Paper/Paper.thy
author urbanc
Tue, 08 Feb 2011 09:51:49 +0000
changeset 77 63bc9f9d96ba
parent 75 d63baacbdb16
child 79 bba9c80735f9
permissions -rw-r--r--
small additions

(*<*)
theory Paper
imports "../Myhill" "LaTeXsugar"
begin

declare [[show_question_marks = false]]

consts
 REL :: "(string \<times> string) \<Rightarrow> bool"
 UPLUS :: "'a set \<Rightarrow> 'a set \<Rightarrow> (nat \<times> 'a) set"

abbreviation
  "EClass x R \<equiv> R `` {x}"

notation (latex output)
  str_eq_rel ("\<approx>\<^bsub>_\<^esub>") and
  str_eq ("_ \<approx>\<^bsub>_\<^esub> _") and
  Seq (infixr "\<cdot>" 100) and
  Star ("_\<^bsup>\<star>\<^esup>") and
  pow ("_\<^bsup>_\<^esup>" [100, 100] 100) and
  Suc ("_+1" [100] 100) and
  quotient ("_ \<^raw:\ensuremath{\!\sslash\!}> _" [90, 90] 90) and
  REL ("\<approx>") and
  UPLUS ("_ \<^raw:\ensuremath{\uplus}> _" [90, 90] 90) and
  L ("L'(_')" [0] 101) and
  Lam ("\<lambda>'(_')" [100] 100) and 
  Trn ("_, _" [100, 100] 100) and 
  EClass ("\<lbrakk>_\<rbrakk>\<^bsub>_\<^esub>" [100, 100] 100) and
  transition ("_ \<^raw:\ensuremath{\stackrel{\text{>_\<^raw:}}{\Longmapsto}}> _" [100, 100, 100] 100)
(*>*)


section {* Introduction *}

text {*
  Regular languages are an important and well-understood subject in Computer
  Science, with many beautiful theorems and many useful algorithms. There is a
  wide range of textbooks on this subject, many of which are aimed at students
  and contain very detailed ``pencil-and-paper'' proofs
  (e.g.~\cite{Kozen97}). It seems natural to exercise theorem provers by
  formalising these theorems and by verifying formally the algorithms.

  There is however a problem: the typical approach to regular languages is to
  introduce finite automata and then define everything in terms of them.  For
  example, a regular language is normally defined as one whose strings are
  recognised by a finite deterministic automaton. This approach has many
  benefits. Among them is the fact that it is easy to convince oneself that
  regular languages are closed under complementation: one just has to exchange
  the accepting and non-accepting states in the corresponding automaton to
  obtain an automaton for the complement language.  The problem, however, lies with
  formalising such reasoning in a HOL-based theorem prover, in our case
  Isabelle/HOL. Automata are build up from states and transitions that 
  need to be represented as graphs or matrices, neither
  of which can be defined as inductive datatype.\footnote{In some works
  functions are used to represent state transitions, but also they are not
  inductive datatypes.} This means we have to build our own reasoning
  infrastructure for them, as neither Isabelle/HOL nor HOL4 nor HOLlight support
  them with libraries.

  Even worse, reasoning about graphs and matrices can be a real hassle in HOL-based
  theorem provers.  Consider for example the operation of sequencing 
  two automata, say $A_1$ and $A_2$, by connecting the
  accepting states of $A_1$ to the initial state of $A_2$:
  
  
  \begin{center}
  \begin{tabular}{ccc}
  \begin{tikzpicture}[scale=0.8]
  %\draw[step=2mm] (-1,-1) grid (1,1);
  
  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);

  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  
  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};

  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};

  \draw (-0.6,0.0) node {\footnotesize$A_1$};
  \draw ( 0.6,0.0) node {\footnotesize$A_2$};
  \end{tikzpicture}

  & 

  \raisebox{1.1mm}{\bf\Large$\;\;\;\Rightarrow\,\;\;$}

  &

  \begin{tikzpicture}[scale=0.8]
  %\draw[step=2mm] (-1,-1) grid (1,1);
  
  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);

  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  
  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};

  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
  
  \draw (C) to [very thick, bend left=45] (B);
  \draw (D) to [very thick, bend right=45] (B);

  \draw (-0.6,0.0) node {\footnotesize$A_1$};
  \draw ( 0.6,0.0) node {\footnotesize$A_2$};
  \end{tikzpicture}

  \end{tabular}
  \end{center}

  \noindent
  On ``paper'' we can define the corresponding graph in terms of the disjoint 
  union of the state nodes. Unfortunately in HOL, the definition for disjoint 
  union, namely 

  \begin{center}
  @{term "UPLUS A\<^isub>1 A\<^isub>2 \<equiv> {(1, x) | x. x \<in> A\<^isub>1} \<union> {(2, y) | y. y \<in> A\<^isub>2}"}
  \end{center}

  \noindent
  changes the type---the disjoint union is not a set, but a set of pairs. 
  Using this definition for disjoint unions means we do not have a single type for automata
  and hence will not be able to state properties about \emph{all}
  automata, since there is no type quantification available in HOL. An
  alternative, which provides us with a single type for automata, is to give every 
  state node an identity, for example a natural
  number, and then be careful to rename these identities apart whenever
  connecting two automata. This results in clunky proofs
  establishing that properties are invariant under renaming. Similarly,
  connecting two automata represented as matrices results in very adhoc
  constructions, which are not pleasant to reason about.

  Because of these problems to do with representing automata, there seems
  to be no substantial formalisation of automata theory and regular languages 
  carried out in a HOL-based theorem prover. We are only aware of the 
  large formalisation of automata theory in Nuprl \cite{Constable00} and 
  some smaller formalisations in Coq (for example \cite{Filliatre97}).
  
  In this paper, we will not attempt to formalise automata theory, but take a completely 
  different approach to regular languages. Instead of defining a regular language as one 
  where there exists an automaton that recognises all strings of the language, we define 
  a regular language as:

  \begin{definition}[A Regular Language]
  A language @{text A} is \emph{regular}, provided there is a regular expression that matches all
  strings of @{text "A"}.
  \end{definition}
  
  \noindent
  The reason is that regular expressions, unlike graphs and matrices, can
  be easily defined as inductive datatype. Consequently a corresponding reasoning 
  infrastructure comes for free. This has recently been exploited in HOL4 with a formalisation
  of regular expression matching based on derivatives \cite{OwensSlind08}.  The purpose of this paper is to
  show that a central result about regular languages---the Myhill-Nerode theorem---can 
  be recreated by only using regular expressions. This theorem gives necessary
  and sufficient conditions for when a language is regular. As a corollary of this
  theorem we can easily establish the usual closure properties, including 
  complementation, for regular languages.\smallskip
  
  \noindent
  {\bf Contributions:} To our knowledge, our proof of the Myhill-Nerode theorem is the
  first that is based on regular expressions, only. We prove the part of this theorem 
  stating that a regular expression has only finitely many partitions using certain 
  tagging-functions. Again to our best knowledge, these tagging functions have
  not been used before to establish the Myhill-Nerode theorem.
*}

section {* Preliminaries *}

text {*
  Strings in Isabelle/HOL are lists of characters with the \emph{empty string}
  being represented by the empty list, written @{term "[]"}. \emph{Languages}
  are sets of strings. The language containing all strings is written in
  Isabelle/HOL as @{term "UNIV::string set"}. The concatenation of two languages 
  is written @{term "A ;; B"} and a language raised to the power $n$ is written 
  @{term "A \<up> n"}. Their definitions are

  \begin{center}
  @{thm Seq_def[THEN eq_reflection, where A1="A" and B1="B"]}
  \hspace{7mm}
  @{thm pow.simps(1)[THEN eq_reflection, where A1="A"]}
  \hspace{7mm}
  @{thm pow.simps(2)[THEN eq_reflection, where A1="A" and n1="n"]}
  \end{center}

  \noindent
  where @{text "@"} is the usual list-append operation. The Kleene-star of a language @{text A}
  is defined as the union over all powers, namely @{thm Star_def}. In the paper
  we will often make use of the following properties.
  
  \begin{proposition}\label{langprops}\mbox{}\\
  \begin{tabular}{@ {}ll@ {\hspace{10mm}}ll}
  (i)   & @{thm star_cases}      & (ii)  & @{thm[mode=IfThen] pow_length}\\
  (iii) & @{thm seq_Union_left}  & 
  \end{tabular}
  \end{proposition}

  \noindent
  We omit the proofs of these properties, but invite the reader to consult
  our formalisation.\footnote{Available at ???}


  The notation for the quotient of a language @{text A} according to an 
  equivalence relation @{term REL} is @{term "A // REL"}. We will write 
  @{text "\<lbrakk>x\<rbrakk>\<^isub>\<approx>"} for the equivalence class defined 
  as @{text "{y | y \<approx> x}"}.


  Central to our proof will be the solution of equational systems
  involving sets of languages. For this we will use Arden's lemma \cite{Brzozowski64}
  which solves equations of the form @{term "X = A ;; X \<union> B"} provided
  @{term "[] \<notin> A"}. However we will need the following ``reverse'' 
  version of Arden's lemma.

  \begin{lemma}[Reverse Arden's Lemma]\label{arden}\mbox{}\\
  If @{thm (prem 1) ardens_revised} then
  @{thm (lhs) ardens_revised} has the unique solution
  @{thm (rhs) ardens_revised}.
  \end{lemma}

  \begin{proof}
  For the right-to-left direction we assume @{thm (rhs) ardens_revised} and show
  that @{thm (lhs) ardens_revised} holds. From Prop.~\ref{langprops}@{text "(i)"} 
  we have @{term "A\<star> = {[]} \<union> A ;; A\<star>"},
  which is equal to @{term "A\<star> = {[]} \<union> A\<star> ;; A"}. Adding @{text B} to both 
  sides gives @{term "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"}, whose right-hand side
  is equal to @{term "(B ;; A\<star>) ;; A \<union> B"}. This completes this direction. 

  For the other direction we assume @{thm (lhs) ardens_revised}. By a simple induction
  on @{text n}, we can establish the property

  \begin{center}
  @{text "(*)"}\hspace{5mm} @{thm (concl) ardens_helper}
  \end{center}
  
  \noindent
  Using this property we can show that @{term "B ;; (A \<up> n) \<subseteq> X"} holds for
  all @{text n}. From this we can infer @{term "B ;; A\<star> \<subseteq> X"} using the definition
  of @{text "\<star>"}.
  For the inclusion in the other direction we assume a string @{text s}
  with length @{text k} is element in @{text X}. Since @{thm (prem 1) ardens_revised}
  we know by Prop.~\ref{langprops}@{text "(ii)"} that 
  @{term "s \<notin> X ;; (A \<up> Suc k)"} since its length is only @{text k}
  (the strings in @{term "X ;; (A \<up> Suc k)"} are all longer). 
  From @{text "(*)"} it follows then that
  @{term s} must be element in @{term "(\<Union>m\<in>{0..k}. B ;; (A \<up> m))"}. This in turn
  implies that @{term s} is in @{term "(\<Union>n. B ;; (A \<up> n))"}. Using Prop.~\ref{langprops}@{text "(iii)"} 
  this is equal to @{term "B ;; A\<star>"}, as we needed to show.\qed
  \end{proof}

  \noindent
  Regular expressions are defined as the following inductive datatype

  \begin{center}
  @{text r} @{text "::="}
  @{term NULL}\hspace{1.5mm}@{text"|"}\hspace{1.5mm} 
  @{term EMPTY}\hspace{1.5mm}@{text"|"}\hspace{1.5mm} 
  @{term "CHAR c"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm} 
  @{term "SEQ r r"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm} 
  @{term "ALT r r"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm} 
  @{term "STAR r"}
  \end{center}

  \noindent
  The language matched by a regular expression is defined as usual:

  \begin{center}
  \begin{tabular}{c@ {\hspace{10mm}}c}
  \begin{tabular}{rcl}
  @{thm (lhs) L_rexp.simps(1)} & @{text "\<equiv>"} & @{thm (rhs) L_rexp.simps(1)}\\
  @{thm (lhs) L_rexp.simps(2)} & @{text "\<equiv>"} & @{thm (rhs) L_rexp.simps(2)}\\
  @{thm (lhs) L_rexp.simps(3)[where c="c"]} & @{text "\<equiv>"} & @{thm (rhs) L_rexp.simps(3)[where c="c"]}\\
  \end{tabular}
  &
  \begin{tabular}{rcl}
  @{thm (lhs) L_rexp.simps(4)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]} & @{text "\<equiv>"} &
       @{thm (rhs) L_rexp.simps(4)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}\\
  @{thm (lhs) L_rexp.simps(5)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]} & @{text "\<equiv>"} &
       @{thm (rhs) L_rexp.simps(5)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}\\
  @{thm (lhs) L_rexp.simps(6)[where r="r"]} & @{text "\<equiv>"} &
      @{thm (rhs) L_rexp.simps(6)[where r="r"]}\\
  \end{tabular}
  \end{tabular}
  \end{center}

*}

section {* Finite Partitions Imply Regularity of a Language *}

text {*
  The key definition in the Myhill-Nerode theorem is the
  \emph{Myhill-Nerode relation}, which states that w.r.t.~a language two 
  strings are related, provided there is no distinguishing extension in this
  language. This can be defined as:

  \begin{definition}[Myhill-Nerode Relation]\mbox{}\\
  @{thm str_eq_def[simplified str_eq_rel_def Pair_Collect]}
  \end{definition}

  \noindent
  It is easy to see that @{term "\<approx>A"} is an equivalence relation, which
  partitions the set of all strings, @{text "UNIV"}, into a set of disjoint
  equivalence classes. One direction of the Myhill-Nerode theorem establishes 
  that if there are finitely many equivalence classes, then the language is 
  regular. In our setting we therefore have to show:
  
  \begin{theorem}\label{myhillnerodeone}
  @{thm[mode=IfThen] hard_direction}
  \end{theorem}

  \noindent
  To prove this theorem, we define the set @{term "finals A"} as those equivalence
  classes that contain strings of @{text A}, namely
  %
  \begin{equation} 
  @{thm finals_def}
  \end{equation}

  \noindent
  It is straightforward to show that @{thm lang_is_union_of_finals} and 
  @{thm finals_included_in_UNIV} hold. 
  Therefore if we know that there exists a regular expression for every
  equivalence class in @{term "finals A"} (which by assumption must be
  a finite set), then we can combine these regular expressions with @{const ALT}
  and obtain a regular expression that matches every string in @{text A}.


  We prove Thm.~\ref{myhillnerodeone} by giving a method that can calculate a
  regular expression for \emph{every} equivalence classe, not just the ones 
  in @{term "finals A"}. We
  first define a notion of \emph{transition} between equivalence classes
  %
  \begin{equation} 
  @{thm transition_def}
  \end{equation}

  \noindent
  which means that if we concatenate all strings matching the regular expression @{text r} 
  to the end of all strings in the equivalence class @{text Y}, we obtain a subset of 
  @{text X}. Note that we do not define an automaton here, we merely relate two sets
  (w.r.t.~a regular expression). 
  
  Next we build an equational system that
  contains an equation for each equivalence class. Suppose we have 
  the equivalence classes @{text "X\<^isub>1,\<dots>,X\<^isub>n"}, there must be one and only one that
  contains the empty string @{text "[]"} (since equivalence classes are disjoint).
  Let us assume @{text "[] \<in> X\<^isub>1"}. We build the following equational system
  
  \begin{center}
  \begin{tabular}{rcl}
  @{text "X\<^isub>1"} & @{text "="} & @{text "(Y\<^isub>1\<^isub>1, CHAR c\<^isub>1\<^isub>1) + \<dots> + (Y\<^isub>1\<^isub>p, CHAR c\<^isub>1\<^isub>p) + \<lambda>(EMPTY)"} \\
  @{text "X\<^isub>2"} & @{text "="} & @{text "(Y\<^isub>2\<^isub>1, CHAR c\<^isub>2\<^isub>1) + \<dots> + (Y\<^isub>2\<^isub>o, CHAR c\<^isub>2\<^isub>o)"} \\
  & $\vdots$ \\
  @{text "X\<^isub>n"} & @{text "="} & @{text "(Y\<^isub>n\<^isub>1, CHAR c\<^isub>n\<^isub>1) + \<dots> + (Y\<^isub>n\<^isub>q, CHAR c\<^isub>n\<^isub>q)"}\\
  \end{tabular}
  \end{center}

  \noindent
  where the pairs @{text "(Y\<^isub>i\<^isub>j, r\<^isub>i\<^isub>j)"} stand for all transitions 
  @{term "Y\<^isub>i\<^isub>j \<Turnstile>r\<^isub>i\<^isub>j\<Rightarrow> X\<^isub>i"}.  The term @{text "\<lambda>(EMPTY)"} acts as a marker for the equivalence
  class containing @{text "[]"}. (Note that we mark, roughly speaking, the
  single ``initial'' state in the equational system, which is different from
  the method by Brzozowski \cite{Brzozowski64}, since for his purposes he needs to mark 
  the ``terminal'' states.) Overloading the function @{text L} for the two kinds of terms in the 
  equational system as follows
  
  \begin{center}
  @{thm L_rhs_e.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm}
  @{thm L_rhs_e.simps(1)[where r="r", THEN eq_reflection]}
  \end{center}

  \noindent
  we can prove for @{text "X\<^isub>2\<^isub>.\<^isub>.\<^isub>n"} that the following equations
  %
  \begin{equation}\label{inv1}
  @{text "X\<^isub>i = L(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> L(Y\<^isub>i\<^isub>q, CHAR c\<^isub>i\<^isub>q)"}.
  \end{equation}

  \noindent
  hold. Similarly for @{text "X\<^isub>1"} we can show the following equation
  %
  \begin{equation}\label{inv2}
  @{text "X\<^isub>1 = L(Y\<^isub>i\<^isub>1, CHAR c\<^isub>i\<^isub>1) \<union> \<dots> \<union> L(Y\<^isub>i\<^isub>p, CHAR c\<^isub>i\<^isub>p) \<union> L(\<lambda>(EMPTY))"}.
  \end{equation}

  \noindent
  The reason for adding the @{text \<lambda>}-marker to our equational system is 
  to obtain this equation, which only holds in this form since none of 
  the other terms contain the empty string. 


  Our proof of Thm.~\ref{myhillnerodeone}
  will be by transforming the equational system into a \emph{solved form}
  maintaining the invariants \eqref{inv1} and \eqref{inv2}. From the solved
  form we will be able to read off the regular expressions using our 
  variant of Arden's Lemma (Lem.~\ref{arden}).

*}

section {* Regular Expressions Generate Finitely Many Partitions *}

text {*

  \begin{theorem}
  Given @{text "r"} is a regular expressions, then @{thm rexp_imp_finite}.
  \end{theorem}  

  \begin{proof}
  By induction on the structure of @{text r}. The cases for @{const NULL}, @{const EMPTY}
  and @{const CHAR} are straightforward, because we can easily establish

  \begin{center}
  \begin{tabular}{l}
  @{thm quot_null_eq}\\
  @{thm quot_empty_subset}\\
  @{thm quot_char_subset}
  \end{tabular}
  \end{center}

  \end{proof}
*}


section {* Conclusion and Related Work *}

(*<*)
end
(*>*)