)
apply(auto)
done
lemma emb_strict_length:
assumes a: "x \<preceq> y" "x \<noteq> y"
shows "length x < length y"
using a
by (induct) (auto simp add: less_Suc_eq)
lemma emb_antisym:
assumes a: "x \<preceq> y" "y \<preceq> x"
shows "x = y"
using a emb_strict_length
by (metis not_less_iff_gr_or_eq)
lemma emb_wf:
shows "wf {(x, y). x \<preceq> y \<and> x \<noteq> y}"
proof -
have "wf (measure length)" by simp
moreover
have "{(x, y). x \<preceq> y \<and> x \<noteq> y} \<subseteq> measure length"
unfolding measure_def by (auto simp add: emb_strict_length)
ultimately
show "wf {(x, y). x \<preceq> y \<and> x \<noteq> y}" by (rule wf_subset)
qed
subsection {* Sub- and Supsequences *}
definition
"SUBSEQ A \<equiv> {x. \<exists>y \<in> A. x \<preceq> y}"
definition
"SUPSEQ A \<equiv> {x. \<exists>y \<in> A. y \<preceq> x}"
lemma SUPSEQ_simps [simp]:
shows "SUPSEQ {} = {}"
and "SUPSEQ {[]} = UNIV"
unfolding SUPSEQ_def by auto
lemma SUPSEQ_atom [simp]:
shows "SUPSEQ {[c]} = UNIV \<cdot> {[c]} \<cdot> UNIV"
unfolding SUPSEQ_def conc_def
by (auto) (metis append_Cons emb_cons_leftD)
lemma SUPSEQ_union [simp]:
shows "SUPSEQ (A \<union> B) = SUPSEQ A \<union> SUPSEQ B"
unfolding SUPSEQ_def by auto
lemma SUPSEQ_conc [simp]:
shows "SUPSEQ (A \<cdot> B) = SUPSEQ A \<cdot> SUPSEQ B"
unfolding SUPSEQ_def conc_def
by (auto) (metis emb_append_leftD)
lemma SUPSEQ_star [simp]:
shows "SUPSEQ (A\<star>) = UNIV"
apply(subst star_unfold_left)
apply(simp only: SUPSEQ_union)
apply(simp)
done
definition
Allreg :: "'a::finite rexp"
where
"Allreg \<equiv> \<Uplus>(Atom ` UNIV)"
lemma Allreg_lang [simp]:
shows "lang Allreg = (\<Union>a. {[a]})"
unfolding Allreg_def by auto
lemma [simp]:
shows "(\<Union>a. {[a]})\<star> = UNIV"
apply(auto)
apply(induct_tac x rule: list.induct)
apply(auto)
apply(subgoal_tac "[a] @ list \<in> (\<Union>a. {[a]})\<star>")
apply(simp)
apply(rule append_in_starI)
apply(auto)
done
lemma Star_Allreg_lang [simp]:
shows "lang (Star Allreg) = UNIV"
by simp
fun
UP :: "'a::finite rexp \<Rightarrow> 'a rexp"
where
"UP (Zero) = Zero"
| "UP (One) = Star Allreg"
| "UP (Atom c) = Times (Star Allreg) (Times (Atom c) (Star Allreg))"
| "UP (Plus r1 r2) = Plus (UP r1) (UP r2)"
| "UP (Times r1 r2) = Times (UP r1) (UP r2)"
| "UP (Star r) = Star Allreg"
lemma lang_UP:
fixes r::"letter rexp"
shows "lang (UP r) = SUPSEQ (lang r)"
by (induct r) (simp_all)
lemma regular_SUPSEQ:
fixes A::"letter lang"
assumes "regular A"
shows "regular (SUPSEQ A)"
proof -
from assms obtain r::"letter rexp" where "lang r = A" by auto
then have "lang (UP r) = SUPSEQ A" by (simp add: lang_UP)
then show "regular (SUPSEQ A)" by auto
qed
lemma SUPSEQ_subset:
shows "A \<subseteq> SUPSEQ A"
unfolding SUPSEQ_def by auto
lemma SUBSEQ_complement:
shows "- (SUBSEQ A) = SUPSEQ (- (SUBSEQ A))"
proof -
have "- (SUBSEQ A) \<subseteq> SUPSEQ (- (SUBSEQ A))"
by (rule SUPSEQ_subset)
moreover
have "SUPSEQ (- (SUBSEQ A)) \<subseteq> - (SUBSEQ A)"
proof (rule ccontr)
assume "\<not> (SUPSEQ (- (SUBSEQ A)) \<subseteq> - (SUBSEQ A))"
then obtain x where
a: "x \<in> SUPSEQ (- (SUBSEQ A))" and
b: "x \<notin> - (SUBSEQ A)" by auto
from a obtain y where c: "y \<in> - (SUBSEQ A)" and d: "y \<preceq> x"
by (auto simp add: SUPSEQ_def)
from b have "x \<in> SUBSEQ A" by simp
then obtain x' where f: "x' \<in> A" and e: "x \<preceq> x'"
by (auto simp add: SUBSEQ_def)
from d e have "y \<preceq> x'" by (rule emb_trans)
then have "y \<in> SUBSEQ A" using f
by (auto simp add: SUBSEQ_def)
with c show "False" by simp
qed
ultimately show "- (SUBSEQ A) = SUPSEQ (- (SUBSEQ A))" by simp
qed
lemma Higman_antichains:
assumes a: "\<forall>x \<in> A. \<forall>y \<in> A. x \<noteq> y \<longrightarrow> \<not>(x \<preceq> y) \<and> \<not>(y \<preceq> x)"
shows "finite A"
proof (rule ccontr)
assume "infinite A"
then obtain f::"nat \<Rightarrow> letter list" where b: "inj f" and c: "range f \<subseteq> A"
by (auto simp add: infinite_iff_countable_subset)
from higman_idx obtain i j where d: "i < j" and e: "f i \<preceq> f j" by blast
have "f i \<noteq> f j" using b d by (auto simp add: inj_on_def)
moreover
have "f i \<in> A" using c by auto
moreover
have "f j \<in> A" using c by auto
ultimately have "\<not>(f i \<preceq> f j)" using a by simp
with e show "False" by simp
qed
definition
minimal :: "letter list \<Rightarrow> letter lang \<Rightarrow> bool"
where
"minimal x A = (\<forall>y \<in> A. y \<preceq> x \<longrightarrow> x \<preceq> y)"
lemma main_lemma:
shows "\<exists>M. M \<subseteq> A \<and> finite M \<and> SUPSEQ A = SUPSEQ M"
proof -
def M \<equiv> "{x \<in> A. minimal x A}"
have "M \<subseteq> A" unfolding M_def minimal_def by auto
moreover
have "finite M"
unfolding M_def minimal_def
by (rule Higman_antichains) (auto simp add: emb_antisym)
moreover
have "SUPSEQ A \<subseteq> SUPSEQ M"
proof
fix x
assume "x \<in> SUPSEQ A"
then obtain y where "y \<in> A" and "y \<preceq> x" by (auto simp add: SUPSEQ_def)
then have a: "y \<in> {y' \<in> A. y' \<preceq> x}" by simp
obtain z where b: "z \<in> A" "z \<preceq> x" and c: "\<forall>y. y \<preceq> z \<and> y \<noteq> z \<longrightarrow> y \<notin> {y' \<in> A. y' \<preceq> x}"
using wfE_min[OF emb_wf a] by auto
then have "z \<in> M"
unfolding M_def minimal_def
by (auto intro: emb_trans)
with b show "x \<in> SUPSEQ M"
by (auto simp add: SUPSEQ_def)
qed
moreover
have "SUPSEQ M \<subseteq> SUPSEQ A"
by (auto simp add: SUPSEQ_def M_def)
ultimately
show "\<exists>M. M \<subseteq> A \<and> finite M \<and> SUPSEQ A = SUPSEQ M" by blast
qed
lemma closure_SUPSEQ:
fixes A::"letter lang"
shows "regular (SUPSEQ A)"
proof -
obtain M where a: "finite M" and b: "SUPSEQ A = SUPSEQ M"
using main_lemma by blast
have "regular M" using a by (rule finite_regular)
then have "regular (SUPSEQ M)" by (rule regular_SUPSEQ)
then show "regular (SUPSEQ A)" using b by simp
qed
lemma closure_SUBSEQ:
fixes A::"letter lang"
shows "regular (SUBSEQ A)"
proof -
have "regular (SUPSEQ (- SUBSEQ A))" by (rule closure_SUPSEQ)
then have "regular (- SUBSEQ A)" by (subst SUBSEQ_complement) (simp)
then have "regular (- (- (SUBSEQ A)))" by (rule closure_complement)
then show "regular (SUBSEQ A)" by simp
qed
end