More explanations added by XY.
(*<*)
theory Paper
imports CpsG ExtGG LaTeXsugar
begin
ML {*
show_question_marks_default := false;
*}
(*>*)
section {* Introduction *}
text {*
Many realtime systems need to support processes with priorities and
locking of resources. Locking of resources ensures... Priorities
are needed so that some processes can finish their work within ``hard''
deadlines. Unfortunately both features interact in subtle ways
leading to the problem, called Priority Inversion. Suppose three
processes with priorities $H$(igh), $M$(edium) and $L$(ow). We would
assume that process $H$ cannot be blocked by any process with lower
priority. Unfortunately in a naive implementation, this can happen
and $H$ even can be delayed indefinitely by processes with lower
priorities. For this let $L$ be in the posession of lock for a
research which also $H$ needs. $H$ must therefore wait for $L$ to
release this lock. Unfortunately, $L$ can in turn be blocked by any
process with priority $M$, and so $H$ sits there potentially waiting
indefinitely.
If this problem of inversion of priorities is left untreated,
systems can become unpredictable and have dire consequences. The
classic example where this happened in practice is the software on
the Mars pathfinder project. This software shut down at irregulare
intervals leading to loss of project time (the mission and data was
fortunately not lost, because of clever system design). The problem
was that a high priority process and could only be restarted the
next day.
Priority inversion referrers to the phenomena where tasks with higher
priority are blocked by ones with lower priority. If priority inversion
is not controlled, there will be no guarantee the urgent tasks will be
processed in time. As reported in \cite{Reeves-Glenn-1998},
priority inversion used to cause software system resets and data lose in
JPL's Mars pathfinder project. Therefore, the avoiding, detecting and controlling
of priority inversion is a key issue to attain predictability in priority
based real-time systems.
The priority inversion phenomenon was first published in \cite{Lampson:Redell:cacm:1980}.
The two protocols widely used to eliminate priority inversion, namely
PI (Priority Inheritance) and PCE (Priority Ceiling Emulation), were proposed
in \cite{journals/tc/ShaRL90}. PCE is less convenient to use because it requires
static analysis of programs. Therefore, PI is more commonly used in
practice\cite{locke-july02}. However, as pointed out in the literature,
the analysis of priority inheritance protocol is quite subtle\cite{yodaiken-july02}.
A formal analysis will certainly be helpful for us to understand and correctly
implement PI. All existing formal analysis of PI
\cite{conf/fase/JahierHR09,WellingsBSB07,Faria08} are based on the model checking
technology. Because of the state explosion problem, model check
is much like an exhaustive testing of finite models with limited size.
The results obtained can not be safely generalized to models with arbitrarily
large size. Worse still, since model checking is fully automatic, it give little
insight on why the formal model is correct. It is therefore
definitely desirable to analyze PI using theorem proving, which gives
more general results as well as deeper insight. And this is the purpose
of this paper which gives a formal analysis of PI in the interactive
theorem prover Isabelle using Higher Order Logic (HOL). The formalization
focuses on on two issues:
\begin{enumerate}
\item The correctness of the protocol model itself. A series of desirable properties is
derived until we are fully convinced that the formal model of PI does
eliminate priority inversion. And a better understanding of PI is so obtained
in due course. For example, we find through formalization that the choice of
next thread to take hold when a
resource is released is irrelevant for the very basic property of PI to hold.
A point never mentioned in literature.
\item The correctness of the implementation. A series of properties is derived the meaning
of which can be used as guidelines on how PI can be implemented efficiently and correctly.
\end{enumerate}
The rest of the paper is organized as follows: Section \ref{overview} gives an overview
of PI. Section \ref{model} introduces the formal model of PI. Section \ref{general}
discusses a series of basic properties of PI. Section \ref{extension} shows formally
how priority inversion is controlled by PI. Section \ref{implement} gives properties
which can be used for guidelines of implementation. Section \ref{related} discusses
related works. Section \ref{conclusion} concludes the whole paper.
Contributions
Despite the wide use of Priority Inheritance Protocol in real time operating
system, it's correctness has never been formally proved and mechanically checked.
All existing verification are based on model checking technology. Full automatic
verification gives little help to understand why the protocol is correct.
And results such obtained only apply to models of limited size.
This paper presents a formal verification based on theorem proving.
Machine checked formal proof does help to get deeper understanding. We found
the fact which is not mentioned in the literature, that the choice of next
thread to take over when an critical resource is release does not affect the correctness
of the protocol. The paper also shows how formal proof can help to construct
correct and efficient implementation.\bigskip
*}
section {* An overview of priority inversion and priority inheritance \label{overview} *}
text {*
Priority inversion refers to the phenomenon when a thread with high priority is blocked
by a thread with low priority. Priority happens when the high priority thread requests
for some critical resource already taken by the low priority thread. Since the high
priority thread has to wait for the low priority thread to complete, it is said to be
blocked by the low priority thread. Priority inversion might prevent high priority
thread from fulfill its task in time if the duration of priority inversion is indefinite
and unpredictable. Indefinite priority inversion happens when indefinite number
of threads with medium priorities is activated during the period when the high
priority thread is blocked by the low priority thread. Although these medium
priority threads can not preempt the high priority thread directly, they are able
to preempt the low priority threads and cause it to stay in critical section for
an indefinite long duration. In this way, the high priority thread may be blocked indefinitely.
Priority inheritance is one protocol proposed to avoid indefinite priority inversion.
The basic idea is to let the high priority thread donate its priority to the low priority
thread holding the critical resource, so that it will not be preempted by medium priority
threads. The thread with highest priority will not be blocked unless it is requesting
some critical resource already taken by other threads. Viewed from a different angle,
any thread which is able to block the highest priority threads must already hold some
critical resource. Further more, it must have hold some critical resource at the
moment the highest priority is created, otherwise, it may never get change to run and
get hold. Since the number of such resource holding lower priority threads is finite,
if every one of them finishes with its own critical section in a definite duration,
the duration the highest priority thread is blocked is definite as well. The key to
guarantee lower priority threads to finish in definite is to donate them the highest
priority. In such cases, the lower priority threads is said to have inherited the
highest priority. And this explains the name of the protocol:
{\em Priority Inheritance} and how Priority Inheritance prevents indefinite delay.
The objectives of this paper are:
\begin{enumerate}
\item Build the above mentioned idea into formal model and prove a series of properties
until we are convinced that the formal model does fulfill the original idea.
\item Show how formally derived properties can be used as guidelines for correct
and efficient implementation.
\end{enumerate}
The proof is totally formal in the sense that every detail is reduced to the
very first principles of Higher Order Logic. The nature of interactive theorem
proving is for the human user to persuade computer program to accept its arguments.
A clear and simple understanding of the problem at hand is both a prerequisite and a
byproduct of such an effort, because everything has finally be reduced to the very
first principle to be checked mechanically. The former intuitive explanation of
Priority Inheritance is just such a byproduct.
*}
section {* Formal model of Priority Inheritance \label{model} *}
text {*
\input{../../generated/PrioGDef}
*}
section {* General properties of Priority Inheritance \label{general} *}
(*<*)
ML {*
(*val () = show_question_marks_default := false;*)
*}
(*>*)
text {*
The following are several very basic prioprites:
\begin{enumerate}
\item All runing threads must be ready (@{text "runing_ready"}):
@{thm[display] "runing_ready"}
\item All ready threads must be living (@{text "readys_threads"}):
@{thm[display] "readys_threads"}
\item There are finite many living threads at any moment (@{text "finite_threads"}):
@{thm[display] "finite_threads"}
\item Every waiting queue does not contain duplcated elements (@{text "wq_distinct"}):
@{thm[display] "wq_distinct"}
\item All threads in waiting queues are living threads (@{text "wq_threads"}):
@{thm[display] "wq_threads"}
\item The event which can get a thread into waiting queue must be @{term "P"}-events
(@{text "block_pre"}):
@{thm[display] "block_pre"}
\item A thread may never wait for two different critical resources
(@{text "waiting_unique"}):
@{thm[display] waiting_unique[of _ _ "cs\<^isub>1" "cs\<^isub>2"]}
\item Every resource can only be held by one thread
(@{text "held_unique"}):
@{thm[display] held_unique[of _ "th\<^isub>1" _ "th\<^isub>2"]}
\item Every living thread has an unique precedence
(@{text "preced_unique"}):
@{thm[display] preced_unique[of "th\<^isub>1" _ "th\<^isub>2"]}
\end{enumerate}
*}
text {* \noindent
The following lemmas show how RAG is changed with the execution of events:
\begin{enumerate}
\item Execution of @{term "Set"} does not change RAG (@{text "depend_set_unchanged"}):
@{thm[display] depend_set_unchanged}
\item Execution of @{term "Create"} does not change RAG (@{text "depend_create_unchanged"}):
@{thm[display] depend_create_unchanged}
\item Execution of @{term "Exit"} does not change RAG (@{text "depend_exit_unchanged"}):
@{thm[display] depend_exit_unchanged}
\item Execution of @{term "P"} (@{text "step_depend_p"}):
@{thm[display] step_depend_p}
\item Execution of @{term "V"} (@{text "step_depend_v"}):
@{thm[display] step_depend_v}
\end{enumerate}
*}
text {* \noindent
These properties are used to derive the following important results about RAG:
\begin{enumerate}
\item RAG is loop free (@{text "acyclic_depend"}):
@{thm [display] acyclic_depend}
\item RAGs are finite (@{text "finite_depend"}):
@{thm [display] finite_depend}
\item Reverse paths in RAG are well founded (@{text "wf_dep_converse"}):
@{thm [display] wf_dep_converse}
\item The dependence relation represented by RAG has a tree structure (@{text "unique_depend"}):
@{thm [display] unique_depend[of _ _ "n\<^isub>1" "n\<^isub>2"]}
\item All threads in RAG are living threads
(@{text "dm_depend_threads"} and @{text "range_in"}):
@{thm [display] dm_depend_threads range_in}
\end{enumerate}
*}
text {* \noindent
The following lemmas show how every node in RAG can be chased to ready threads:
\begin{enumerate}
\item Every node in RAG can be chased to a ready thread (@{text "chain_building"}):
@{thm [display] chain_building[rule_format]}
\item The ready thread chased to is unique (@{text "dchain_unique"}):
@{thm [display] dchain_unique[of _ _ "th\<^isub>1" "th\<^isub>2"]}
\end{enumerate}
*}
text {* \noindent
Properties about @{term "next_th"}:
\begin{enumerate}
\item The thread taking over is different from the thread which is releasing
(@{text "next_th_neq"}):
@{thm [display] next_th_neq}
\item The thread taking over is unique
(@{text "next_th_unique"}):
@{thm [display] next_th_unique[of _ _ _ "th\<^isub>1" "th\<^isub>2"]}
\end{enumerate}
*}
text {* \noindent
Some deeper results about the system:
\begin{enumerate}
\item There can only be one running thread (@{text "runing_unique"}):
@{thm [display] runing_unique[of _ "th\<^isub>1" "th\<^isub>2"]}
\item The maximum of @{term "cp"} and @{term "preced"} are equal (@{text "max_cp_eq"}):
@{thm [display] max_cp_eq}
\item There must be one ready thread having the max @{term "cp"}-value
(@{text "max_cp_readys_threads"}):
@{thm [display] max_cp_readys_threads}
\end{enumerate}
*}
text {* \noindent
The relationship between the count of @{text "P"} and @{text "V"} and the number of
critical resources held by a thread is given as follows:
\begin{enumerate}
\item The @{term "V"}-operation decreases the number of critical resources
one thread holds (@{text "cntCS_v_dec"})
@{thm [display] cntCS_v_dec}
\item The number of @{text "V"} never exceeds the number of @{text "P"}
(@{text "cnp_cnv_cncs"}):
@{thm [display] cnp_cnv_cncs}
\item The number of @{text "V"} equals the number of @{text "P"} when
the relevant thread is not living:
(@{text "cnp_cnv_eq"}):
@{thm [display] cnp_cnv_eq}
\item When a thread is not living, it does not hold any critical resource
(@{text "not_thread_holdents"}):
@{thm [display] not_thread_holdents}
\item When the number of @{text "P"} equals the number of @{text "V"}, the relevant
thread does not hold any critical resource, therefore no thread can depend on it
(@{text "count_eq_dependents"}):
@{thm [display] count_eq_dependents}
\end{enumerate}
*}
section {* Key properties \label{extension} *}
(*<*)
context extend_highest_gen
begin
(*>*)
text {*
The essential of {\em Priority Inheritance} is to avoid indefinite priority inversion. For this
purpose, we need to investigate what happens after one thread takes the highest precedence.
A locale is used to describe such a situation, which assumes:
\begin{enumerate}
\item @{term "s"} is a valid state (@{text "vt_s"}):
@{thm vt_s}.
\item @{term "th"} is a living thread in @{term "s"} (@{text "threads_s"}):
@{thm threads_s}.
\item @{term "th"} has the highest precedence in @{term "s"} (@{text "highest"}):
@{thm highest}.
\item The precedence of @{term "th"} is @{term "Prc prio tm"} (@{text "preced_th"}):
@{thm preced_th}.
\end{enumerate}
*}
text {* \noindent
Under these assumptions, some basic priority can be derived for @{term "th"}:
\begin{enumerate}
\item The current precedence of @{term "th"} equals its own precedence (@{text "eq_cp_s_th"}):
@{thm [display] eq_cp_s_th}
\item The current precedence of @{term "th"} is the highest precedence in
the system (@{text "highest_cp_preced"}):
@{thm [display] highest_cp_preced}
\item The precedence of @{term "th"} is the highest precedence
in the system (@{text "highest_preced_thread"}):
@{thm [display] highest_preced_thread}
\item The current precedence of @{term "th"} is the highest current precedence
in the system (@{text "highest'"}):
@{thm [display] highest'}
\end{enumerate}
*}
text {* \noindent
To analysis what happens after state @{term "s"} a sub-locale is defined, which
assumes:
\begin{enumerate}
\item @{term "t"} is a valid extension of @{term "s"} (@{text "vt_t"}): @{thm vt_t}.
\item Any thread created in @{term "t"} has priority no higher than @{term "prio"}, therefore
its precedence can not be higher than @{term "th"}, therefore
@{term "th"} remain to be the one with the highest precedence
(@{text "create_low"}):
@{thm [display] create_low}
\item Any adjustment of priority in
@{term "t"} does not happen to @{term "th"} and
the priority set is no higher than @{term "prio"}, therefore
@{term "th"} remain to be the one with the highest precedence (@{text "set_diff_low"}):
@{thm [display] set_diff_low}
\item Since we are investigating what happens to @{term "th"}, it is assumed
@{term "th"} does not exit during @{term "t"} (@{text "exit_diff"}):
@{thm [display] exit_diff}
\end{enumerate}
*}
text {* \noindent
All these assumptions are put into a predicate @{term "extend_highest_gen"}.
It can be proved that @{term "extend_highest_gen"} holds
for any moment @{text "i"} in it @{term "t"} (@{text "red_moment"}):
@{thm [display] red_moment}
From this, an induction principle can be derived for @{text "t"}, so that
properties already derived for @{term "t"} can be applied to any prefix
of @{text "t"} in the proof of new properties
about @{term "t"} (@{text "ind"}):
\begin{center}
@{thm[display] ind}
\end{center}
The following properties can be proved about @{term "th"} in @{term "t"}:
\begin{enumerate}
\item In @{term "t"}, thread @{term "th"} is kept live and its
precedence is preserved as well
(@{text "th_kept"}):
@{thm [display] th_kept}
\item In @{term "t"}, thread @{term "th"}'s precedence is always the maximum among
all living threads
(@{text "max_preced"}):
@{thm [display] max_preced}
\item In @{term "t"}, thread @{term "th"}'s current precedence is always the maximum precedence
among all living threads
(@{text "th_cp_max_preced"}):
@{thm [display] th_cp_max_preced}
\item In @{term "t"}, thread @{term "th"}'s current precedence is always the maximum current
precedence among all living threads
(@{text "th_cp_max"}):
@{thm [display] th_cp_max}
\item In @{term "t"}, thread @{term "th"}'s current precedence equals its precedence at moment
@{term "s"}
(@{text "th_cp_preced"}):
@{thm [display] th_cp_preced}
\end{enumerate}
*}
text {* \noindent
The main theorem of this part is to characterizing the running thread during @{term "t"}
(@{text "runing_inversion_2"}):
@{thm [display] runing_inversion_2}
According to this, if a thread is running, it is either @{term "th"} or was
already live and held some resource
at moment @{text "s"} (expressed by: @{text "cntV s th' < cntP s th'"}).
Since there are only finite many threads live and holding some resource at any moment,
if every such thread can release all its resources in finite duration, then after finite
duration, none of them may block @{term "th"} anymore. So, no priority inversion may happen
then.
*}
(*<*)
end
(*>*)
section {* Properties to guide implementation \label{implement} *}
text {*
The properties (especially @{text "runing_inversion_2"}) convinced us that the model defined
in Section \ref{model} does prevent indefinite priority inversion and therefore fulfills
the fundamental requirement of Priority Inheritance protocol. Another purpose of this paper
is to show how this model can be used to guide a concrete implementation. As discussed in
Section 5.6.5 of \cite{Vahalia:1996:UI}, the implementation of Priority Inheritance in Solaris
uses sophisticated linking data structure. Except discussing two scenarios to show how
the data structure should be manipulated, a lot of details of the implementation are missing.
In \cite{Faria08,conf/fase/JahierHR09,WellingsBSB07} the protocol is described formally
using different notations, but little information is given on how this protocol can be
implemented efficiently, especially there is no information on how these data structure
should be manipulated.
Because the scheduling of threads is based on current precedence,
the central issue in implementation of Priority Inheritance is how to compute the precedence
correctly and efficiently. As long as the precedence is correct, it is very easy to
modify the scheduling algorithm to select the correct thread to execute.
First, it can be proved that the computation of current precedence @{term "cp"} of a threads
only involves its children (@{text "cp_rec"}):
@{thm [display] cp_rec}
where @{term "children s th"} represents the set of children of @{term "th"} in the current
RAG:
\[
@{thm (lhs) children_def} @{text "\<equiv>"} @{thm (rhs) children_def}
\]
where the definition of @{term "child"} is:
\[ @{thm (lhs) child_def} @{text "\<equiv>"} @{thm (rhs) child_def}
\]
The aim of this section is to fill the missing details of how current precedence should
be changed with the happening of events, with each event type treated by one subsection,
where the computation of @{term "cp"} uses lemma @{text "cp_rec"}.
*}
subsection {* Event @{text "Set th prio"} *}
(*<*)
context step_set_cps
begin
(*>*)
text {*
The context under which event @{text "Set th prio"} happens is formalized as follows:
\begin{enumerate}
\item The formation of @{term "s"} (@{text "s_def"}): @{thm s_def}.
\item State @{term "s"} is a valid state (@{text "vt_s"}): @{thm vt_s}. This implies
event @{text "Set th prio"} is eligible to happen under state @{term "s'"} and
state @{term "s'"} is a valid state.
\end{enumerate}
*}
text {* \noindent
Under such a context, we investigated how the current precedence @{term "cp"} of
threads change from state @{term "s'"} to @{term "s"} and obtained the following
conclusions:
\begin{enumerate}
%% \item The RAG does not change (@{text "eq_dep"}): @{thm "eq_dep"}.
\item All threads with no dependence relation with thread @{term "th"} have their
@{term "cp"}-value unchanged (@{text "eq_cp"}):
@{thm [display] eq_cp}
This lemma implies the @{term "cp"}-value of @{term "th"}
and those threads which have a dependence relation with @{term "th"} might need
to be recomputed. The way to do this is to start from @{term "th"}
and follow the @{term "depend"}-chain to recompute the @{term "cp"}-value of every
encountered thread using lemma @{text "cp_rec"}.
Since the @{term "depend"}-relation is loop free, this procedure
can always stop. The the following lemma shows this procedure actually could stop earlier.
\item The following two lemma shows, if a thread the re-computation of which
gives an unchanged @{term "cp"}-value, the procedure described above can stop.
\begin{enumerate}
\item Lemma @{text "eq_up_self"} shows if the re-computation of
@{term "th"}'s @{term "cp"} gives the same result, the procedure can stop:
@{thm [display] eq_up_self}
\item Lemma @{text "eq_up"}) shows if the re-computation at intermediate threads
gives unchanged result, the procedure can stop:
@{thm [display] eq_up}
\end{enumerate}
\end{enumerate}
*}
(*<*)
end
(*>*)
section {* Related works \label{related} *}
text {*
\begin{enumerate}
\item {\em Integrating Priority Inheritance Algorithms in the Real-Time Specification for Java}
\cite{WellingsBSB07} models and verifies the combination of Priority Inheritance (PI) and
Priority Ceiling Emulation (PCE) protocols in the setting of Java virtual machine
using extended Timed Automata(TA) formalism of the UPPAAL tool. Although a detailed
formal model of combined PI and PCE is given, the number of properties is quite
small and the focus is put on the harmonious working of PI and PCE. Most key features of PI
(as well as PCE) are not shown. Because of the limitation of the model checking technique
used there, properties are shown only for a small number of scenarios. Therefore,
the verification does not show the correctness of the formal model itself in a
convincing way.
\item {\em Formal Development of Solutions for Real-Time Operating Systems with TLA+/TLC}
\cite{Faria08}. A formal model of PI is given in TLA+. Only 3 properties are shown
for PI using model checking. The limitation of model checking is intrinsic to the work.
\item {\em Synchronous modeling and validation of priority inheritance schedulers}
\cite{conf/fase/JahierHR09}. Gives a formal model
of PI and PCE in AADL (Architecture Analysis \& Design Language) and checked
several properties using model checking. The number of properties shown there is
less than here and the scale is also limited by the model checking technique.
\item {\em The Priority Ceiling Protocol: Formalization and Analysis Using PVS}
\cite{dutertre99b}. Formalized another protocol for Priority Inversion in the
interactive theorem proving system PVS.
\end{enumerate}
There are several works on inversion avoidance:
\begin{enumerate}
\item {\em Solving the group priority inversion problem in a timed asynchronous system}
\cite{Wang:2002:SGP}. The notion of Group Priority Inversion is introduced. The main
strategy is still inversion avoidance. The method is by reordering requests
in the setting of Client-Server.
\item {\em A Formalization of Priority Inversion} \cite{journals/rts/BabaogluMS93}.
Formalized the notion of Priority
Inversion and proposes methods to avoid it.
\end{enumerate}
{\em Examples of inaccurate specification of the protocol ???}.
*}
section {* Conclusions \label{conclusion} *}
(*<*)
end
(*>*)