theory Myhill
imports Myhill_1
begin
section {* Direction: @{text "regular language \<Rightarrow>finite partition"} *}
subsection {* The scheme for this direction *}
text {*
The following convenient notation @{text "x \<approx>Lang y"} means:
string @{text "x"} and @{text "y"} are equivalent with respect to
language @{text "Lang"}.
*}
definition
str_eq ("_ \<approx>_ _")
where
"x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)"
text {*
The basic idea to show the finiteness of the partition induced by relation @{text "\<approx>Lang"}
is to attach a tag @{text "tag(x)"} to every string @{text "x"}, the set of tags are carfully
choosen, so that the range of tagging function @{text "tag"} (denoted @{text "range(tag)"}) is finite.
If strings with the same tag are equivlent with respect @{text "\<approx>Lang"},
i.e. @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"} (this property is named `injectivity' in the following),
then it can be proved that: the partition given rise by @{text "(\<approx>Lang)"} is finite.
There are two arguments for this. The first goes as the following:
\begin{enumerate}
\item First, the tagging function @{text "tag"} induces an equivalent relation @{text "(=tag=)"}
(defiintion of @{text "f_eq_rel"} and lemma @{text "equiv_f_eq_rel"}).
\item It is shown that: if the range of @{text "tag"} is finite,
the partition given rise by @{text "(=tag=)"} is finite (lemma @{text "finite_eq_f_rel"}).
\item It is proved that if equivalent relation @{text "R1"} is more refined than @{text "R2"}
(expressed as @{text "R1 \<subseteq> R2"}),
and the partition induced by @{text "R1"} is finite, then the partition induced by @{text "R2"}
is finite as well (lemma @{text "refined_partition_finite"}).
\item The injectivity assumption @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"} implies that
@{text "(=tag=)"} is more refined than @{text "(\<approx>Lang)"}.
\item Combining the points above, we have: the partition induced by language @{text "Lang"}
is finite (lemma @{text "tag_finite_imageD"}).
\end{enumerate}
*}
definition
f_eq_rel ("=_=")
where
"(=f=) = {(x, y) | x y. f x = f y}"
lemma equiv_f_eq_rel:"equiv UNIV (=f=)"
by (auto simp:equiv_def f_eq_rel_def refl_on_def sym_def trans_def)
lemma finite_range_image: "finite (range f) \<Longrightarrow> finite (f ` A)"
by (rule_tac B = "{y. \<exists>x. y = f x}" in finite_subset, auto simp:image_def)
lemma finite_eq_f_rel:
assumes rng_fnt: "finite (range tag)"
shows "finite (UNIV // (=tag=))"
proof -
let "?f" = "op ` tag" and ?A = "(UNIV // (=tag=))"
show ?thesis
proof (rule_tac f = "?f" and A = ?A in finite_imageD)
-- {*
The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}:
*}
show "finite (?f ` ?A)"
proof -
have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def)
moreover from rng_fnt have "finite (Pow (range tag))" by simp
ultimately have "finite (range ?f)"
by (auto simp only:image_def intro:finite_subset)
from finite_range_image [OF this] show ?thesis .
qed
next
-- {*
The injectivity of @{text "f"}-image is a consequence of the definition of @{text "(=tag=)"}:
*}
show "inj_on ?f ?A"
proof-
{ fix X Y
assume X_in: "X \<in> ?A"
and Y_in: "Y \<in> ?A"
and tag_eq: "?f X = ?f Y"
have "X = Y"
proof -
from X_in Y_in tag_eq
obtain x y
where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y"
unfolding quotient_def Image_def str_eq_rel_def
str_eq_def image_def f_eq_rel_def
apply simp by blast
with X_in Y_in show ?thesis
by (auto simp:quotient_def str_eq_rel_def str_eq_def f_eq_rel_def)
qed
} thus ?thesis unfolding inj_on_def by auto
qed
qed
qed
lemma finite_image_finite: "\<lbrakk>\<forall> x \<in> A. f x \<in> B; finite B\<rbrakk> \<Longrightarrow> finite (f ` A)"
by (rule finite_subset [of _ B], auto)
lemma refined_partition_finite:
fixes R1 R2 A
assumes fnt: "finite (A // R1)"
and refined: "R1 \<subseteq> R2"
and eq1: "equiv A R1" and eq2: "equiv A R2"
shows "finite (A // R2)"
proof -
let ?f = "\<lambda> X. {R1 `` {x} | x. x \<in> X}"
and ?A = "(A // R2)" and ?B = "(A // R1)"
show ?thesis
proof(rule_tac f = ?f and A = ?A in finite_imageD)
show "finite (?f ` ?A)"
proof(rule finite_subset [of _ "Pow ?B"])
from fnt show "finite (Pow (A // R1))" by simp
next
from eq2
show " ?f ` A // R2 \<subseteq> Pow ?B"
apply (unfold image_def Pow_def quotient_def, auto)
by (rule_tac x = xb in bexI, simp,
unfold equiv_def sym_def refl_on_def, blast)
qed
next
show "inj_on ?f ?A"
proof -
{ fix X Y
assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A"
and eq_f: "?f X = ?f Y" (is "?L = ?R")
have "X = Y" using X_in
proof(rule quotientE)
fix x
assume "X = R2 `` {x}" and "x \<in> A" with eq2
have x_in: "x \<in> X"
by (unfold equiv_def quotient_def refl_on_def, auto)
with eq_f have "R1 `` {x} \<in> ?R" by auto
then obtain y where
y_in: "y \<in> Y" and eq_r: "R1 `` {x} = R1 ``{y}" by auto
have "(x, y) \<in> R1"
proof -
from x_in X_in y_in Y_in eq2
have "x \<in> A" and "y \<in> A"
by (unfold equiv_def quotient_def refl_on_def, auto)
from eq_equiv_class_iff [OF eq1 this] and eq_r
show ?thesis by simp
qed
with refined have xy_r2: "(x, y) \<in> R2" by auto
from quotient_eqI [OF eq2 X_in Y_in x_in y_in this]
show ?thesis .
qed
} thus ?thesis by (auto simp:inj_on_def)
qed
qed
qed
lemma equiv_lang_eq: "equiv UNIV (\<approx>Lang)"
apply (unfold equiv_def str_eq_rel_def sym_def refl_on_def trans_def)
by blast
lemma tag_finite_imageD:
fixes tag
assumes rng_fnt: "finite (range tag)"
-- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *}
and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>Lang n"
-- {* And strings with same tag are equivalent *}
shows "finite (UNIV // (\<approx>Lang))"
proof -
let ?R1 = "(=tag=)"
show ?thesis
proof(rule_tac refined_partition_finite [of _ ?R1])
from finite_eq_f_rel [OF rng_fnt]
show "finite (UNIV // =tag=)" .
next
from same_tag_eqvt
show "(=tag=) \<subseteq> (\<approx>Lang)"
by (auto simp:f_eq_rel_def str_eq_def)
next
from equiv_f_eq_rel
show "equiv UNIV (=tag=)" by blast
next
from equiv_lang_eq
show "equiv UNIV (\<approx>Lang)" by blast
qed
qed
text {*
A more concise, but less intelligible argument for @{text "tag_finite_imageD"}
is given as the following. The basic idea is still using standard library
lemma @{thm [source] "finite_imageD"}:
\[
@{thm "finite_imageD" [no_vars]}
\]
which says: if the image of injective function @{text "f"} over set @{text "A"} is
finite, then @{text "A"} must be finte, as we did in the lemmas above.
*}
lemma
fixes tag
assumes rng_fnt: "finite (range tag)"
-- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *}
and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>Lang n"
-- {* And strings with same tag are equivalent *}
shows "finite (UNIV // (\<approx>Lang))"
-- {* Then the partition generated by @{text "(\<approx>Lang)"} is finite. *}
proof -
-- {* The particular @{text "f"} and @{text "A"} used in @{thm [source] "finite_imageD"} are:*}
let "?f" = "op ` tag" and ?A = "(UNIV // \<approx>Lang)"
show ?thesis
proof (rule_tac f = "?f" and A = ?A in finite_imageD)
-- {*
The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}:
*}
show "finite (?f ` ?A)"
proof -
have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def)
moreover from rng_fnt have "finite (Pow (range tag))" by simp
ultimately have "finite (range ?f)"
by (auto simp only:image_def intro:finite_subset)
from finite_range_image [OF this] show ?thesis .
qed
next
-- {*
The injectivity of @{text "f"} is the consequence of assumption @{text "same_tag_eqvt"}:
*}
show "inj_on ?f ?A"
proof-
{ fix X Y
assume X_in: "X \<in> ?A"
and Y_in: "Y \<in> ?A"
and tag_eq: "?f X = ?f Y"
have "X = Y"
proof -
from X_in Y_in tag_eq
obtain x y where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y"
unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def
apply simp by blast
from same_tag_eqvt [OF eq_tg] have "x \<approx>Lang y" .
with X_in Y_in x_in y_in
show ?thesis by (auto simp:quotient_def str_eq_rel_def str_eq_def)
qed
} thus ?thesis unfolding inj_on_def by auto
qed
qed
qed
subsection {* Lemmas for basic cases *}
text {*
The the final result of this direction is in @{text "easier_direction"}, which
is an induction on the structure of regular expressions. There is one case
for each regular expression operator. For basic operators such as @{text "NULL, EMPTY, CHAR c"},
the finiteness of their language partition can be established directly with no need
of taggiing. This section contains several technical lemma for these base cases.
The inductive cases involve operators @{text "ALT, SEQ"} and @{text "STAR"}.
Tagging functions need to be defined individually for each of them. There will be one
dedicated section for each of these cases, and each section goes virtually the same way:
gives definition of the tagging function and prove that strings
with the same tag are equivalent.
*}
lemma quot_empty_subset:
"UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}"
proof
fix x
assume "x \<in> UNIV // \<approx>{[]}"
then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}"
unfolding quotient_def Image_def by blast
show "x \<in> {{[]}, UNIV - {[]}}"
proof (cases "y = []")
case True with h
have "x = {[]}" by (auto simp:str_eq_rel_def)
thus ?thesis by simp
next
case False with h
have "x = UNIV - {[]}" by (auto simp:str_eq_rel_def)
thus ?thesis by simp
qed
qed
lemma quot_char_subset:
"UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"
proof
fix x
assume "x \<in> UNIV // \<approx>{[c]}"
then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}"
unfolding quotient_def Image_def by blast
show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}"
proof -
{ assume "y = []" hence "x = {[]}" using h
by (auto simp:str_eq_rel_def)
} moreover {
assume "y = [c]" hence "x = {[c]}" using h
by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def)
} moreover {
assume "y \<noteq> []" and "y \<noteq> [c]"
hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto)
moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])"
by (case_tac p, auto)
ultimately have "x = UNIV - {[],[c]}" using h
by (auto simp add:str_eq_rel_def)
} ultimately show ?thesis by blast
qed
qed
subsection {* The case for @{text "SEQ"}*}
definition
"tag_str_SEQ L\<^isub>1 L\<^isub>2 x \<equiv>
((\<approx>L\<^isub>1) `` {x}, {(\<approx>L\<^isub>2) `` {x - xa}| xa. xa \<le> x \<and> xa \<in> L\<^isub>1})"
lemma tag_str_seq_range_finite:
"\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk>
\<Longrightarrow> finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))"
apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (Pow (UNIV // \<approx>L\<^isub>2))" in finite_subset)
by (auto simp:tag_str_SEQ_def Image_def quotient_def split:if_splits)
lemma append_seq_elim:
assumes "x @ y \<in> L\<^isub>1 ;; L\<^isub>2"
shows "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2) \<or>
(\<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2)"
proof-
from assms obtain s\<^isub>1 s\<^isub>2
where "x @ y = s\<^isub>1 @ s\<^isub>2"
and in_seq: "s\<^isub>1 \<in> L\<^isub>1 \<and> s\<^isub>2 \<in> L\<^isub>2"
by (auto simp:Seq_def)
hence "(x \<le> s\<^isub>1 \<and> (s\<^isub>1 - x) @ s\<^isub>2 = y) \<or> (s\<^isub>1 \<le> x \<and> (x - s\<^isub>1) @ y = s\<^isub>2)"
using app_eq_dest by auto
moreover have "\<lbrakk>x \<le> s\<^isub>1; (s\<^isub>1 - x) @ s\<^isub>2 = y\<rbrakk> \<Longrightarrow>
\<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2"
using in_seq by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE)
moreover have "\<lbrakk>s\<^isub>1 \<le> x; (x - s\<^isub>1) @ y = s\<^isub>2\<rbrakk> \<Longrightarrow>
\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2"
using in_seq by (rule_tac x = s\<^isub>1 in exI, auto)
ultimately show ?thesis by blast
qed
lemma tag_str_SEQ_injI:
"tag_str_SEQ L\<^isub>1 L\<^isub>2 m = tag_str_SEQ L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 ;; L\<^isub>2) n"
proof-
{ fix x y z
assume xz_in_seq: "x @ z \<in> L\<^isub>1 ;; L\<^isub>2"
and tag_xy: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y"
have"y @ z \<in> L\<^isub>1 ;; L\<^isub>2"
proof-
have "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2) \<or>
(\<exists> za \<le> z. (x @ za) \<in> L\<^isub>1 \<and> (z - za) \<in> L\<^isub>2)"
using xz_in_seq append_seq_elim by simp
moreover {
fix xa
assume h1: "xa \<le> x" and h2: "xa \<in> L\<^isub>1" and h3: "(x - xa) @ z \<in> L\<^isub>2"
obtain ya where "ya \<le> y" and "ya \<in> L\<^isub>1" and "(y - ya) @ z \<in> L\<^isub>2"
proof -
have "\<exists> ya. ya \<le> y \<and> ya \<in> L\<^isub>1 \<and> (x - xa) \<approx>L\<^isub>2 (y - ya)"
proof -
have "{\<approx>L\<^isub>2 `` {x - xa} |xa. xa \<le> x \<and> xa \<in> L\<^isub>1} =
{\<approx>L\<^isub>2 `` {y - xa} |xa. xa \<le> y \<and> xa \<in> L\<^isub>1}"
(is "?Left = ?Right")
using h1 tag_xy by (auto simp:tag_str_SEQ_def)
moreover have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Left" using h1 h2 by auto
ultimately have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Right" by simp
thus ?thesis by (auto simp:Image_def str_eq_rel_def str_eq_def)
qed
with prems show ?thesis by (auto simp:str_eq_rel_def str_eq_def)
qed
hence "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" by (erule_tac prefixE, auto simp:Seq_def)
} moreover {
fix za
assume h1: "za \<le> z" and h2: "(x @ za) \<in> L\<^isub>1" and h3: "z - za \<in> L\<^isub>2"
hence "y @ za \<in> L\<^isub>1"
proof-
have "\<approx>L\<^isub>1 `` {x} = \<approx>L\<^isub>1 `` {y}"
using h1 tag_xy by (auto simp:tag_str_SEQ_def)
with h2 show ?thesis
by (auto simp:Image_def str_eq_rel_def str_eq_def)
qed
with h1 h3 have "y @ z \<in> L\<^isub>1 ;; L\<^isub>2"
by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE)
}
ultimately show ?thesis by blast
qed
} thus "tag_str_SEQ L\<^isub>1 L\<^isub>2 m = tag_str_SEQ L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 ;; L\<^isub>2) n"
by (auto simp add: str_eq_def str_eq_rel_def)
qed
lemma quot_seq_finiteI:
"\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk>
\<Longrightarrow> finite (UNIV // \<approx>(L\<^isub>1 ;; L\<^isub>2))"
apply (rule_tac tag = "tag_str_SEQ L\<^isub>1 L\<^isub>2" in tag_finite_imageD)
by (auto intro:tag_str_SEQ_injI elim:tag_str_seq_range_finite)
subsection {* The case for @{text "ALT"} *}
definition
"tag_str_ALT L\<^isub>1 L\<^isub>2 (x::string) \<equiv> ((\<approx>L\<^isub>1) `` {x}, (\<approx>L\<^isub>2) `` {x})"
lemma quot_union_finiteI:
assumes finite1: "finite (UNIV // \<approx>(L\<^isub>1::string set))"
and finite2: "finite (UNIV // \<approx>L\<^isub>2)"
shows "finite (UNIV // \<approx>(L\<^isub>1 \<union> L\<^isub>2))"
proof (rule_tac tag = "tag_str_ALT L\<^isub>1 L\<^isub>2" in tag_finite_imageD)
show "\<And>m n. tag_str_ALT L\<^isub>1 L\<^isub>2 m = tag_str_ALT L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 \<union> L\<^isub>2) n"
unfolding tag_str_ALT_def str_eq_def Image_def str_eq_rel_def by auto
next
show "finite (range (tag_str_ALT L\<^isub>1 L\<^isub>2))" using finite1 finite2
apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (UNIV // \<approx>L\<^isub>2)" in finite_subset)
by (auto simp:tag_str_ALT_def Image_def quotient_def)
qed
subsection {*
The case for @{text "STAR"}
*}
text {*
This turned out to be the trickiest case.
Any string @{text "x"} in language @{text "L\<^isub>1\<star>"},
can be splited into a prefix @{text "xa \<in> L\<^isub>1\<star>"} and a suffix @{text "x - xa \<in> L\<^isub>1"}.
For one such @{text "x"}, there can be many such splits. The tagging of @{text "x"} is then
defined by collecting the @{text "L\<^isub>1"}-state of the suffixes from every possible split.
*}
(* I will make some illustrations for it. *)
definition
"tag_str_STAR L\<^isub>1 x \<equiv> {(\<approx>L\<^isub>1) `` {x - xa} | xa. xa < x \<and> xa \<in> L\<^isub>1\<star>}"
text {* A technical lemma. *}
lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow>
(\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))"
proof (induct rule:finite.induct)
case emptyI thus ?case by simp
next
case (insertI A a)
show ?case
proof (cases "A = {}")
case True thus ?thesis by (rule_tac x = a in bexI, auto)
next
case False
with prems obtain max
where h1: "max \<in> A"
and h2: "\<forall>a\<in>A. f a \<le> f max" by blast
show ?thesis
proof (cases "f a \<le> f max")
assume "f a \<le> f max"
with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto)
next
assume "\<not> (f a \<le> f max)"
thus ?thesis using h2 by (rule_tac x = a in bexI, auto)
qed
qed
qed
text {* Technical lemma. *}
lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}"
apply (induct x rule:rev_induct, simp)
apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}")
by (auto simp:strict_prefix_def)
text {*
The following lemma @{text "tag_str_star_range_finite"} establishes the range finiteness
of the tagging function.
*}
lemma tag_str_star_range_finite:
"finite (UNIV // \<approx>L\<^isub>1) \<Longrightarrow> finite (range (tag_str_STAR L\<^isub>1))"
apply (rule_tac B = "Pow (UNIV // \<approx>L\<^isub>1)" in finite_subset)
by (auto simp:tag_str_STAR_def Image_def
quotient_def split:if_splits)
text {*
The following lemma @{text "tag_str_STAR_injI"} establishes the injectivity of
the tagging function for case @{text "STAR"}.
*}
lemma tag_str_STAR_injI:
fixes v w
assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w"
shows "(v::string) \<approx>(L\<^isub>1\<star>) w"
proof-
-- {*
\begin{minipage}{0.9\textwidth}
According to the definition of @{text "\<approx>Lang"},
proving @{text "v \<approx>(L\<^isub>1\<star>) w"} amounts to
showing: for any string @{text "u"},
if @{text "v @ u \<in> (L\<^isub>1\<star>)"} then @{text "w @ u \<in> (L\<^isub>1\<star>)"} and vice versa.
The reasoning pattern for both directions are the same, as derived
in the following:
\end{minipage}
*}
{ fix x y z
assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>"
and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y"
have "y @ z \<in> L\<^isub>1\<star>"
proof(cases "x = []")
-- {*
The degenerated case when @{text "x"} is a null string is easy to prove:
*}
case True
with tag_xy have "y = []"
by (auto simp:tag_str_STAR_def strict_prefix_def)
thus ?thesis using xz_in_star True by simp
next
-- {*
\begin{minipage}{0.9\textwidth}
The case when @{text "x"} is not null, and
@{text "x @ z"} is in @{text "L\<^isub>1\<star>"},
\end{minipage}
*}
case False
obtain x_max
where h1: "x_max < x"
and h2: "x_max \<in> L\<^isub>1\<star>"
and h3: "(x - x_max) @ z \<in> L\<^isub>1\<star>"
and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>
\<longrightarrow> length xa \<le> length x_max"
proof-
let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}"
have "finite ?S"
by (rule_tac B = "{xa. xa < x}" in finite_subset,
auto simp:finite_strict_prefix_set)
moreover have "?S \<noteq> {}" using False xz_in_star
by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def)
ultimately have "\<exists> max \<in> ?S. \<forall> a \<in> ?S. length a \<le> length max"
using finite_set_has_max by blast
with prems show ?thesis by blast
qed
obtain ya
where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" and h7: "(x - x_max) \<approx>L\<^isub>1 (y - ya)"
proof-
from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} =
{\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right")
by (auto simp:tag_str_STAR_def)
moreover have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?left" using h1 h2 by auto
ultimately have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?right" by simp
with prems show ?thesis apply
(simp add:Image_def str_eq_rel_def str_eq_def) by blast
qed
have "(y - ya) @ z \<in> L\<^isub>1\<star>"
proof-
from h3 h1 obtain a b where a_in: "a \<in> L\<^isub>1"
and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>"
and ab_max: "(x - x_max) @ z = a @ b"
by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE)
have "(x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z"
proof -
have "((x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z) \<or>
(a < (x - x_max) \<and> ((x - x_max) - a) @ z = b)"
using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def)
moreover {
assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b"
have "False"
proof -
let ?x_max' = "x_max @ a"
have "?x_max' < x"
using np h1 by (clarsimp simp:strict_prefix_def diff_prefix)
moreover have "?x_max' \<in> L\<^isub>1\<star>"
using a_in h2 by (simp add:star_intro3)
moreover have "(x - ?x_max') @ z \<in> L\<^isub>1\<star>"
using b_eqs b_in np h1 by (simp add:diff_diff_appd)
moreover have "\<not> (length ?x_max' \<le> length x_max)"
using a_neq by simp
ultimately show ?thesis using h4 by blast
qed
} ultimately show ?thesis by blast
qed
then obtain za where z_decom: "z = za @ b"
and x_za: "(x - x_max) @ za \<in> L\<^isub>1"
using a_in by (auto elim:prefixE)
from x_za h7 have "(y - ya) @ za \<in> L\<^isub>1"
by (auto simp:str_eq_def str_eq_rel_def)
with z_decom b_in show ?thesis by (auto dest!:step[of "(y - ya) @ za"])
qed
with h5 h6 show ?thesis
by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE)
qed
}
-- {* By instantiating the reasoning pattern just derived for both directions:*}
from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]
-- {* The thesis is proved as a trival consequence: *}
show ?thesis by (unfold str_eq_def str_eq_rel_def, blast)
qed
lemma quot_star_finiteI:
"finite (UNIV // \<approx>L\<^isub>1) \<Longrightarrow> finite (UNIV // \<approx>(L\<^isub>1\<star>))"
apply (rule_tac tag = "tag_str_STAR L\<^isub>1" in tag_finite_imageD)
by (auto intro:tag_str_STAR_injI elim:tag_str_star_range_finite)
subsection {*
The main lemma
*}
lemma easier_direction:
"Lang = L (r::rexp) \<Longrightarrow> finite (UNIV // (\<approx>Lang))"
proof (induct arbitrary:Lang rule:rexp.induct)
case NULL
have "UNIV // (\<approx>{}) \<subseteq> {UNIV} "
by (auto simp:quotient_def str_eq_rel_def str_eq_def)
with prems show "?case" by (auto intro:finite_subset)
next
case EMPTY
have "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}"
by (rule quot_empty_subset)
with prems show ?case by (auto intro:finite_subset)
next
case (CHAR c)
have "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"
by (rule quot_char_subset)
with prems show ?case by (auto intro:finite_subset)
next
case (SEQ r\<^isub>1 r\<^isub>2)
have "\<lbrakk>finite (UNIV // \<approx>(L r\<^isub>1)); finite (UNIV // \<approx>(L r\<^isub>2))\<rbrakk>
\<Longrightarrow> finite (UNIV // \<approx>(L r\<^isub>1 ;; L r\<^isub>2))"
by (erule quot_seq_finiteI, simp)
with prems show ?case by simp
next
case (ALT r\<^isub>1 r\<^isub>2)
have "\<lbrakk>finite (UNIV // \<approx>(L r\<^isub>1)); finite (UNIV // \<approx>(L r\<^isub>2))\<rbrakk>
\<Longrightarrow> finite (UNIV // \<approx>(L r\<^isub>1 \<union> L r\<^isub>2))"
by (erule quot_union_finiteI, simp)
with prems show ?case by simp
next
case (STAR r)
have "finite (UNIV // \<approx>(L r))
\<Longrightarrow> finite (UNIV // \<approx>((L r)\<star>))"
by (erule quot_star_finiteI)
with prems show ?case by simp
qed
end
(*
lemma refined_quotient_union_eq:
assumes refined: "R1 \<subseteq> R2"
and eq1: "equiv A R1" and eq2: "equiv A R2"
and y_in: "y \<in> A"
shows "\<Union>{R1 `` {x} | x. x \<in> (R2 `` {y})} = R2 `` {y}"
proof
show "\<Union>{R1 `` {x} |x. x \<in> R2 `` {y}} \<subseteq> R2 `` {y}" (is "?L \<subseteq> ?R")
proof -
{ fix z
assume zl: "z \<in> ?L" and nzr: "z \<notin> ?R"
have "False"
proof -
from zl and eq1 eq2 and y_in
obtain x where xy2: "(x, y) \<in> R2" and zx1: "(z, x) \<in> R1"
by (simp only:equiv_def sym_def, blast)
have "(z, y) \<in> R2"
proof -
from zx1 and refined have "(z, x) \<in> R2" by blast
moreover from xy2 have "(x, y) \<in> R2" .
ultimately show ?thesis using eq2
by (simp only:equiv_def, unfold trans_def, blast)
qed
with nzr eq2 show ?thesis by (auto simp:equiv_def sym_def)
qed
} thus ?thesis by blast
qed
next
show "R2 `` {y} \<subseteq> \<Union>{R1 `` {x} |x. x \<in> R2 `` {y}}" (is "?L \<subseteq> ?R")
proof
fix x
assume x_in: "x \<in> ?L"
with eq1 eq2 have "x \<in> R1 `` {x}"
by (unfold equiv_def refl_on_def, auto)
with x_in show "x \<in> ?R" by auto
qed
qed
*)
(*
lemma refined_partition_finite:
fixes R1 R2 A
assumes fnt: "finite (A // R1)"
and refined: "R1 \<subseteq> R2"
and eq1: "equiv A R1" and eq2: "equiv A R2"
shows "finite (A // R2)"
proof -
let ?f = "\<lambda> X. {R1 `` {x} | x. x \<in> X}"
and ?A = "(A // R2)" and ?B = "(A // R1)"
show ?thesis
proof(rule_tac f = ?f and A = ?A in finite_imageD)
show "finite (?f ` ?A)"
proof(rule finite_subset [of _ "Pow ?B"])
from fnt show "finite (Pow (A // R1))" by simp
next
from eq2
show " ?f ` A // R2 \<subseteq> Pow ?B"
apply (unfold image_def Pow_def quotient_def, auto)
by (rule_tac x = xb in bexI, simp,
unfold equiv_def sym_def refl_on_def, blast)
qed
next
show "inj_on ?f ?A"
proof -
{ fix X Y
assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A"
and eq_f: "?f X = ?f Y" (is "?L = ?R")
hence "X = Y"
proof -
from X_in eq2
obtain x
where x_in: "x \<in> A"
and eq_x: "X = R2 `` {x}" (is "X = ?X")
by (unfold quotient_def equiv_def refl_on_def, auto)
from Y_in eq2 obtain y
where y_in: "y \<in> A"
and eq_y: "Y = R2 `` {y}" (is "Y = ?Y")
by (unfold quotient_def equiv_def refl_on_def, auto)
have "?X = ?Y"
proof -
from eq_f have "\<Union> ?L = \<Union> ?R" by auto
moreover have "\<Union> ?L = ?X"
proof -
from eq_x have "\<Union> ?L = \<Union>{R1 `` {x} |x. x \<in> ?X}" by simp
also from refined_quotient_union_eq [OF refined eq1 eq2 x_in]
have "\<dots> = ?X" .
finally show ?thesis .
qed
moreover have "\<Union> ?R = ?Y"
proof -
from eq_y have "\<Union> ?R = \<Union>{R1 `` {y} |y. y \<in> ?Y}" by simp
also from refined_quotient_union_eq [OF refined eq1 eq2 y_in]
have "\<dots> = ?Y" .
finally show ?thesis .
qed
ultimately show ?thesis by simp
qed
with eq_x eq_y show ?thesis by auto
qed
} thus ?thesis by (auto simp:inj_on_def)
qed
qed
qed
*)