More explanations added by XY.
(* Author: Tobias Nipkow, Alex Krauss *)
header "Regular sets"
theory Regular_Set
imports Main
begin
type_synonym 'a lang = "'a list set"
definition conc :: "'a lang \<Rightarrow> 'a lang \<Rightarrow> 'a lang" (infixr "@@" 75) where
"A @@ B = {xs@ys | xs ys. xs:A & ys:B}"
overloading lang_pow == "compow :: nat \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
begin
primrec lang_pow :: "nat \<Rightarrow> 'a lang \<Rightarrow> 'a lang" where
"lang_pow 0 A = {[]}" |
"lang_pow (Suc n) A = A @@ (lang_pow n A)"
end
definition star :: "'a lang \<Rightarrow> 'a lang" where
"star A = (\<Union>n. A ^^ n)"
subsection{* @{term "op @@"} *}
lemma concI[simp,intro]: "u : A \<Longrightarrow> v : B \<Longrightarrow> u@v : A @@ B"
by (auto simp add: conc_def)
lemma concE[elim]:
assumes "w \<in> A @@ B"
obtains u v where "u \<in> A" "v \<in> B" "w = u@v"
using assms by (auto simp: conc_def)
lemma conc_mono: "A \<subseteq> C \<Longrightarrow> B \<subseteq> D \<Longrightarrow> A @@ B \<subseteq> C @@ D"
by (auto simp: conc_def)
lemma conc_empty[simp]: shows "{} @@ A = {}" and "A @@ {} = {}"
by auto
lemma conc_epsilon[simp]: shows "{[]} @@ A = A" and "A @@ {[]} = A"
by (simp_all add:conc_def)
lemma conc_assoc: "(A @@ B) @@ C = A @@ (B @@ C)"
by (auto elim!: concE) (simp only: append_assoc[symmetric] concI)
lemma conc_Un_distrib:
shows "A @@ (B \<union> C) = A @@ B \<union> A @@ C"
and "(A \<union> B) @@ C = A @@ C \<union> B @@ C"
by auto
lemma conc_UNION_distrib:
shows "A @@ UNION I M = UNION I (%i. A @@ M i)"
and "UNION I M @@ A = UNION I (%i. M i @@ A)"
by auto
subsection{* @{term "A ^^ n"} *}
lemma lang_pow_add: "A ^^ (n + m) = A ^^ n @@ A ^^ m"
by (induct n) (auto simp: conc_assoc)
lemma lang_pow_empty: "{} ^^ n = (if n = 0 then {[]} else {})"
by (induct n) auto
lemma lang_pow_empty_Suc[simp]: "({}::'a lang) ^^ Suc n = {}"
by (simp add: lang_pow_empty)
lemma conc_pow_comm:
shows "A @@ (A ^^ n) = (A ^^ n) @@ A"
by (induct n) (simp_all add: conc_assoc[symmetric])
lemma length_lang_pow_ub:
"ALL w : A. length w \<le> k \<Longrightarrow> w : A^^n \<Longrightarrow> length w \<le> k*n"
by(induct n arbitrary: w) (fastsimp simp: conc_def)+
lemma length_lang_pow_lb:
"ALL w : A. length w \<ge> k \<Longrightarrow> w : A^^n \<Longrightarrow> length w \<ge> k*n"
by(induct n arbitrary: w) (fastsimp simp: conc_def)+
subsection{* @{const star} *}
lemma star_if_lang_pow[simp]: "w : A ^^ n \<Longrightarrow> w : star A"
by (auto simp: star_def)
lemma Nil_in_star[iff]: "[] : star A"
proof (rule star_if_lang_pow)
show "[] : A ^^ 0" by simp
qed
lemma star_if_lang[simp]: assumes "w : A" shows "w : star A"
proof (rule star_if_lang_pow)
show "w : A ^^ 1" using `w : A` by simp
qed
lemma append_in_starI[simp]:
assumes "u : star A" and "v : star A" shows "u@v : star A"
proof -
from `u : star A` obtain m where "u : A ^^ m" by (auto simp: star_def)
moreover
from `v : star A` obtain n where "v : A ^^ n" by (auto simp: star_def)
ultimately have "u@v : A ^^ (m+n)" by (simp add: lang_pow_add)
thus ?thesis by simp
qed
lemma conc_star_star: "star A @@ star A = star A"
by (auto simp: conc_def)
lemma conc_star_comm:
shows "A @@ star A = star A @@ A"
unfolding star_def conc_pow_comm conc_UNION_distrib
by simp
lemma star_induct[consumes 1, case_names Nil append, induct set: star]:
assumes "w : star A"
and "P []"
and step: "!!u v. u : A \<Longrightarrow> v : star A \<Longrightarrow> P v \<Longrightarrow> P (u@v)"
shows "P w"
proof -
{ fix n have "w : A ^^ n \<Longrightarrow> P w"
by (induct n arbitrary: w) (auto intro: `P []` step star_if_lang_pow) }
with `w : star A` show "P w" by (auto simp: star_def)
qed
lemma star_empty[simp]: "star {} = {[]}"
by (auto elim: star_induct)
lemma star_epsilon[simp]: "star {[]} = {[]}"
by (auto elim: star_induct)
lemma star_idemp[simp]: "star (star A) = star A"
by (auto elim: star_induct)
lemma star_unfold_left: "star A = A @@ star A \<union> {[]}" (is "?L = ?R")
proof
show "?L \<subseteq> ?R" by (rule, erule star_induct) auto
qed auto
lemma concat_in_star: "set ws \<subseteq> A \<Longrightarrow> concat ws : star A"
by (induct ws) simp_all
lemma in_star_iff_concat:
"w : star A = (EX ws. set ws \<subseteq> A & w = concat ws)"
(is "_ = (EX ws. ?R w ws)")
proof
assume "w : star A" thus "EX ws. ?R w ws"
proof induct
case Nil have "?R [] []" by simp
thus ?case ..
next
case (append u v)
moreover
then obtain ws where "set ws \<subseteq> A \<and> v = concat ws" by blast
ultimately have "?R (u@v) (u#ws)" by auto
thus ?case ..
qed
next
assume "EX us. ?R w us" thus "w : star A"
by (auto simp: concat_in_star)
qed
lemma star_conv_concat: "star A = {concat ws|ws. set ws \<subseteq> A}"
by (fastsimp simp: in_star_iff_concat)
lemma star_insert_eps[simp]: "star (insert [] A) = star(A)"
proof-
{ fix us
have "set us \<subseteq> insert [] A \<Longrightarrow> EX vs. concat us = concat vs \<and> set vs \<subseteq> A"
(is "?P \<Longrightarrow> EX vs. ?Q vs")
proof
let ?vs = "filter (%u. u \<noteq> []) us"
show "?P \<Longrightarrow> ?Q ?vs" by (induct us) auto
qed
} thus ?thesis by (auto simp: star_conv_concat)
qed
lemma star_decom:
assumes a: "x \<in> star A" "x \<noteq> []"
shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> star A"
using a by (induct rule: star_induct) (blast)+
subsection {* Arden's Lemma *}
lemma arden_helper:
assumes eq: "X = A @@ X \<union> B"
shows "X = (A ^^ Suc n) @@ X \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)"
proof (induct n)
case 0
show "X = (A ^^ Suc 0) @@ X \<union> (\<Union>m\<le>0. (A ^^ m) @@ B)"
using eq by simp
next
case (Suc n)
have ih: "X = (A ^^ Suc n) @@ X \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)" by fact
also have "\<dots> = (A ^^ Suc n) @@ (A @@ X \<union> B) \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)" using eq by simp
also have "\<dots> = (A ^^ Suc (Suc n)) @@ X \<union> ((A ^^ Suc n) @@ B) \<union> (\<Union>m\<le>n. (A ^^ m) @@ B)"
by (simp add: conc_Un_distrib conc_assoc[symmetric] conc_pow_comm)
also have "\<dots> = (A ^^ Suc (Suc n)) @@ X \<union> (\<Union>m\<le>Suc n. (A ^^ m) @@ B)"
by (auto simp add: le_Suc_eq)
finally show "X = (A ^^ Suc (Suc n)) @@ X \<union> (\<Union>m\<le>Suc n. (A ^^ m) @@ B)" .
qed
lemma Arden:
assumes "[] \<notin> A"
shows "X = A @@ X \<union> B \<longleftrightarrow> X = star A @@ B"
proof
assume eq: "X = A @@ X \<union> B"
{ fix w assume "w : X"
let ?n = "size w"
from `[] \<notin> A` have "ALL u : A. length u \<ge> 1"
by (metis Suc_eq_plus1 add_leD2 le_0_eq length_0_conv not_less_eq_eq)
hence "ALL u : A^^(?n+1). length u \<ge> ?n+1"
by (metis length_lang_pow_lb nat_mult_1)
hence "ALL u : A^^(?n+1)@@X. length u \<ge> ?n+1"
by(auto simp only: conc_def length_append)
hence "w \<notin> A^^(?n+1)@@X" by auto
hence "w : star A @@ B" using `w : X` using arden_helper[OF eq, where n="?n"]
by (auto simp add: star_def conc_UNION_distrib)
} moreover
{ fix w assume "w : star A @@ B"
hence "EX n. w : A^^n @@ B" by(auto simp: conc_def star_def)
hence "w : X" using arden_helper[OF eq] by blast
} ultimately show "X = star A @@ B" by blast
next
assume eq: "X = star A @@ B"
have "star A = A @@ star A \<union> {[]}"
by (rule star_unfold_left)
then have "star A @@ B = (A @@ star A \<union> {[]}) @@ B"
by metis
also have "\<dots> = (A @@ star A) @@ B \<union> B"
unfolding conc_Un_distrib by simp
also have "\<dots> = A @@ (star A @@ B) \<union> B"
by (simp only: conc_assoc)
finally show "X = A @@ X \<union> B"
using eq by blast
qed
lemma reversed_arden_helper:
assumes eq: "X = X @@ A \<union> B"
shows "X = X @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))"
proof (induct n)
case 0
show "X = X @@ (A ^^ Suc 0) \<union> (\<Union>m\<le>0. B @@ (A ^^ m))"
using eq by simp
next
case (Suc n)
have ih: "X = X @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))" by fact
also have "\<dots> = (X @@ A \<union> B) @@ (A ^^ Suc n) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))" using eq by simp
also have "\<dots> = X @@ (A ^^ Suc (Suc n)) \<union> (B @@ (A ^^ Suc n)) \<union> (\<Union>m\<le>n. B @@ (A ^^ m))"
by (simp add: conc_Un_distrib conc_assoc)
also have "\<dots> = X @@ (A ^^ Suc (Suc n)) \<union> (\<Union>m\<le>Suc n. B @@ (A ^^ m))"
by (auto simp add: le_Suc_eq)
finally show "X = X @@ (A ^^ Suc (Suc n)) \<union> (\<Union>m\<le>Suc n. B @@ (A ^^ m))" .
qed
theorem reversed_Arden:
assumes nemp: "[] \<notin> A"
shows "X = X @@ A \<union> B \<longleftrightarrow> X = B @@ star A"
proof
assume eq: "X = X @@ A \<union> B"
{ fix w assume "w : X"
let ?n = "size w"
from `[] \<notin> A` have "ALL u : A. length u \<ge> 1"
by (metis Suc_eq_plus1 add_leD2 le_0_eq length_0_conv not_less_eq_eq)
hence "ALL u : A^^(?n+1). length u \<ge> ?n+1"
by (metis length_lang_pow_lb nat_mult_1)
hence "ALL u : X @@ A^^(?n+1). length u \<ge> ?n+1"
by(auto simp only: conc_def length_append)
hence "w \<notin> X @@ A^^(?n+1)" by auto
hence "w : B @@ star A" using `w : X` using reversed_arden_helper[OF eq, where n="?n"]
by (auto simp add: star_def conc_UNION_distrib)
} moreover
{ fix w assume "w : B @@ star A"
hence "EX n. w : B @@ A^^n" by (auto simp: conc_def star_def)
hence "w : X" using reversed_arden_helper[OF eq] by blast
} ultimately show "X = B @@ star A" by blast
next
assume eq: "X = B @@ star A"
have "star A = {[]} \<union> star A @@ A"
unfolding conc_star_comm[symmetric]
by(metis Un_commute star_unfold_left)
then have "B @@ star A = B @@ ({[]} \<union> star A @@ A)"
by metis
also have "\<dots> = B \<union> B @@ (star A @@ A)"
unfolding conc_Un_distrib by simp
also have "\<dots> = B \<union> (B @@ star A) @@ A"
by (simp only: conc_assoc)
finally show "X = X @@ A \<union> B"
using eq by blast
qed
end