Paper/document/root.tex
author urbanc
Wed, 09 Feb 2011 04:50:18 +0000
changeset 86 6457e668dee5
parent 83 f438f4dbaada
child 88 1436fc451bb9
permissions -rw-r--r--
tuned comments and names in Myhill_1

\documentclass{llncs}
\usepackage{isabelle}
\usepackage{isabellesym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz}
\usepackage{pgf}
\usepackage{pdfsetup}
\usepackage{ot1patch}
\usepackage{times}
\usepackage{proof}
\usepackage{stmaryrd}

\urlstyle{rm}
\isabellestyle{it}
\renewcommand{\isastyleminor}{\it}%
\renewcommand{\isastyle}{\normalsize\it}%


\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
\renewcommand{\isasymequiv}{$\dn$}
\renewcommand{\isasymemptyset}{$\varnothing$}
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}

\newcommand{\isasymcalL}{\ensuremath{\cal{L}}}
\begin{document}

\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular
  Expressions (Proof Pearl)}
\author{Chunhan Wu\inst{1} \and Xingjuan Zhang\inst{1} \and Christian Urban\inst{2}}
\institute{PLA University, China \and TU Munich, Germany}
\maketitle

\begin{abstract} 
There are numerous textbooks on regular languages. Nearly all of them 
introduce the subject by describing finite automata and 
only mentioning on the side a connection with regular expressions. 
Unfortunately, automata are a hassle for formalisations in HOL-based
theorem provers. The reason is that they need to be represented as graphs, 
matrices or functions, none of which are inductive datatypes. Also 
operations, such as disjoint unions of graphs, are not easily formalisiable 
in HOL. In contrast, regular expressions can be defined conveniently 
as datatype and a corresponding reasoning infrastructure comes for 
free. We show in this paper that a central result from formal 
language theory---the Myhill-Nerode theorem---can be recreated 
using only regular expressions. 
\end{abstract}


\input{session}

\bibliographystyle{plain}
\bibliography{root}

\end{document}

%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: