theory Myhill_1+ −
imports Main List_Prefix Prefix_subtract Prelude+ −
begin+ −
+ −
(*+ −
text {*+ −
\begin{figure}+ −
\centering+ −
\scalebox{0.95}{+ −
\begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=1.2cm, semithick]+ −
\node[state,initial] (n1) {$1$};+ −
\node[state,accepting] (n2) [right = 10em of n1] {$2$};+ −
+ −
\path (n1) edge [bend left] node {$0$} (n2)+ −
(n1) edge [loop above] node{$1$} (n1)+ −
(n2) edge [loop above] node{$0$} (n2)+ −
(n2) edge [bend left] node {$1$} (n1)+ −
;+ −
\end{tikzpicture}}+ −
\caption{An example automaton (or partition)}\label{fig:example_automata}+ −
\end{figure}+ −
*}+ −
+ −
*)+ −
+ −
+ −
section {* Preliminary definitions *}+ −
+ −
types lang = "string set"+ −
+ −
text {* + −
Sequential composition of two languages @{text "L1"} and @{text "L2"} + −
*}+ −
+ −
definition + −
Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" (infixr ";;" 100)+ −
where + −
"A ;; B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}"+ −
+ −
text {* Some properties of operator @{text ";;"}. *}+ −
+ −
lemma seq_add_left:+ −
assumes a: "A = B"+ −
shows "C ;; A = C ;; B"+ −
using a by simp+ −
+ −
lemma seq_union_distrib_right:+ −
shows "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)"+ −
unfolding Seq_def by auto+ −
+ −
lemma seq_union_distrib_left:+ −
shows "C ;; (A \<union> B) = (C ;; A) \<union> (C ;; B)"+ −
unfolding Seq_def by auto+ −
+ −
lemma seq_intro:+ −
"\<lbrakk>x \<in> A; y \<in> B\<rbrakk> \<Longrightarrow> x @ y \<in> A ;; B "+ −
by (auto simp:Seq_def)+ −
+ −
lemma seq_assoc:+ −
shows "(A ;; B) ;; C = A ;; (B ;; C)"+ −
unfolding Seq_def+ −
apply(auto)+ −
apply(blast)+ −
by (metis append_assoc)+ −
+ −
lemma seq_empty [simp]:+ −
shows "A ;; {[]} = A"+ −
and "{[]} ;; A = A"+ −
by (simp_all add: Seq_def)+ −
+ −
fun + −
pow :: "lang \<Rightarrow> nat \<Rightarrow> lang" (infixl "\<up>" 100)+ −
where+ −
"A \<up> 0 = {[]}"+ −
| "A \<up> (Suc n) = A ;; (A \<up> n)" + −
+ −
definition+ −
Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102)+ −
where+ −
"A\<star> \<equiv> (\<Union>n. A \<up> n)"+ −
+ −
lemma star_start[intro]:+ −
shows "[] \<in> A\<star>"+ −
proof -+ −
have "[] \<in> A \<up> 0" by auto+ −
then show "[] \<in> A\<star>" unfolding Star_def by blast+ −
qed+ −
+ −
lemma star_step [intro]:+ −
assumes a: "s1 \<in> A" + −
and b: "s2 \<in> A\<star>"+ −
shows "s1 @ s2 \<in> A\<star>"+ −
proof -+ −
from b obtain n where "s2 \<in> A \<up> n" unfolding Star_def by auto+ −
then have "s1 @ s2 \<in> A \<up> (Suc n)" using a by (auto simp add: Seq_def)+ −
then show "s1 @ s2 \<in> A\<star>" unfolding Star_def by blast+ −
qed+ −
+ −
lemma star_induct[consumes 1, case_names start step]:+ −
assumes a: "x \<in> A\<star>" + −
and b: "P []"+ −
and c: "\<And>s1 s2. \<lbrakk>s1 \<in> A; s2 \<in> A\<star>; P s2\<rbrakk> \<Longrightarrow> P (s1 @ s2)"+ −
shows "P x"+ −
proof -+ −
from a obtain n where "x \<in> A \<up> n" unfolding Star_def by auto+ −
then show "P x"+ −
by (induct n arbitrary: x)+ −
(auto intro!: b c simp add: Seq_def Star_def)+ −
qed+ −
+ −
lemma star_intro1:+ −
assumes a: "x \<in> A\<star>"+ −
and b: "y \<in> A\<star>"+ −
shows "x @ y \<in> A\<star>"+ −
using a b+ −
by (induct rule: star_induct) (auto)+ −
+ −
lemma star_intro2: + −
assumes a: "y \<in> A"+ −
shows "y \<in> A\<star>"+ −
proof -+ −
from a have "y @ [] \<in> A\<star>" by blast+ −
then show "y \<in> A\<star>" by simp+ −
qed+ −
+ −
lemma star_intro3:+ −
assumes a: "x \<in> A\<star>"+ −
and b: "y \<in> A"+ −
shows "x @ y \<in> A\<star>"+ −
using a b by (blast intro: star_intro1 star_intro2)+ −
+ −
lemma star_decom: + −
"\<lbrakk>x \<in> A\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>)"+ −
apply(induct rule: star_induct)+ −
apply(simp)+ −
apply(blast)+ −
done+ −
+ −
lemma lang_star_cases:+ −
shows "L\<star> = {[]} \<union> L ;; L\<star>"+ −
proof+ −
{ fix x+ −
have "x \<in> L\<star> \<Longrightarrow> x \<in> {[]} \<union> L ;; L\<star>"+ −
unfolding Seq_def+ −
by (induct rule: star_induct) (auto)+ −
}+ −
then show "L\<star> \<subseteq> {[]} \<union> L ;; L\<star>" by auto+ −
next+ −
show "{[]} \<union> L ;; L\<star> \<subseteq> L\<star>"+ −
unfolding Seq_def by auto+ −
qed+ −
+ −
lemma+ −
shows seq_Union_left: "B ;; (\<Union>n. A \<up> n) = (\<Union>n. B ;; (A \<up> n))"+ −
and seq_Union_right: "(\<Union>n. A \<up> n) ;; B = (\<Union>n. (A \<up> n) ;; B)"+ −
unfolding Seq_def by auto+ −
+ −
lemma seq_pow_comm:+ −
shows "A ;; (A \<up> n) = (A \<up> n) ;; A"+ −
by (induct n) (simp_all add: seq_assoc[symmetric])+ −
+ −
lemma seq_star_comm:+ −
shows "A ;; A\<star> = A\<star> ;; A"+ −
unfolding Star_def+ −
unfolding seq_Union_left+ −
unfolding seq_pow_comm+ −
unfolding seq_Union_right + −
by simp+ −
+ −
text {* Two lemmas about the length of strings in @{text "A \<up> n"} *}+ −
+ −
lemma pow_length:+ −
assumes a: "[] \<notin> A"+ −
and b: "s \<in> A \<up> Suc n"+ −
shows "n < length s"+ −
using b+ −
proof (induct n arbitrary: s)+ −
case 0+ −
have "s \<in> A \<up> Suc 0" by fact+ −
with a have "s \<noteq> []" by auto+ −
then show "0 < length s" by auto+ −
next+ −
case (Suc n)+ −
have ih: "\<And>s. s \<in> A \<up> Suc n \<Longrightarrow> n < length s" by fact+ −
have "s \<in> A \<up> Suc (Suc n)" by fact+ −
then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A \<up> Suc n"+ −
by (auto simp add: Seq_def)+ −
from ih ** have "n < length s2" by simp+ −
moreover have "0 < length s1" using * a by auto+ −
ultimately show "Suc n < length s" unfolding eq + −
by (simp only: length_append)+ −
qed+ −
+ −
lemma seq_pow_length:+ −
assumes a: "[] \<notin> A"+ −
and b: "s \<in> B ;; (A \<up> Suc n)"+ −
shows "n < length s"+ −
proof -+ −
from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A \<up> Suc n"+ −
unfolding Seq_def by auto+ −
from * have " n < length s2" by (rule pow_length[OF a])+ −
then show "n < length s" using eq by simp+ −
qed+ −
+ −
+ −
section {* A slightly modified version of Arden's lemma *}+ −
+ −
text {* + −
Arden's lemma expressed at the level of languages, rather + −
than the level of regular expression. + −
*}+ −
+ −
+ −
lemma ardens_helper:+ −
assumes eq: "X = X ;; A \<union> B"+ −
shows "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))"+ −
proof (induct n)+ −
case 0 + −
show "X = X ;; (A \<up> Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B ;; (A \<up> m))"+ −
using eq by simp+ −
next+ −
case (Suc n)+ −
have ih: "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" by fact+ −
also have "\<dots> = (X ;; A \<union> B) ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" using eq by simp+ −
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (B ;; (A \<up> Suc n)) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))"+ −
by (simp add: seq_union_distrib_right seq_assoc)+ −
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))"+ −
by (auto simp add: le_Suc_eq)+ −
finally show "X = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" .+ −
qed+ −
+ −
theorem ardens_revised:+ −
assumes nemp: "[] \<notin> A"+ −
shows "X = X ;; A \<union> B \<longleftrightarrow> X = B ;; A\<star>"+ −
proof+ −
assume eq: "X = B ;; A\<star>"+ −
have "A\<star> = {[]} \<union> A\<star> ;; A" + −
unfolding seq_star_comm[symmetric]+ −
by (rule lang_star_cases)+ −
then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"+ −
by (rule seq_add_left)+ −
also have "\<dots> = B \<union> B ;; (A\<star> ;; A)"+ −
unfolding seq_union_distrib_left by simp+ −
also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" + −
by (simp only: seq_assoc)+ −
finally show "X = X ;; A \<union> B" + −
using eq by blast + −
next+ −
assume eq: "X = X ;; A \<union> B"+ −
{ fix n::nat+ −
have "B ;; (A \<up> n) \<subseteq> X" using ardens_helper[OF eq, of "n"] by auto }+ −
then have "B ;; A\<star> \<subseteq> X" + −
unfolding Seq_def Star_def UNION_def+ −
by auto+ −
moreover+ −
{ fix s::string+ −
obtain k where "k = length s" by auto+ −
then have not_in: "s \<notin> X ;; (A \<up> Suc k)" + −
using seq_pow_length[OF nemp] by blast+ −
assume "s \<in> X"+ −
then have "s \<in> X ;; (A \<up> Suc k) \<union> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))"+ −
using ardens_helper[OF eq, of "k"] by auto+ −
then have "s \<in> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" using not_in by auto+ −
moreover+ −
have "(\<Union>m\<in>{0..k}. B ;; (A \<up> m)) \<subseteq> (\<Union>n. B ;; (A \<up> n))" by auto+ −
ultimately + −
have "s \<in> B ;; A\<star>" + −
unfolding seq_Union_left Star_def+ −
by auto }+ −
then have "X \<subseteq> B ;; A\<star>" by auto+ −
ultimately + −
show "X = B ;; A\<star>" by simp+ −
qed+ −
+ −
+ −
+ −
text {* The syntax of regular expressions is defined by the datatype @{text "rexp"}. *}+ −
datatype rexp =+ −
NULL+ −
| EMPTY+ −
| CHAR char+ −
| SEQ rexp rexp+ −
| ALT rexp rexp+ −
| STAR rexp+ −
+ −
+ −
text {* + −
The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to + −
the language represented by the syntactic object @{text "x"}.+ −
*}+ −
consts L:: "'a \<Rightarrow> string set"+ −
+ −
+ −
text {* + −
The @{text "L(rexp)"} for regular expression @{text "rexp"} is defined by the + −
following overloading function @{text "L_rexp"}.+ −
*}+ −
overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> string set"+ −
begin+ −
fun+ −
L_rexp :: "rexp \<Rightarrow> string set"+ −
where+ −
"L_rexp (NULL) = {}"+ −
| "L_rexp (EMPTY) = {[]}"+ −
| "L_rexp (CHAR c) = {[c]}"+ −
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)"+ −
| "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"+ −
| "L_rexp (STAR r) = (L_rexp r)\<star>"+ −
end+ −
+ −
text {*+ −
To obtain equational system out of finite set of equivalent classes, a fold operation+ −
on finite set @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "fold"}+ −
more robust than the @{text "fold"} in Isabelle library. The expression @{text "folds f"}+ −
makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"},+ −
while @{text "fold f"} does not. + −
*}+ −
+ −
definition + −
folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"+ −
where+ −
"folds f z S \<equiv> SOME x. fold_graph f z S x"+ −
+ −
text {* + −
The following lemma assures that the arbitrary choice made by the @{text "SOME"} in @{text "folds"}+ −
does not affect the @{text "L"}-value of the resultant regular expression. + −
*}+ −
lemma folds_alt_simp [simp]:+ −
"finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)"+ −
apply (rule set_eq_intro, simp add:folds_def)+ −
apply (rule someI2_ex, erule finite_imp_fold_graph)+ −
by (erule fold_graph.induct, auto)+ −
+ −
(* Just a technical lemma. *)+ −
lemma [simp]:+ −
shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"+ −
by simp+ −
+ −
text {*+ −
@{text "\<approx>L"} is an equivalent class defined by language @{text "Lang"}.+ −
*}+ −
definition+ −
str_eq_rel ("\<approx>_" [100] 100)+ −
where+ −
"\<approx>Lang \<equiv> {(x, y). (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)}"+ −
+ −
text {* + −
Among equivlant clases of @{text "\<approx>Lang"}, the set @{text "finals(Lang)"} singles out + −
those which contains strings from @{text "Lang"}.+ −
*}+ −
+ −
definition + −
"finals Lang \<equiv> {\<approx>Lang `` {x} | x . x \<in> Lang}"+ −
+ −
text {* + −
The following lemma show the relationshipt between @{text "finals(Lang)"} and @{text "Lang"}.+ −
*}+ −
lemma lang_is_union_of_finals: + −
"Lang = \<Union> finals(Lang)"+ −
proof + −
show "Lang \<subseteq> \<Union> (finals Lang)"+ −
proof+ −
fix x+ −
assume "x \<in> Lang" + −
thus "x \<in> \<Union> (finals Lang)"+ −
apply (simp add:finals_def, rule_tac x = "(\<approx>Lang) `` {x}" in exI)+ −
by (auto simp:Image_def str_eq_rel_def) + −
qed+ −
next+ −
show "\<Union> (finals Lang) \<subseteq> Lang"+ −
apply (clarsimp simp:finals_def str_eq_rel_def)+ −
by (drule_tac x = "[]" in spec, auto)+ −
qed+ −
+ −
section {* Direction @{text "finite partition \<Rightarrow> regular language"}*}+ −
+ −
text {* + −
The relationship between equivalent classes can be described by an+ −
equational system.+ −
For example, in equational system \eqref{example_eqns}, $X_0, X_1$ are equivalent + −
classes. The first equation says every string in $X_0$ is obtained either by+ −
appending one $b$ to a string in $X_0$ or by appending one $a$ to a string in+ −
$X_1$ or just be an empty string (represented by the regular expression $\lambda$). Similary,+ −
the second equation tells how the strings inside $X_1$ are composed.+ −
\begin{equation}\label{example_eqns}+ −
\begin{aligned}+ −
X_0 & = X_0 b + X_1 a + \lambda \\+ −
X_1 & = X_0 a + X_1 b+ −
\end{aligned}+ −
\end{equation}+ −
The summands on the right hand side is represented by the following data type+ −
@{text "rhs_item"}, mnemonic for 'right hand side item'.+ −
Generally, there are two kinds of right hand side items, one kind corresponds to+ −
pure regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other kind corresponds to+ −
transitions from one one equivalent class to another, like the $X_0 b, X_1 a$ etc.+ −
*}+ −
+ −
datatype rhs_item = + −
Lam "rexp" (* Lambda *)+ −
| Trn "(string set)" "rexp" (* Transition *)+ −
+ −
text {*+ −
In this formalization, pure regular expressions like $\lambda$ is + −
repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is represented by $Trn~X_0~(CHAR~a)$.+ −
*}+ −
+ −
text {*+ −
The functions @{text "the_r"} and @{text "the_Trn"} are used to extract+ −
subcomponents from right hand side items.+ −
*}+ −
+ −
fun the_r :: "rhs_item \<Rightarrow> rexp"+ −
where "the_r (Lam r) = r"+ −
+ −
fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)"+ −
where "the_Trn (Trn Y r) = (Y, r)"+ −
+ −
text {*+ −
Every right hand side item @{text "itm"} defines a string set given + −
@{text "L(itm)"}, defined as:+ −
*}+ −
overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set"+ −
begin+ −
fun L_rhs_e:: "rhs_item \<Rightarrow> string set"+ −
where+ −
"L_rhs_e (Lam r) = L r" |+ −
"L_rhs_e (Trn X r) = X ;; L r"+ −
end+ −
+ −
text {*+ −
The right hand side of every equation is represented by a set of+ −
items. The string set defined by such a set @{text "itms"} is given+ −
by @{text "L(itms)"}, defined as:+ −
*}+ −
+ −
overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set"+ −
begin+ −
fun L_rhs:: "rhs_item set \<Rightarrow> string set"+ −
where "L_rhs rhs = \<Union> (L ` rhs)"+ −
end+ −
+ −
text {* + −
Given a set of equivalent classses @{text "CS"} and one equivalent class @{text "X"} among+ −
@{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of+ −
the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"}+ −
is:+ −
*}+ −
+ −
definition+ −
"init_rhs CS X \<equiv> + −
if ([] \<in> X) then + −
{Lam(EMPTY)} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}+ −
else + −
{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"+ −
+ −
text {*+ −
In the definition of @{text "init_rhs"}, the term + −
@{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches+ −
describes the formation of strings in @{text "X"} out of transitions, while + −
the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in+ −
@{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to + −
the $\lambda$ in \eqref{example_eqns}.+ −
+ −
With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every+ −
equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}.+ −
*}+ −
+ −
definition "eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}"+ −
(************ arden's lemma variation ********************)+ −
+ −
text {* + −
The following @{text "items_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}.+ −
*}+ −
definition+ −
"items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}"+ −
+ −
text {* + −
The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items+ −
using @{text "ALT"} to form a single regular expression. + −
It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}.+ −
*}+ −
+ −
definition + −
"rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)"+ −
+ −
text {* + −
The following @{text "lam_of rhs"} returns all pure regular expression items in @{text "rhs"}.+ −
*}+ −
+ −
definition+ −
"lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}"+ −
+ −
text {*+ −
The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"}+ −
using @{text "ALT"} to form a single regular expression. + −
When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"}+ −
is used to compute compute the regular expression corresponds to @{text "rhs"}.+ −
*}+ −
+ −
definition+ −
"rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)"+ −
+ −
text {*+ −
The following @{text "attach_rexp rexp' itm"} attach + −
the regular expression @{text "rexp'"} to+ −
the right of right hand side item @{text "itm"}.+ −
*}+ −
+ −
fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item"+ −
where+ −
"attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')"+ −
| "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')"+ −
+ −
text {* + −
The following @{text "append_rhs_rexp rhs rexp"} attaches + −
@{text "rexp"} to every item in @{text "rhs"}.+ −
*}+ −
+ −
definition+ −
"append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs"+ −
+ −
text {*+ −
With the help of the two functions immediately above, Ardens'+ −
transformation on right hand side @{text "rhs"} is implemented+ −
by the following function @{text "arden_variate X rhs"}.+ −
After this transformation, the recursive occurent of @{text "X"}+ −
in @{text "rhs"} will be eliminated, while the + −
string set defined by @{text "rhs"} is kept unchanged.+ −
*}+ −
definition + −
"arden_variate X rhs \<equiv> + −
append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))"+ −
+ −
+ −
(*********** substitution of ES *************)+ −
+ −
text {* + −
Suppose the equation defining @{text "X"} is $X = xrhs$,+ −
the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in+ −
@{text "rhs"} by @{text "xrhs"}.+ −
A litte thought may reveal that the final result+ −
should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then+ −
union the result with all non-@{text "X"}-items of @{text "rhs"}.+ −
*}+ −
definition + −
"rhs_subst rhs X xrhs \<equiv> + −
(rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))"+ −
+ −
text {*+ −
Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing+ −
@{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation+ −
of the equational system @{text "ES"}.+ −
*}+ −
+ −
definition+ −
"eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"+ −
+ −
text {*+ −
The computation of regular expressions for equivalent classes is accomplished+ −
using a iteration principle given by the following lemma.+ −
*}+ −
+ −
lemma wf_iter [rule_format]: + −
fixes f+ −
assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)"+ −
shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')"+ −
proof(induct e rule: wf_induct + −
[OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify)+ −
fix x + −
assume h [rule_format]: + −
"\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')"+ −
and px: "P x"+ −
show "\<exists>e'. P e' \<and> Q e'"+ −
proof(cases "Q x")+ −
assume "Q x" with px show ?thesis by blast+ −
next+ −
assume nq: "\<not> Q x"+ −
from step [OF px nq]+ −
obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto+ −
show ?thesis+ −
proof(rule h)+ −
from ltf show "(e', x) \<in> inv_image less_than f" + −
by (simp add:inv_image_def)+ −
next+ −
from pe' show "P e'" .+ −
qed+ −
qed+ −
qed+ −
+ −
text {*+ −
The @{text "P"} in lemma @{text "wf_iter"} is an invaiant kept throughout the iteration procedure.+ −
The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"},+ −
an invariant over equal system @{text "ES"}.+ −
Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}.+ −
*}+ −
+ −
text {* + −
Every variable is defined at most onece in @{text "ES"}.+ −
*}+ −
definition + −
"distinct_equas ES \<equiv> + −
\<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"+ −
text {* + −
Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}.+ −
*}+ −
definition + −
"valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)"+ −
+ −
text {*+ −
The following @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional + −
items of @{text "rhs"} does not contain empty string. This is necessary for+ −
the application of Arden's transformation to @{text "rhs"}.+ −
*}+ −
definition + −
"rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)"+ −
+ −
text {*+ −
The following @{text "ardenable ES"} requires that Arden's transformation is applicable+ −
to every equation of equational system @{text "ES"}.+ −
*}+ −
definition + −
"ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs"+ −
+ −
(* The following non_empty seems useless. *)+ −
definition + −
"non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}"+ −
+ −
text {*+ −
The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite.+ −
*}+ −
definition+ −
"finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs"+ −
+ −
text {*+ −
The following @{text "classes_of rhs"} returns all variables (or equivalent classes)+ −
occuring in @{text "rhs"}.+ −
*}+ −
definition + −
"classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}"+ −
+ −
text {*+ −
The following @{text "lefts_of ES"} returns all variables + −
defined by equational system @{text "ES"}.+ −
*}+ −
definition+ −
"lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"+ −
+ −
text {*+ −
The following @{text "self_contained ES"} requires that every+ −
variable occuring on the right hand side of equations is already defined by some+ −
equation in @{text "ES"}.+ −
*}+ −
definition + −
"self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES"+ −
+ −
+ −
text {*+ −
The invariant @{text "Inv(ES)"} is a conjunction of all the previously defined constaints.+ −
*}+ −
definition + −
"Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> + −
non_empty ES \<and> finite_rhs ES \<and> self_contained ES"+ −
+ −
subsection {* The proof of this direction *}+ −
+ −
subsubsection {* Basic properties *}+ −
+ −
text {*+ −
The following are some basic properties of the above definitions.+ −
*}+ −
+ −
lemma L_rhs_union_distrib:+ −
" L (A::rhs_item set) \<union> L B = L (A \<union> B)"+ −
by simp+ −
+ −
lemma finite_snd_Trn:+ −
assumes finite:"finite rhs"+ −
shows "finite {r\<^isub>2. Trn Y r\<^isub>2 \<in> rhs}" (is "finite ?B")+ −
proof-+ −
def rhs' \<equiv> "{e \<in> rhs. \<exists> r. e = Trn Y r}"+ −
have "?B = (snd o the_Trn) ` rhs'" using rhs'_def by (auto simp:image_def)+ −
moreover have "finite rhs'" using finite rhs'_def by auto+ −
ultimately show ?thesis by simp+ −
qed+ −
+ −
lemma rexp_of_empty:+ −
assumes finite:"finite rhs"+ −
and nonempty:"rhs_nonempty rhs"+ −
shows "[] \<notin> L (rexp_of rhs X)"+ −
using finite nonempty rhs_nonempty_def+ −
by (drule_tac finite_snd_Trn[where Y = X], auto simp:rexp_of_def items_of_def)+ −
+ −
lemma [intro!]:+ −
"P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto+ −
+ −
lemma finite_items_of:+ −
"finite rhs \<Longrightarrow> finite (items_of rhs X)"+ −
by (auto simp:items_of_def intro:finite_subset)+ −
+ −
lemma lang_of_rexp_of:+ −
assumes finite:"finite rhs"+ −
shows "L (items_of rhs X) = X ;; (L (rexp_of rhs X))"+ −
proof -+ −
have "finite ((snd \<circ> the_Trn) ` items_of rhs X)" using finite_items_of[OF finite] by auto+ −
thus ?thesis+ −
apply (auto simp:rexp_of_def Seq_def items_of_def)+ −
apply (rule_tac x = "s\<^isub>1" in exI, rule_tac x = "s\<^isub>2" in exI, auto)+ −
by (rule_tac x= "Trn X r" in exI, auto simp:Seq_def)+ −
qed+ −
+ −
lemma rexp_of_lam_eq_lam_set:+ −
assumes finite: "finite rhs"+ −
shows "L (rexp_of_lam rhs) = L (lam_of rhs)"+ −
proof -+ −
have "finite (the_r ` {Lam r |r. Lam r \<in> rhs})" using finite+ −
by (rule_tac finite_imageI, auto intro:finite_subset)+ −
thus ?thesis by (auto simp:rexp_of_lam_def lam_of_def)+ −
qed+ −
+ −
lemma [simp]:+ −
" L (attach_rexp r xb) = L xb ;; L r"+ −
apply (cases xb, auto simp:Seq_def)+ −
apply(rule_tac x = "s\<^isub>1 @ s\<^isub>1'" in exI, rule_tac x = "s\<^isub>2'" in exI)+ −
apply(auto simp: Seq_def)+ −
done+ −
+ −
lemma lang_of_append_rhs:+ −
"L (append_rhs_rexp rhs r) = L rhs ;; L r"+ −
apply (auto simp:append_rhs_rexp_def image_def)+ −
apply (auto simp:Seq_def)+ −
apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def)+ −
by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def)+ −
+ −
lemma classes_of_union_distrib:+ −
"classes_of A \<union> classes_of B = classes_of (A \<union> B)"+ −
by (auto simp add:classes_of_def)+ −
+ −
lemma lefts_of_union_distrib:+ −
"lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)"+ −
by (auto simp:lefts_of_def)+ −
+ −
+ −
subsubsection {* Intialization *}+ −
+ −
text {*+ −
The following several lemmas until @{text "init_ES_satisfy_Inv"} shows that+ −
the initial equational system satisfies invariant @{text "Inv"}.+ −
*}+ −
+ −
lemma defined_by_str:+ −
"\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}"+ −
by (auto simp:quotient_def Image_def str_eq_rel_def)+ −
+ −
lemma every_eqclass_has_transition:+ −
assumes has_str: "s @ [c] \<in> X"+ −
and in_CS: "X \<in> UNIV // (\<approx>Lang)"+ −
obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y"+ −
proof -+ −
def Y \<equiv> "(\<approx>Lang) `` {s}"+ −
have "Y \<in> UNIV // (\<approx>Lang)" + −
unfolding Y_def quotient_def by auto+ −
moreover+ −
have "X = (\<approx>Lang) `` {s @ [c]}" + −
using has_str in_CS defined_by_str by blast+ −
then have "Y ;; {[c]} \<subseteq> X" + −
unfolding Y_def Image_def Seq_def+ −
unfolding str_eq_rel_def+ −
by clarsimp+ −
moreover+ −
have "s \<in> Y" unfolding Y_def + −
unfolding Image_def str_eq_rel_def by simp+ −
ultimately show thesis by (blast intro: that)+ −
qed+ −
+ −
lemma l_eq_r_in_eqs:+ −
assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"+ −
shows "X = L xrhs"+ −
proof + −
show "X \<subseteq> L xrhs"+ −
proof+ −
fix x+ −
assume "(1)": "x \<in> X"+ −
show "x \<in> L xrhs" + −
proof (cases "x = []")+ −
assume empty: "x = []"+ −
thus ?thesis using X_in_eqs "(1)"+ −
by (auto simp:eqs_def init_rhs_def)+ −
next+ −
assume not_empty: "x \<noteq> []"+ −
then obtain clist c where decom: "x = clist @ [c]"+ −
by (case_tac x rule:rev_cases, auto)+ −
have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def)+ −
then obtain Y + −
where "Y \<in> UNIV // (\<approx>Lang)" + −
and "Y ;; {[c]} \<subseteq> X"+ −
and "clist \<in> Y"+ −
using decom "(1)" every_eqclass_has_transition by blast+ −
hence + −
"x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y ;; {[c]} \<subseteq> X}"+ −
using "(1)" decom+ −
by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def)+ −
thus ?thesis using X_in_eqs "(1)"+ −
by (simp add:eqs_def init_rhs_def)+ −
qed+ −
qed+ −
next+ −
show "L xrhs \<subseteq> X" using X_in_eqs+ −
by (auto simp:eqs_def init_rhs_def) + −
qed+ −
+ −
lemma finite_init_rhs: + −
assumes finite: "finite CS"+ −
shows "finite (init_rhs CS X)"+ −
proof-+ −
have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A")+ −
proof -+ −
def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" + −
def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"+ −
have "finite (CS \<times> (UNIV::char set))" using finite by auto+ −
hence "finite S" using S_def + −
by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto)+ −
moreover have "?A = h ` S" by (auto simp: S_def h_def image_def)+ −
ultimately show ?thesis + −
by auto+ −
qed+ −
thus ?thesis by (simp add:init_rhs_def)+ −
qed+ −
+ −
lemma init_ES_satisfy_Inv:+ −
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"+ −
shows "Inv (eqs (UNIV // (\<approx>Lang)))"+ −
proof -+ −
have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS+ −
by (simp add:eqs_def)+ −
moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))" + −
by (simp add:distinct_equas_def eqs_def)+ −
moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))"+ −
by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps)+ −
moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))"+ −
using l_eq_r_in_eqs by (simp add:valid_eqns_def)+ −
moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))"+ −
by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def)+ −
moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))"+ −
using finite_init_rhs[OF finite_CS] + −
by (auto simp:finite_rhs_def eqs_def)+ −
moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))"+ −
by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def)+ −
ultimately show ?thesis by (simp add:Inv_def)+ −
qed+ −
+ −
subsubsection {* + −
Interation step+ −
*}+ −
+ −
text {*+ −
From this point until @{text "iteration_step"}, it is proved+ −
that there exists iteration steps which keep @{text "Inv(ES)"} while+ −
decreasing the size of @{text "ES"}.+ −
*}+ −
lemma arden_variate_keeps_eq:+ −
assumes l_eq_r: "X = L rhs"+ −
and not_empty: "[] \<notin> L (rexp_of rhs X)"+ −
and finite: "finite rhs"+ −
shows "X = L (arden_variate X rhs)"+ −
proof -+ −
def A \<equiv> "L (rexp_of rhs X)"+ −
def b \<equiv> "rhs - items_of rhs X"+ −
def B \<equiv> "L b" + −
have "X = B ;; A\<star>"+ −
proof-+ −
have "rhs = items_of rhs X \<union> b" by (auto simp:b_def items_of_def)+ −
hence "L rhs = L(items_of rhs X \<union> b)" by simp+ −
hence "L rhs = L(items_of rhs X) \<union> B" by (simp only:L_rhs_union_distrib B_def)+ −
with lang_of_rexp_of+ −
have "L rhs = X ;; A \<union> B " using finite by (simp only:B_def b_def A_def)+ −
thus ?thesis+ −
using l_eq_r not_empty+ −
apply (drule_tac B = B and X = X in ardens_revised)+ −
by (auto simp:A_def simp del:L_rhs.simps)+ −
qed+ −
moreover have "L (arden_variate X rhs) = (B ;; A\<star>)" (is "?L = ?R")+ −
by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs + −
B_def A_def b_def L_rexp.simps seq_union_distrib_left)+ −
ultimately show ?thesis by simp+ −
qed + −
+ −
lemma append_keeps_finite:+ −
"finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)"+ −
by (auto simp:append_rhs_rexp_def)+ −
+ −
lemma arden_variate_keeps_finite:+ −
"finite rhs \<Longrightarrow> finite (arden_variate X rhs)"+ −
by (auto simp:arden_variate_def append_keeps_finite)+ −
+ −
lemma append_keeps_nonempty:+ −
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)"+ −
apply (auto simp:rhs_nonempty_def append_rhs_rexp_def)+ −
by (case_tac x, auto simp:Seq_def)+ −
+ −
lemma nonempty_set_sub:+ −
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)"+ −
by (auto simp:rhs_nonempty_def)+ −
+ −
lemma nonempty_set_union:+ −
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')"+ −
by (auto simp:rhs_nonempty_def)+ −
+ −
lemma arden_variate_keeps_nonempty:+ −
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)"+ −
by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub)+ −
+ −
+ −
lemma rhs_subst_keeps_nonempty:+ −
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)"+ −
by (simp only:rhs_subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub)+ −
+ −
lemma rhs_subst_keeps_eq:+ −
assumes substor: "X = L xrhs"+ −
and finite: "finite rhs"+ −
shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right")+ −
proof-+ −
def A \<equiv> "L (rhs - items_of rhs X)"+ −
have "?Left = A \<union> L (append_rhs_rexp xrhs (rexp_of rhs X))"+ −
by (simp only:rhs_subst_def L_rhs_union_distrib A_def)+ −
moreover have "?Right = A \<union> L (items_of rhs X)"+ −
proof-+ −
have "rhs = (rhs - items_of rhs X) \<union> (items_of rhs X)" by (auto simp:items_of_def)+ −
thus ?thesis by (simp only:L_rhs_union_distrib A_def)+ −
qed+ −
moreover have "L (append_rhs_rexp xrhs (rexp_of rhs X)) = L (items_of rhs X)" + −
using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of)+ −
ultimately show ?thesis by simp+ −
qed+ −
+ −
lemma rhs_subst_keeps_finite_rhs:+ −
"\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)"+ −
by (auto simp:rhs_subst_def append_keeps_finite)+ −
+ −
lemma eqs_subst_keeps_finite:+ −
assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)"+ −
shows "finite (eqs_subst ES Y yrhs)"+ −
proof -+ −
have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}" + −
(is "finite ?A")+ −
proof-+ −
def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}"+ −
def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)"+ −
have "finite (h ` eqns')" using finite h_def eqns'_def by auto+ −
moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def)+ −
ultimately show ?thesis by auto + −
qed+ −
thus ?thesis by (simp add:eqs_subst_def)+ −
qed+ −
+ −
lemma eqs_subst_keeps_finite_rhs:+ −
"\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)"+ −
by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def)+ −
+ −
lemma append_rhs_keeps_cls:+ −
"classes_of (append_rhs_rexp rhs r) = classes_of rhs"+ −
apply (auto simp:classes_of_def append_rhs_rexp_def)+ −
apply (case_tac xa, auto simp:image_def)+ −
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)+ −
+ −
lemma arden_variate_removes_cl:+ −
"classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}"+ −
apply (simp add:arden_variate_def append_rhs_keeps_cls items_of_def)+ −
by (auto simp:classes_of_def)+ −
+ −
lemma lefts_of_keeps_cls:+ −
"lefts_of (eqs_subst ES Y yrhs) = lefts_of ES"+ −
by (auto simp:lefts_of_def eqs_subst_def)+ −
+ −
lemma rhs_subst_updates_cls:+ −
"X \<notin> classes_of xrhs \<Longrightarrow> + −
classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}"+ −
apply (simp only:rhs_subst_def append_rhs_keeps_cls + −
classes_of_union_distrib[THEN sym])+ −
by (auto simp:classes_of_def items_of_def)+ −
+ −
lemma eqs_subst_keeps_self_contained:+ −
fixes Y+ −
assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A")+ −
shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" + −
(is "self_contained ?B")+ −
proof-+ −
{ fix X xrhs'+ −
assume "(X, xrhs') \<in> ?B"+ −
then obtain xrhs + −
where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)"+ −
and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast) + −
have "classes_of xrhs' \<subseteq> lefts_of ?B"+ −
proof-+ −
have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def)+ −
moreover have "classes_of xrhs' \<subseteq> lefts_of ES"+ −
proof-+ −
have "classes_of xrhs' \<subseteq> + −
classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}"+ −
proof-+ −
have "Y \<notin> classes_of (arden_variate Y yrhs)" + −
using arden_variate_removes_cl by simp+ −
thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls)+ −
qed+ −
moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc+ −
apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym])+ −
by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def)+ −
moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}" + −
using sc + −
by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def)+ −
ultimately show ?thesis by auto+ −
qed+ −
ultimately show ?thesis by simp+ −
qed+ −
} thus ?thesis by (auto simp only:eqs_subst_def self_contained_def)+ −
qed+ −
+ −
lemma eqs_subst_satisfy_Inv:+ −
assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})"+ −
shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))"+ −
proof - + −
have finite_yrhs: "finite yrhs" + −
using Inv_ES by (auto simp:Inv_def finite_rhs_def)+ −
have nonempty_yrhs: "rhs_nonempty yrhs" + −
using Inv_ES by (auto simp:Inv_def ardenable_def)+ −
have Y_eq_yrhs: "Y = L yrhs" + −
using Inv_ES by (simp only:Inv_def valid_eqns_def, blast)+ −
have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" + −
using Inv_ES+ −
by (auto simp:distinct_equas_def eqs_subst_def Inv_def)+ −
moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" + −
using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite)+ −
moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))"+ −
proof-+ −
have "finite_rhs ES" using Inv_ES + −
by (simp add:Inv_def finite_rhs_def)+ −
moreover have "finite (arden_variate Y yrhs)"+ −
proof -+ −
have "finite yrhs" using Inv_ES + −
by (auto simp:Inv_def finite_rhs_def)+ −
thus ?thesis using arden_variate_keeps_finite by simp+ −
qed+ −
ultimately show ?thesis + −
by (simp add:eqs_subst_keeps_finite_rhs)+ −
qed+ −
moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))"+ −
proof - + −
{ fix X rhs+ −
assume "(X, rhs) \<in> ES"+ −
hence "rhs_nonempty rhs" using prems Inv_ES + −
by (simp add:Inv_def ardenable_def)+ −
with nonempty_yrhs + −
have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))"+ −
by (simp add:nonempty_yrhs + −
rhs_subst_keeps_nonempty arden_variate_keeps_nonempty)+ −
} thus ?thesis by (auto simp add:ardenable_def eqs_subst_def)+ −
qed+ −
moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))"+ −
proof-+ −
have "Y = L (arden_variate Y yrhs)" + −
using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs + −
by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+)+ −
thus ?thesis using Inv_ES + −
by (clarsimp simp add:valid_eqns_def + −
eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def+ −
simp del:L_rhs.simps)+ −
qed+ −
moreover have + −
non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))"+ −
using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def)+ −
moreover + −
have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"+ −
using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def)+ −
ultimately show ?thesis using Inv_ES by (simp add:Inv_def)+ −
qed+ −
+ −
lemma eqs_subst_card_le: + −
assumes finite: "finite (ES::(string set \<times> rhs_item set) set)"+ −
shows "card (eqs_subst ES Y yrhs) <= card ES"+ −
proof-+ −
def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)"+ −
have "eqs_subst ES Y yrhs = f ` ES" + −
apply (auto simp:eqs_subst_def f_def image_def)+ −
by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+)+ −
thus ?thesis using finite by (auto intro:card_image_le)+ −
qed+ −
+ −
lemma eqs_subst_cls_remains: + −
"(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)"+ −
by (auto simp:eqs_subst_def)+ −
+ −
lemma card_noteq_1_has_more:+ −
assumes card:"card S \<noteq> 1"+ −
and e_in: "e \<in> S"+ −
and finite: "finite S"+ −
obtains e' where "e' \<in> S \<and> e \<noteq> e'" + −
proof-+ −
have "card (S - {e}) > 0"+ −
proof -+ −
have "card S > 1" using card e_in finite + −
by (case_tac "card S", auto) + −
thus ?thesis using finite e_in by auto+ −
qed+ −
hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp)+ −
thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto+ −
qed+ −
+ −
lemma iteration_step: + −
assumes Inv_ES: "Inv ES"+ −
and X_in_ES: "(X, xrhs) \<in> ES"+ −
and not_T: "card ES \<noteq> 1"+ −
shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and> + −
(card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'")+ −
proof -+ −
have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def)+ −
then obtain Y yrhs + −
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" + −
using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto)+ −
def ES' == "ES - {(Y, yrhs)}"+ −
let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)"+ −
have "?P ?ES''"+ −
proof -+ −
have "Inv ?ES''" using Y_in_ES Inv_ES+ −
by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb)+ −
moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''" using not_eq X_in_ES+ −
by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def)+ −
moreover have "(card ?ES'', card ES) \<in> less_than" + −
proof -+ −
have "finite ES'" using finite_ES ES'_def by auto+ −
moreover have "card ES' < card ES" using finite_ES Y_in_ES+ −
by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less)+ −
ultimately show ?thesis + −
by (auto dest:eqs_subst_card_le elim:le_less_trans)+ −
qed+ −
ultimately show ?thesis by simp+ −
qed+ −
thus ?thesis by blast+ −
qed+ −
+ −
subsubsection {*+ −
Conclusion of the proof+ −
*}+ −
+ −
text {*+ −
From this point until @{text "hard_direction"}, the hard direction is proved+ −
through a simple application of the iteration principle.+ −
*}+ −
+ −
lemma iteration_conc: + −
assumes history: "Inv ES"+ −
and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES"+ −
shows + −
"\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1" + −
(is "\<exists> ES'. ?P ES'")+ −
proof (cases "card ES = 1")+ −
case True+ −
thus ?thesis using history X_in_ES+ −
by blast+ −
next+ −
case False + −
thus ?thesis using history iteration_step X_in_ES+ −
by (rule_tac f = card in wf_iter, auto)+ −
qed+ −
+ −
lemma last_cl_exists_rexp:+ −
assumes ES_single: "ES = {(X, xrhs)}" + −
and Inv_ES: "Inv ES"+ −
shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r")+ −
proof-+ −
let ?A = "arden_variate X xrhs"+ −
have "?P (rexp_of_lam ?A)"+ −
proof -+ −
have "L (rexp_of_lam ?A) = L (lam_of ?A)"+ −
proof(rule rexp_of_lam_eq_lam_set)+ −
show "finite (arden_variate X xrhs)" using Inv_ES ES_single + −
by (rule_tac arden_variate_keeps_finite, + −
auto simp add:Inv_def finite_rhs_def)+ −
qed+ −
also have "\<dots> = L ?A"+ −
proof-+ −
have "lam_of ?A = ?A"+ −
proof-+ −
have "classes_of ?A = {}" using Inv_ES ES_single+ −
by (simp add:arden_variate_removes_cl + −
self_contained_def Inv_def lefts_of_def) + −
thus ?thesis + −
by (auto simp only:lam_of_def classes_of_def, case_tac x, auto)+ −
qed+ −
thus ?thesis by simp+ −
qed+ −
also have "\<dots> = X"+ −
proof(rule arden_variate_keeps_eq [THEN sym])+ −
show "X = L xrhs" using Inv_ES ES_single + −
by (auto simp only:Inv_def valid_eqns_def) + −
next+ −
from Inv_ES ES_single show "[] \<notin> L (rexp_of xrhs X)"+ −
by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def)+ −
next+ −
from Inv_ES ES_single show "finite xrhs" + −
by (simp add:Inv_def finite_rhs_def)+ −
qed+ −
finally show ?thesis by simp+ −
qed+ −
thus ?thesis by auto+ −
qed+ −
+ −
lemma every_eqcl_has_reg: + −
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"+ −
and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))"+ −
shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r")+ −
proof -+ −
from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"+ −
by (auto simp:eqs_def init_rhs_def)+ −
then obtain ES xrhs where Inv_ES: "Inv ES" + −
and X_in_ES: "(X, xrhs) \<in> ES"+ −
and card_ES: "card ES = 1"+ −
using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc+ −
by blast+ −
hence ES_single_equa: "ES = {(X, xrhs)}" + −
by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff) + −
thus ?thesis using Inv_ES+ −
by (rule last_cl_exists_rexp)+ −
qed+ −
+ −
lemma finals_in_partitions:+ −
"finals Lang \<subseteq> (UNIV // (\<approx>Lang))"+ −
by (auto simp:finals_def quotient_def) + −
+ −
theorem hard_direction: + −
assumes finite_CS: "finite (UNIV // \<approx>Lang)"+ −
shows "\<exists> (r::rexp). Lang = L r"+ −
proof -+ −
have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg" + −
using finite_CS every_eqcl_has_reg by blast+ −
then obtain f + −
where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)" + −
by (auto dest:bchoice)+ −
def rs \<equiv> "f ` (finals Lang)" + −
have "Lang = \<Union> (finals Lang)" using lang_is_union_of_finals by auto+ −
also have "\<dots> = L (folds ALT NULL rs)" + −
proof -+ −
have "finite rs"+ −
proof -+ −
have "finite (finals Lang)" + −
using finite_CS finals_in_partitions[of "Lang"] + −
by (erule_tac finite_subset, simp)+ −
thus ?thesis using rs_def by auto+ −
qed+ −
thus ?thesis + −
using f_prop rs_def finals_in_partitions[of "Lang"] by auto+ −
qed+ −
finally show ?thesis by blast+ −
qed + −
+ −
end+ −