theory Myhill_1
imports Main Folds
begin
section {* Preliminary definitions *}
types lang = "string set"
text {* Sequential composition of two languages *}
definition
Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" (infixr ";;" 100)
where
"A ;; B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}"
text {* Some properties of operator @{text ";;"}. *}
lemma seq_add_left:
assumes a: "A = B"
shows "C ;; A = C ;; B"
using a by simp
lemma seq_union_distrib_right:
shows "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)"
unfolding Seq_def by auto
lemma seq_union_distrib_left:
shows "C ;; (A \<union> B) = (C ;; A) \<union> (C ;; B)"
unfolding Seq_def by auto
lemma seq_intro:
assumes a: "x \<in> A" "y \<in> B"
shows "x @ y \<in> A ;; B "
using a by (auto simp: Seq_def)
lemma seq_assoc:
shows "(A ;; B) ;; C = A ;; (B ;; C)"
unfolding Seq_def
apply(auto)
apply(blast)
by (metis append_assoc)
lemma seq_empty [simp]:
shows "A ;; {[]} = A"
and "{[]} ;; A = A"
by (simp_all add: Seq_def)
text {* Power and Star of a language *}
fun
pow :: "lang \<Rightarrow> nat \<Rightarrow> lang" (infixl "\<up>" 100)
where
"A \<up> 0 = {[]}"
| "A \<up> (Suc n) = A ;; (A \<up> n)"
definition
Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102)
where
"A\<star> \<equiv> (\<Union>n. A \<up> n)"
lemma star_start[intro]:
shows "[] \<in> A\<star>"
proof -
have "[] \<in> A \<up> 0" by auto
then show "[] \<in> A\<star>" unfolding Star_def by blast
qed
lemma star_step [intro]:
assumes a: "s1 \<in> A"
and b: "s2 \<in> A\<star>"
shows "s1 @ s2 \<in> A\<star>"
proof -
from b obtain n where "s2 \<in> A \<up> n" unfolding Star_def by auto
then have "s1 @ s2 \<in> A \<up> (Suc n)" using a by (auto simp add: Seq_def)
then show "s1 @ s2 \<in> A\<star>" unfolding Star_def by blast
qed
lemma star_induct[consumes 1, case_names start step]:
assumes a: "x \<in> A\<star>"
and b: "P []"
and c: "\<And>s1 s2. \<lbrakk>s1 \<in> A; s2 \<in> A\<star>; P s2\<rbrakk> \<Longrightarrow> P (s1 @ s2)"
shows "P x"
proof -
from a obtain n where "x \<in> A \<up> n" unfolding Star_def by auto
then show "P x"
by (induct n arbitrary: x)
(auto intro!: b c simp add: Seq_def Star_def)
qed
lemma star_intro1:
assumes a: "x \<in> A\<star>"
and b: "y \<in> A\<star>"
shows "x @ y \<in> A\<star>"
using a b
by (induct rule: star_induct) (auto)
lemma star_intro2:
assumes a: "y \<in> A"
shows "y \<in> A\<star>"
proof -
from a have "y @ [] \<in> A\<star>" by blast
then show "y \<in> A\<star>" by simp
qed
lemma star_intro3:
assumes a: "x \<in> A\<star>"
and b: "y \<in> A"
shows "x @ y \<in> A\<star>"
using a b by (blast intro: star_intro1 star_intro2)
lemma star_cases:
shows "A\<star> = {[]} \<union> A ;; A\<star>"
proof
{ fix x
have "x \<in> A\<star> \<Longrightarrow> x \<in> {[]} \<union> A ;; A\<star>"
unfolding Seq_def
by (induct rule: star_induct) (auto)
}
then show "A\<star> \<subseteq> {[]} \<union> A ;; A\<star>" by auto
next
show "{[]} \<union> A ;; A\<star> \<subseteq> A\<star>"
unfolding Seq_def by auto
qed
lemma star_decom:
assumes a: "x \<in> A\<star>" "x \<noteq> []"
shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>"
using a
by (induct rule: star_induct) (blast)+
lemma
shows seq_Union_left: "B ;; (\<Union>n. A \<up> n) = (\<Union>n. B ;; (A \<up> n))"
and seq_Union_right: "(\<Union>n. A \<up> n) ;; B = (\<Union>n. (A \<up> n) ;; B)"
unfolding Seq_def by auto
lemma seq_pow_comm:
shows "A ;; (A \<up> n) = (A \<up> n) ;; A"
by (induct n) (simp_all add: seq_assoc[symmetric])
lemma seq_star_comm:
shows "A ;; A\<star> = A\<star> ;; A"
unfolding Star_def seq_Union_left
unfolding seq_pow_comm seq_Union_right
by simp
text {* Two lemmas about the length of strings in @{text "A \<up> n"} *}
lemma pow_length:
assumes a: "[] \<notin> A"
and b: "s \<in> A \<up> Suc n"
shows "n < length s"
using b
proof (induct n arbitrary: s)
case 0
have "s \<in> A \<up> Suc 0" by fact
with a have "s \<noteq> []" by auto
then show "0 < length s" by auto
next
case (Suc n)
have ih: "\<And>s. s \<in> A \<up> Suc n \<Longrightarrow> n < length s" by fact
have "s \<in> A \<up> Suc (Suc n)" by fact
then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A \<up> Suc n"
by (auto simp add: Seq_def)
from ih ** have "n < length s2" by simp
moreover have "0 < length s1" using * a by auto
ultimately show "Suc n < length s" unfolding eq
by (simp only: length_append)
qed
lemma seq_pow_length:
assumes a: "[] \<notin> A"
and b: "s \<in> B ;; (A \<up> Suc n)"
shows "n < length s"
proof -
from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A \<up> Suc n"
unfolding Seq_def by auto
from * have " n < length s2" by (rule pow_length[OF a])
then show "n < length s" using eq by simp
qed
section {* A modified version of Arden's lemma *}
text {* A helper lemma for Arden *}
lemma arden_helper:
assumes eq: "X = X ;; A \<union> B"
shows "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))"
proof (induct n)
case 0
show "X = X ;; (A \<up> Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B ;; (A \<up> m))"
using eq by simp
next
case (Suc n)
have ih: "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" by fact
also have "\<dots> = (X ;; A \<union> B) ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" using eq by simp
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (B ;; (A \<up> Suc n)) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))"
by (simp add: seq_union_distrib_right seq_assoc)
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))"
by (auto simp add: le_Suc_eq)
finally show "X = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" .
qed
theorem arden:
assumes nemp: "[] \<notin> A"
shows "X = X ;; A \<union> B \<longleftrightarrow> X = B ;; A\<star>"
proof
assume eq: "X = B ;; A\<star>"
have "A\<star> = {[]} \<union> A\<star> ;; A"
unfolding seq_star_comm[symmetric]
by (rule star_cases)
then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"
by (rule seq_add_left)
also have "\<dots> = B \<union> B ;; (A\<star> ;; A)"
unfolding seq_union_distrib_left by simp
also have "\<dots> = B \<union> (B ;; A\<star>) ;; A"
by (simp only: seq_assoc)
finally show "X = X ;; A \<union> B"
using eq by blast
next
assume eq: "X = X ;; A \<union> B"
{ fix n::nat
have "B ;; (A \<up> n) \<subseteq> X" using arden_helper[OF eq, of "n"] by auto }
then have "B ;; A\<star> \<subseteq> X"
unfolding Seq_def Star_def UNION_def by auto
moreover
{ fix s::string
obtain k where "k = length s" by auto
then have not_in: "s \<notin> X ;; (A \<up> Suc k)"
using seq_pow_length[OF nemp] by blast
assume "s \<in> X"
then have "s \<in> X ;; (A \<up> Suc k) \<union> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))"
using arden_helper[OF eq, of "k"] by auto
then have "s \<in> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" using not_in by auto
moreover
have "(\<Union>m\<in>{0..k}. B ;; (A \<up> m)) \<subseteq> (\<Union>n. B ;; (A \<up> n))" by auto
ultimately
have "s \<in> B ;; A\<star>"
unfolding seq_Union_left Star_def by auto }
then have "X \<subseteq> B ;; A\<star>" by auto
ultimately
show "X = B ;; A\<star>" by simp
qed
section {* Regular Expressions *}
datatype rexp =
NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp
text {*
The function @{text L} is overloaded, with the idea that @{text "L x"}
evaluates to the language represented by the object @{text x}.
*}
consts L:: "'a \<Rightarrow> lang"
overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> lang"
begin
fun
L_rexp :: "rexp \<Rightarrow> string set"
where
"L_rexp (NULL) = {}"
| "L_rexp (EMPTY) = {[]}"
| "L_rexp (CHAR c) = {[c]}"
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)"
| "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
| "L_rexp (STAR r) = (L_rexp r)\<star>"
end
text {* ALT-combination of a set or regulare expressions *}
abbreviation
Setalt ("\<Uplus>_" [1000] 999)
where
"\<Uplus>A == folds ALT NULL A"
text {*
For finite sets, @{term Setalt} is preserved under @{term L}.
*}
lemma folds_alt_simp [simp]:
assumes a: "finite rs"
shows "L (\<Uplus>rs) = \<Union> (L ` rs)"
apply(rule set_eqI)
apply(simp add: folds_def)
apply(rule someI2_ex)
apply(rule_tac finite_imp_fold_graph[OF a])
apply(erule fold_graph.induct)
apply(auto)
done
section {* Direction @{text "finite partition \<Rightarrow> regular language"} *}
text {* Just a technical lemma for collections and pairs *}
lemma Pair_Collect[simp]:
shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
by simp
text {* Myhill-Nerode relation *}
definition
str_eq_rel :: "lang \<Rightarrow> (string \<times> string) set" ("\<approx>_" [100] 100)
where
"\<approx>A \<equiv> {(x, y). (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)}"
text {*
Among the equivalence clases of @{text "\<approx>A"}, the set @{text "finals A"}
singles out those which contains the strings from @{text A}.
*}
definition
finals :: "lang \<Rightarrow> lang set"
where
"finals A \<equiv> {\<approx>A `` {x} | x . x \<in> A}"
lemma lang_is_union_of_finals:
shows "A = \<Union> finals A"
unfolding finals_def
unfolding Image_def
unfolding str_eq_rel_def
apply(auto)
apply(drule_tac x = "[]" in spec)
apply(auto)
done
lemma finals_in_partitions:
shows "finals A \<subseteq> (UNIV // \<approx>A)"
unfolding finals_def
unfolding quotient_def
by auto
section {* Equational systems *}
datatype rhs_item =
Lam "rexp" (* Lambda-marker *)
| Trn "lang" "rexp" (* Transition *)
overloading L_rhs_item \<equiv> "L:: rhs_item \<Rightarrow> lang"
begin
fun L_rhs_item:: "rhs_item \<Rightarrow> lang"
where
"L_rhs_item (Lam r) = L r"
| "L_rhs_item (Trn X r) = X ;; L r"
end
overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> lang"
begin
fun L_rhs:: "rhs_item set \<Rightarrow> lang"
where
"L_rhs rhs = \<Union> (L ` rhs)"
end
definition
"trns_of rhs X \<equiv> {Trn X r | r. Trn X r \<in> rhs}"
text {* Transitions between equivalence classes *}
definition
transition :: "lang \<Rightarrow> rexp \<Rightarrow> lang \<Rightarrow> bool" ("_ \<Turnstile>_\<Rightarrow>_" [100,100,100] 100)
where
"Y \<Turnstile>r\<Rightarrow> X \<equiv> Y ;; (L r) \<subseteq> X"
text {* Initial equational system *}
definition
"init_rhs CS X \<equiv>
if ([] \<in> X) then
{Lam EMPTY} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X}
else
{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X}"
definition
"eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}"
section {* Arden Operation on equations *}
text {*
The function @{text "attach_rexp r item"} SEQ-composes @{text r} to the
right of every rhs-item.
*}
fun
attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item"
where
"attach_rexp r (Lam rexp) = Lam (SEQ rexp r)"
| "attach_rexp r (Trn X rexp) = Trn X (SEQ rexp r)"
definition
"append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs"
definition
"arden_op X rhs \<equiv>
append_rhs_rexp (rhs - trns_of rhs X) (STAR (\<Uplus> {r. Trn X r \<in> rhs}))"
section {* Substitution Operation on equations *}
text {*
Suppose and equation @{text "X = xrhs"}, @{text "subst_op"} substitutes
all occurences of @{text "X"} in @{text "rhs"} by @{text "xrhs"}.
*}
definition
"subst_op rhs X xrhs \<equiv>
(rhs - (trns_of rhs X)) \<union> (append_rhs_rexp xrhs (\<Uplus> {r. Trn X r \<in> rhs}))"
text {*
@{text "eqs_subst ES X xrhs"} substitutes @{text xrhs} into every
equation of the equational system @{text ES}.
*}
definition
"subst_op_all ES X xrhs \<equiv> {(Y, subst_op yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"
section {* Well-founded iteration *}
text {*
The computation of regular expressions for equivalence classes is accomplished
using a iteration principle given by the following lemma.
*}
lemma wf_iter [rule_format]:
fixes f
assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)"
shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')"
proof(induct e rule: wf_induct
[OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify)
fix x
assume h [rule_format]:
"\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')"
and px: "P x"
show "\<exists>e'. P e' \<and> Q e'"
proof(cases "Q x")
assume "Q x" with px show ?thesis by blast
next
assume nq: "\<not> Q x"
from step [OF px nq]
obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto
show ?thesis
proof(rule h)
from ltf show "(e', x) \<in> inv_image less_than f"
by (simp add:inv_image_def)
next
from pe' show "P e'" .
qed
qed
qed
text {*
The @{text "P"} in lemma @{text "wf_iter"} is an invariant kept throughout the iteration procedure.
The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"},
an invariant over equal system @{text "ES"}.
Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}.
*}
section {* Invariants *}
text {* Every variable is defined at most onece in @{text ES}. *}
definition
"distinct_equas ES \<equiv>
\<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"
text {*
Every equation in @{text ES} (represented by @{text "(X, rhs)"})
is valid, i.e. @{text "(X = L rhs)"}.
*}
definition
"valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)"
text {*
@{text "rhs_nonempty rhs"} requires regular expressions occuring in
transitional items of @{text "rhs"} do not contain empty string. This is
necessary for the application of Arden's transformation to @{text "rhs"}.
*}
definition
"rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)"
text {*
The following @{text "ardenable ES"} requires that Arden's transformation
is applicable to every equation of equational system @{text "ES"}.
*}
definition
"ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs"
(* The following non_empty seems useless. *)
definition
"non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}"
text {*
@{text "finite_rhs ES"} requires every equation in @{text "rhs"}
be finite.
*}
definition
"finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs"
text {*
@{text "classes_of rhs"} returns all variables (or equivalent classes)
occuring in @{text "rhs"}.
*}
definition
"classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}"
text {*
@{text "lefts_of ES"} returns all variables defined by an
equational system @{text "ES"}.
*}
definition
"lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"
text {*
The following @{text "self_contained ES"} requires that every variable occuring
on the right hand side of equations is already defined by some equation in @{text "ES"}.
*}
definition
"self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES"
text {*
The invariant @{text "invariant(ES)"} is a conjunction of all the previously defined constaints.
*}
definition
"invariant ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and>
non_empty ES \<and> finite_rhs ES \<and> self_contained ES"
subsection {* The proof of this direction *}
subsubsection {* Basic properties *}
text {*
The following are some basic properties of the above definitions.
*}
lemma L_rhs_union_distrib:
fixes A B::"rhs_item set"
shows "L A \<union> L B = L (A \<union> B)"
by simp
lemma finite_Trn:
assumes fin: "finite rhs"
shows "finite {r. Trn Y r \<in> rhs}"
proof -
have "finite {Trn Y r | Y r. Trn Y r \<in> rhs}"
by (rule rev_finite_subset[OF fin]) (auto)
then have "finite ((\<lambda>(Y, r). Trn Y r) ` {(Y, r) | Y r. Trn Y r \<in> rhs})"
by (simp add: image_Collect)
then have "finite {(Y, r) | Y r. Trn Y r \<in> rhs}"
by (erule_tac finite_imageD) (simp add: inj_on_def)
then show "finite {r. Trn Y r \<in> rhs}"
by (erule_tac f="snd" in finite_surj) (auto simp add: image_def)
qed
lemma finite_Lam:
assumes fin:"finite rhs"
shows "finite {r. Lam r \<in> rhs}"
proof -
have "finite {Lam r | r. Lam r \<in> rhs}"
by (rule rev_finite_subset[OF fin]) (auto)
then show "finite {r. Lam r \<in> rhs}"
apply(simp add: image_Collect[symmetric])
apply(erule finite_imageD)
apply(auto simp add: inj_on_def)
done
qed
lemma rexp_of_empty:
assumes finite:"finite rhs"
and nonempty:"rhs_nonempty rhs"
shows "[] \<notin> L (\<Uplus> {r. Trn X r \<in> rhs})"
using finite nonempty rhs_nonempty_def
using finite_Trn[OF finite]
by (auto)
lemma [intro!]:
"P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto
lemma lang_of_rexp_of:
assumes finite:"finite rhs"
shows "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))"
proof -
have "finite {r. Trn X r \<in> rhs}"
by (rule finite_Trn[OF finite])
then show ?thesis
apply(auto simp add: Seq_def)
apply(rule_tac x = "s\<^isub>1" in exI, rule_tac x = "s\<^isub>2" in exI, auto)
apply(rule_tac x= "Trn X xa" in exI)
apply(auto simp: Seq_def)
done
qed
lemma rexp_of_lam_eq_lam_set:
assumes fin: "finite rhs"
shows "L (\<Uplus>{r. Lam r \<in> rhs}) = L ({Lam r | r. Lam r \<in> rhs})"
proof -
have "finite ({r. Lam r \<in> rhs})" using fin by (rule finite_Lam)
then show ?thesis by auto
qed
lemma [simp]:
"L (attach_rexp r xb) = L xb ;; L r"
apply (cases xb, auto simp: Seq_def)
apply(rule_tac x = "s\<^isub>1 @ s\<^isub>1'" in exI, rule_tac x = "s\<^isub>2'" in exI)
apply(auto simp: Seq_def)
done
lemma lang_of_append_rhs:
"L (append_rhs_rexp rhs r) = L rhs ;; L r"
apply (auto simp:append_rhs_rexp_def image_def)
apply (auto simp:Seq_def)
apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def)
by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def)
lemma classes_of_union_distrib:
"classes_of A \<union> classes_of B = classes_of (A \<union> B)"
by (auto simp add:classes_of_def)
lemma lefts_of_union_distrib:
"lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)"
by (auto simp:lefts_of_def)
subsubsection {* Intialization *}
text {*
The following several lemmas until @{text "init_ES_satisfy_invariant"} shows that
the initial equational system satisfies invariant @{text "invariant"}.
*}
lemma defined_by_str:
"\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}"
by (auto simp:quotient_def Image_def str_eq_rel_def)
lemma every_eqclass_has_transition:
assumes has_str: "s @ [c] \<in> X"
and in_CS: "X \<in> UNIV // (\<approx>Lang)"
obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y"
proof -
def Y \<equiv> "(\<approx>Lang) `` {s}"
have "Y \<in> UNIV // (\<approx>Lang)"
unfolding Y_def quotient_def by auto
moreover
have "X = (\<approx>Lang) `` {s @ [c]}"
using has_str in_CS defined_by_str by blast
then have "Y ;; {[c]} \<subseteq> X"
unfolding Y_def Image_def Seq_def
unfolding str_eq_rel_def
by clarsimp
moreover
have "s \<in> Y" unfolding Y_def
unfolding Image_def str_eq_rel_def by simp
ultimately show thesis by (blast intro: that)
qed
lemma l_eq_r_in_eqs:
assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
shows "X = L xrhs"
proof
show "X \<subseteq> L xrhs"
proof
fix x
assume "(1)": "x \<in> X"
show "x \<in> L xrhs"
proof (cases "x = []")
assume empty: "x = []"
thus ?thesis using X_in_eqs "(1)"
by (auto simp:eqs_def init_rhs_def)
next
assume not_empty: "x \<noteq> []"
then obtain clist c where decom: "x = clist @ [c]"
by (case_tac x rule:rev_cases, auto)
have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def)
then obtain Y
where "Y \<in> UNIV // (\<approx>Lang)"
and "Y ;; {[c]} \<subseteq> X"
and "clist \<in> Y"
using decom "(1)" every_eqclass_has_transition by blast
hence
"x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X}"
unfolding transition_def
using "(1)" decom
by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def)
thus ?thesis using X_in_eqs "(1)"
by (simp add: eqs_def init_rhs_def)
qed
qed
next
show "L xrhs \<subseteq> X" using X_in_eqs
by (auto simp:eqs_def init_rhs_def transition_def)
qed
lemma finite_init_rhs:
assumes finite: "finite CS"
shows "finite (init_rhs CS X)"
proof-
have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A")
proof -
def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"
def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"
have "finite (CS \<times> (UNIV::char set))" using finite by auto
hence "finite S" using S_def
by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto)
moreover have "?A = h ` S" by (auto simp: S_def h_def image_def)
ultimately show ?thesis
by auto
qed
thus ?thesis by (simp add:init_rhs_def transition_def)
qed
lemma init_ES_satisfy_invariant:
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
shows "invariant (eqs (UNIV // (\<approx>Lang)))"
proof -
have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS
by (simp add:eqs_def)
moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))"
by (simp add:distinct_equas_def eqs_def)
moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))"
by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps)
moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))"
using l_eq_r_in_eqs by (simp add:valid_eqns_def)
moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))"
by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def)
moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))"
using finite_init_rhs[OF finite_CS]
by (auto simp:finite_rhs_def eqs_def)
moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))"
by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def)
ultimately show ?thesis by (simp add:invariant_def)
qed
subsubsection {*
Interation step
*}
text {*
From this point until @{text "iteration_step"}, it is proved
that there exists iteration steps which keep @{text "invariant(ES)"} while
decreasing the size of @{text "ES"}.
*}
lemma arden_op_keeps_eq:
assumes l_eq_r: "X = L rhs"
and not_empty: "[] \<notin> L (\<Uplus>{r. Trn X r \<in> rhs})"
and finite: "finite rhs"
shows "X = L (arden_op X rhs)"
proof -
def A \<equiv> "L (\<Uplus>{r. Trn X r \<in> rhs})"
def b \<equiv> "rhs - trns_of rhs X"
def B \<equiv> "L b"
have "X = B ;; A\<star>"
proof-
have "L rhs = L(trns_of rhs X \<union> b)" by (auto simp: b_def trns_of_def)
also have "\<dots> = X ;; A \<union> B"
unfolding trns_of_def
unfolding L_rhs_union_distrib[symmetric]
by (simp only: lang_of_rexp_of finite B_def A_def)
finally show ?thesis
using l_eq_r not_empty
apply(rule_tac arden[THEN iffD1])
apply(simp add: A_def)
apply(simp)
done
qed
moreover have "L (arden_op X rhs) = (B ;; A\<star>)"
by (simp only:arden_op_def L_rhs_union_distrib lang_of_append_rhs
B_def A_def b_def L_rexp.simps seq_union_distrib_left)
ultimately show ?thesis by simp
qed
lemma append_keeps_finite:
"finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)"
by (auto simp:append_rhs_rexp_def)
lemma arden_op_keeps_finite:
"finite rhs \<Longrightarrow> finite (arden_op X rhs)"
by (auto simp:arden_op_def append_keeps_finite)
lemma append_keeps_nonempty:
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)"
apply (auto simp:rhs_nonempty_def append_rhs_rexp_def)
by (case_tac x, auto simp:Seq_def)
lemma nonempty_set_sub:
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)"
by (auto simp:rhs_nonempty_def)
lemma nonempty_set_union:
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')"
by (auto simp:rhs_nonempty_def)
lemma arden_op_keeps_nonempty:
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_op X rhs)"
by (simp only:arden_op_def append_keeps_nonempty nonempty_set_sub)
lemma subst_op_keeps_nonempty:
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (subst_op rhs X xrhs)"
by (simp only:subst_op_def append_keeps_nonempty nonempty_set_union nonempty_set_sub)
lemma subst_op_keeps_eq:
assumes substor: "X = L xrhs"
and finite: "finite rhs"
shows "L (subst_op rhs X xrhs) = L rhs" (is "?Left = ?Right")
proof-
def A \<equiv> "L (rhs - trns_of rhs X)"
have "?Left = A \<union> L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs}))"
unfolding subst_op_def
unfolding L_rhs_union_distrib[symmetric]
by (simp add: A_def)
moreover have "?Right = A \<union> L ({Trn X r | r. Trn X r \<in> rhs})"
proof-
have "rhs = (rhs - trns_of rhs X) \<union> (trns_of rhs X)" by (auto simp add: trns_of_def)
thus ?thesis
unfolding A_def
unfolding L_rhs_union_distrib
unfolding trns_of_def
by simp
qed
moreover have "L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs})) = L ({Trn X r | r. Trn X r \<in> rhs})"
using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of)
ultimately show ?thesis by simp
qed
lemma subst_op_keeps_finite_rhs:
"\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (subst_op rhs Y yrhs)"
by (auto simp:subst_op_def append_keeps_finite)
lemma subst_op_all_keeps_finite:
assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)"
shows "finite (subst_op_all ES Y yrhs)"
proof -
have "finite {(Ya, subst_op yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}"
(is "finite ?A")
proof-
def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}"
def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, subst_op yrhsa Y yrhs)"
have "finite (h ` eqns')" using finite h_def eqns'_def by auto
moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def)
ultimately show ?thesis by auto
qed
thus ?thesis by (simp add:subst_op_all_def)
qed
lemma subst_op_all_keeps_finite_rhs:
"\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (subst_op_all ES Y yrhs)"
by (auto intro:subst_op_keeps_finite_rhs simp add:subst_op_all_def finite_rhs_def)
lemma append_rhs_keeps_cls:
"classes_of (append_rhs_rexp rhs r) = classes_of rhs"
apply (auto simp:classes_of_def append_rhs_rexp_def)
apply (case_tac xa, auto simp:image_def)
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)
lemma arden_op_removes_cl:
"classes_of (arden_op Y yrhs) = classes_of yrhs - {Y}"
apply (simp add:arden_op_def append_rhs_keeps_cls trns_of_def)
by (auto simp:classes_of_def)
lemma lefts_of_keeps_cls:
"lefts_of (subst_op_all ES Y yrhs) = lefts_of ES"
by (auto simp:lefts_of_def subst_op_all_def)
lemma subst_op_updates_cls:
"X \<notin> classes_of xrhs \<Longrightarrow>
classes_of (subst_op rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}"
apply (simp only:subst_op_def append_rhs_keeps_cls
classes_of_union_distrib[THEN sym])
by (auto simp:classes_of_def trns_of_def)
lemma subst_op_all_keeps_self_contained:
fixes Y
assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A")
shows "self_contained (subst_op_all ES Y (arden_op Y yrhs))"
(is "self_contained ?B")
proof-
{ fix X xrhs'
assume "(X, xrhs') \<in> ?B"
then obtain xrhs
where xrhs_xrhs': "xrhs' = subst_op xrhs Y (arden_op Y yrhs)"
and X_in: "(X, xrhs) \<in> ES" by (simp add:subst_op_all_def, blast)
have "classes_of xrhs' \<subseteq> lefts_of ?B"
proof-
have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def subst_op_all_def)
moreover have "classes_of xrhs' \<subseteq> lefts_of ES"
proof-
have "classes_of xrhs' \<subseteq>
classes_of xrhs \<union> classes_of (arden_op Y yrhs) - {Y}"
proof-
have "Y \<notin> classes_of (arden_op Y yrhs)"
using arden_op_removes_cl by simp
thus ?thesis using xrhs_xrhs' by (auto simp:subst_op_updates_cls)
qed
moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc
apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym])
by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def)
moreover have "classes_of (arden_op Y yrhs) \<subseteq> lefts_of ES \<union> {Y}"
using sc
by (auto simp add:arden_op_removes_cl self_contained_def lefts_of_def)
ultimately show ?thesis by auto
qed
ultimately show ?thesis by simp
qed
} thus ?thesis by (auto simp only:subst_op_all_def self_contained_def)
qed
lemma subst_op_all_satisfy_invariant:
assumes invariant_ES: "invariant (ES \<union> {(Y, yrhs)})"
shows "invariant (subst_op_all ES Y (arden_op Y yrhs))"
proof -
have finite_yrhs: "finite yrhs"
using invariant_ES by (auto simp:invariant_def finite_rhs_def)
have nonempty_yrhs: "rhs_nonempty yrhs"
using invariant_ES by (auto simp:invariant_def ardenable_def)
have Y_eq_yrhs: "Y = L yrhs"
using invariant_ES by (simp only:invariant_def valid_eqns_def, blast)
have "distinct_equas (subst_op_all ES Y (arden_op Y yrhs))"
using invariant_ES
by (auto simp:distinct_equas_def subst_op_all_def invariant_def)
moreover have "finite (subst_op_all ES Y (arden_op Y yrhs))"
using invariant_ES by (simp add:invariant_def subst_op_all_keeps_finite)
moreover have "finite_rhs (subst_op_all ES Y (arden_op Y yrhs))"
proof-
have "finite_rhs ES" using invariant_ES
by (simp add:invariant_def finite_rhs_def)
moreover have "finite (arden_op Y yrhs)"
proof -
have "finite yrhs" using invariant_ES
by (auto simp:invariant_def finite_rhs_def)
thus ?thesis using arden_op_keeps_finite by simp
qed
ultimately show ?thesis
by (simp add:subst_op_all_keeps_finite_rhs)
qed
moreover have "ardenable (subst_op_all ES Y (arden_op Y yrhs))"
proof -
{ fix X rhs
assume "(X, rhs) \<in> ES"
hence "rhs_nonempty rhs" using prems invariant_ES
by (simp add:invariant_def ardenable_def)
with nonempty_yrhs
have "rhs_nonempty (subst_op rhs Y (arden_op Y yrhs))"
by (simp add:nonempty_yrhs
subst_op_keeps_nonempty arden_op_keeps_nonempty)
} thus ?thesis by (auto simp add:ardenable_def subst_op_all_def)
qed
moreover have "valid_eqns (subst_op_all ES Y (arden_op Y yrhs))"
proof-
have "Y = L (arden_op Y yrhs)"
using Y_eq_yrhs invariant_ES finite_yrhs nonempty_yrhs
by (rule_tac arden_op_keeps_eq, (simp add:rexp_of_empty)+)
thus ?thesis using invariant_ES
by (clarsimp simp add:valid_eqns_def
subst_op_all_def subst_op_keeps_eq invariant_def finite_rhs_def
simp del:L_rhs.simps)
qed
moreover have
non_empty_subst: "non_empty (subst_op_all ES Y (arden_op Y yrhs))"
using invariant_ES by (auto simp:invariant_def non_empty_def subst_op_all_def)
moreover
have self_subst: "self_contained (subst_op_all ES Y (arden_op Y yrhs))"
using invariant_ES subst_op_all_keeps_self_contained by (simp add:invariant_def)
ultimately show ?thesis using invariant_ES by (simp add:invariant_def)
qed
lemma subst_op_all_card_le:
assumes finite: "finite (ES::(string set \<times> rhs_item set) set)"
shows "card (subst_op_all ES Y yrhs) <= card ES"
proof-
def f \<equiv> "\<lambda> x. ((fst x)::string set, subst_op (snd x) Y yrhs)"
have "subst_op_all ES Y yrhs = f ` ES"
apply (auto simp:subst_op_all_def f_def image_def)
by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+)
thus ?thesis using finite by (auto intro:card_image_le)
qed
lemma subst_op_all_cls_remains:
"(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (subst_op_all ES Y yrhs)"
by (auto simp:subst_op_all_def)
lemma card_noteq_1_has_more:
assumes card:"card S \<noteq> 1"
and e_in: "e \<in> S"
and finite: "finite S"
obtains e' where "e' \<in> S \<and> e \<noteq> e'"
proof-
have "card (S - {e}) > 0"
proof -
have "card S > 1" using card e_in finite
by (case_tac "card S", auto)
thus ?thesis using finite e_in by auto
qed
hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp)
thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto
qed
lemma iteration_step:
assumes invariant_ES: "invariant ES"
and X_in_ES: "(X, xrhs) \<in> ES"
and not_T: "card ES \<noteq> 1"
shows "\<exists> ES'. (invariant ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and>
(card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'")
proof -
have finite_ES: "finite ES" using invariant_ES by (simp add:invariant_def)
then obtain Y yrhs
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)"
using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto)
def ES' == "ES - {(Y, yrhs)}"
let ?ES'' = "subst_op_all ES' Y (arden_op Y yrhs)"
have "?P ?ES''"
proof -
have "invariant ?ES''" using Y_in_ES invariant_ES
by (rule_tac subst_op_all_satisfy_invariant, simp add:ES'_def insert_absorb)
moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''" using not_eq X_in_ES
by (rule_tac ES = ES' in subst_op_all_cls_remains, auto simp add:ES'_def)
moreover have "(card ?ES'', card ES) \<in> less_than"
proof -
have "finite ES'" using finite_ES ES'_def by auto
moreover have "card ES' < card ES" using finite_ES Y_in_ES
by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less)
ultimately show ?thesis
by (auto dest:subst_op_all_card_le elim:le_less_trans)
qed
ultimately show ?thesis by simp
qed
thus ?thesis by blast
qed
subsubsection {*
Conclusion of the proof
*}
text {*
From this point until @{text "hard_direction"}, the hard direction is proved
through a simple application of the iteration principle.
*}
lemma iteration_conc:
assumes history: "invariant ES"
and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES"
shows
"\<exists> ES'. (invariant ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1"
(is "\<exists> ES'. ?P ES'")
proof (cases "card ES = 1")
case True
thus ?thesis using history X_in_ES
by blast
next
case False
thus ?thesis using history iteration_step X_in_ES
by (rule_tac f = card in wf_iter, auto)
qed
lemma last_cl_exists_rexp:
assumes ES_single: "ES = {(X, xrhs)}"
and invariant_ES: "invariant ES"
shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r")
proof-
def A \<equiv> "arden_op X xrhs"
have "?P (\<Uplus>{r. Lam r \<in> A})"
proof -
have "L (\<Uplus>{r. Lam r \<in> A}) = L ({Lam r | r. Lam r \<in> A})"
proof(rule rexp_of_lam_eq_lam_set)
show "finite A"
unfolding A_def
using invariant_ES ES_single
by (rule_tac arden_op_keeps_finite)
(auto simp add: invariant_def finite_rhs_def)
qed
also have "\<dots> = L A"
proof-
have "{Lam r | r. Lam r \<in> A} = A"
proof-
have "classes_of A = {}" using invariant_ES ES_single
unfolding A_def
by (simp add:arden_op_removes_cl
self_contained_def invariant_def lefts_of_def)
thus ?thesis
unfolding A_def
by (auto simp only: classes_of_def, case_tac x, auto)
qed
thus ?thesis by simp
qed
also have "\<dots> = X"
unfolding A_def
proof(rule arden_op_keeps_eq [THEN sym])
show "X = L xrhs" using invariant_ES ES_single
by (auto simp only:invariant_def valid_eqns_def)
next
from invariant_ES ES_single show "[] \<notin> L (\<Uplus>{r. Trn X r \<in> xrhs})"
by(simp add:invariant_def ardenable_def rexp_of_empty finite_rhs_def)
next
from invariant_ES ES_single show "finite xrhs"
by (simp add:invariant_def finite_rhs_def)
qed
finally show ?thesis by simp
qed
thus ?thesis by auto
qed
lemma every_eqcl_has_reg:
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))"
shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r")
proof -
from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
by (auto simp:eqs_def init_rhs_def)
then obtain ES xrhs where invariant_ES: "invariant ES"
and X_in_ES: "(X, xrhs) \<in> ES"
and card_ES: "card ES = 1"
using finite_CS X_in_CS init_ES_satisfy_invariant iteration_conc
by blast
hence ES_single_equa: "ES = {(X, xrhs)}"
by (auto simp:invariant_def dest!:card_Suc_Diff1 simp:card_eq_0_iff)
thus ?thesis using invariant_ES
by (rule last_cl_exists_rexp)
qed
theorem hard_direction:
assumes finite_CS: "finite (UNIV // \<approx>A)"
shows "\<exists>r::rexp. A = L r"
proof -
have "\<forall> X \<in> (UNIV // \<approx>A). \<exists>reg::rexp. X = L reg"
using finite_CS every_eqcl_has_reg by blast
then obtain f
where f_prop: "\<forall> X \<in> (UNIV // \<approx>A). X = L ((f X)::rexp)"
by (auto dest: bchoice)
def rs \<equiv> "f ` (finals A)"
have "A = \<Union> (finals A)" using lang_is_union_of_finals by auto
also have "\<dots> = L (\<Uplus>rs)"
proof -
have "finite rs"
proof -
have "finite (finals A)"
using finite_CS finals_in_partitions[of "A"]
by (erule_tac finite_subset, simp)
thus ?thesis using rs_def by auto
qed
thus ?thesis
using f_prop rs_def finals_in_partitions[of "A"] by auto
qed
finally show ?thesis by blast
qed
end