more on paper; modified schs functions; it is still compatible with the old definition
(* Title: HOL/Proofs/Extraction/Higman.thy
Author: Stefan Berghofer, TU Muenchen
Author: Monika Seisenberger, LMU Muenchen
*)
header {* Higman's lemma *}
theory Higman
imports Main "~~/src/HOL/Library/State_Monad" Random
begin
text {*
Formalization by Stefan Berghofer and Monika Seisenberger,
based on Coquand and Fridlender \cite{Coquand93}.
*}
datatype letter = A | B
inductive emb :: "letter list \<Rightarrow> letter list \<Rightarrow> bool"
where
emb0 [Pure.intro]: "emb [] bs"
| emb1 [Pure.intro]: "emb as bs \<Longrightarrow> emb as (b # bs)"
| emb2 [Pure.intro]: "emb as bs \<Longrightarrow> emb (a # as) (a # bs)"
inductive L :: "letter list \<Rightarrow> letter list list \<Rightarrow> bool"
for v :: "letter list"
where
L0 [Pure.intro]: "emb w v \<Longrightarrow> L v (w # ws)"
| L1 [Pure.intro]: "L v ws \<Longrightarrow> L v (w # ws)"
inductive good :: "letter list list \<Rightarrow> bool"
where
good0 [Pure.intro]: "L w ws \<Longrightarrow> good (w # ws)"
| good1 [Pure.intro]: "good ws \<Longrightarrow> good (w # ws)"
inductive R :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"
for a :: letter
where
R0 [Pure.intro]: "R a [] []"
| R1 [Pure.intro]: "R a vs ws \<Longrightarrow> R a (w # vs) ((a # w) # ws)"
inductive T :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"
for a :: letter
where
T0 [Pure.intro]: "a \<noteq> b \<Longrightarrow> R b ws zs \<Longrightarrow> T a (w # zs) ((a # w) # zs)"
| T1 [Pure.intro]: "T a ws zs \<Longrightarrow> T a (w # ws) ((a # w) # zs)"
| T2 [Pure.intro]: "a \<noteq> b \<Longrightarrow> T a ws zs \<Longrightarrow> T a ws ((b # w) # zs)"
inductive bar :: "letter list list \<Rightarrow> bool"
where
bar1 [Pure.intro]: "good ws \<Longrightarrow> bar ws"
| bar2 [Pure.intro]: "(\<And>w. bar (w # ws)) \<Longrightarrow> bar ws"
theorem prop1: "bar ([] # ws)" by iprover
theorem lemma1: "L as ws \<Longrightarrow> L (a # as) ws"
by (erule L.induct, iprover+)
lemma lemma2': "R a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"
apply (induct set: R)
apply (erule L.cases)
apply simp+
apply (erule L.cases)
apply simp_all
apply (rule L0)
apply (erule emb2)
apply (erule L1)
done
lemma lemma2: "R a vs ws \<Longrightarrow> good vs \<Longrightarrow> good ws"
apply (induct set: R)
apply iprover
apply (erule good.cases)
apply simp_all
apply (rule good0)
apply (erule lemma2')
apply assumption
apply (erule good1)
done
lemma lemma3': "T a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"
apply (induct set: T)
apply (erule L.cases)
apply simp_all
apply (rule L0)
apply (erule emb2)
apply (rule L1)
apply (erule lemma1)
apply (erule L.cases)
apply simp_all
apply iprover+
done
lemma lemma3: "T a ws zs \<Longrightarrow> good ws \<Longrightarrow> good zs"
apply (induct set: T)
apply (erule good.cases)
apply simp_all
apply (rule good0)
apply (erule lemma1)
apply (erule good1)
apply (erule good.cases)
apply simp_all
apply (rule good0)
apply (erule lemma3')
apply iprover+
done
lemma lemma4: "R a ws zs \<Longrightarrow> ws \<noteq> [] \<Longrightarrow> T a ws zs"
apply (induct set: R)
apply iprover
apply (case_tac vs)
apply (erule R.cases)
apply simp
apply (case_tac a)
apply (rule_tac b=B in T0)
apply simp
apply (rule R0)
apply (rule_tac b=A in T0)
apply simp
apply (rule R0)
apply simp
apply (rule T1)
apply simp
done
lemma letter_neq: "(a::letter) \<noteq> b \<Longrightarrow> c \<noteq> a \<Longrightarrow> c = b"
apply (case_tac a)
apply (case_tac b)
apply (case_tac c, simp, simp)
apply (case_tac c, simp, simp)
apply (case_tac b)
apply (case_tac c, simp, simp)
apply (case_tac c, simp, simp)
done
lemma letter_eq_dec: "(a::letter) = b \<or> a \<noteq> b"
apply (case_tac a)
apply (case_tac b)
apply simp
apply simp
apply (case_tac b)
apply simp
apply simp
done
theorem prop2:
assumes ab: "a \<noteq> b" and bar: "bar xs"
shows "\<And>ys zs. bar ys \<Longrightarrow> T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs" using bar
proof induct
fix xs zs assume "T a xs zs" and "good xs"
hence "good zs" by (rule lemma3)
then show "bar zs" by (rule bar1)
next
fix xs ys
assume I: "\<And>w ys zs. bar ys \<Longrightarrow> T a (w # xs) zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"
assume "bar ys"
thus "\<And>zs. T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"
proof induct
fix ys zs assume "T b ys zs" and "good ys"
then have "good zs" by (rule lemma3)
then show "bar zs" by (rule bar1)
next
fix ys zs assume I': "\<And>w zs. T a xs zs \<Longrightarrow> T b (w # ys) zs \<Longrightarrow> bar zs"
and ys: "\<And>w. bar (w # ys)" and Ta: "T a xs zs" and Tb: "T b ys zs"
show "bar zs"
proof (rule bar2)
fix w
show "bar (w # zs)"
proof (cases w)
case Nil
thus ?thesis by simp (rule prop1)
next
case (Cons c cs)
from letter_eq_dec show ?thesis
proof
assume ca: "c = a"
from ab have "bar ((a # cs) # zs)" by (iprover intro: I ys Ta Tb)
thus ?thesis by (simp add: Cons ca)
next
assume "c \<noteq> a"
with ab have cb: "c = b" by (rule letter_neq)
from ab have "bar ((b # cs) # zs)" by (iprover intro: I' Ta Tb)
thus ?thesis by (simp add: Cons cb)
qed
qed
qed
qed
qed
theorem prop3:
assumes bar: "bar xs"
shows "\<And>zs. xs \<noteq> [] \<Longrightarrow> R a xs zs \<Longrightarrow> bar zs" using bar
proof induct
fix xs zs
assume "R a xs zs" and "good xs"
then have "good zs" by (rule lemma2)
then show "bar zs" by (rule bar1)
next
fix xs zs
assume I: "\<And>w zs. w # xs \<noteq> [] \<Longrightarrow> R a (w # xs) zs \<Longrightarrow> bar zs"
and xsb: "\<And>w. bar (w # xs)" and xsn: "xs \<noteq> []" and R: "R a xs zs"
show "bar zs"
proof (rule bar2)
fix w
show "bar (w # zs)"
proof (induct w)
case Nil
show ?case by (rule prop1)
next
case (Cons c cs)
from letter_eq_dec show ?case
proof
assume "c = a"
thus ?thesis by (iprover intro: I [simplified] R)
next
from R xsn have T: "T a xs zs" by (rule lemma4)
assume "c \<noteq> a"
thus ?thesis by (iprover intro: prop2 Cons xsb xsn R T)
qed
qed
qed
qed
theorem higman: "bar []"
proof (rule bar2)
fix w
show "bar [w]"
proof (induct w)
show "bar [[]]" by (rule prop1)
next
fix c cs assume "bar [cs]"
thus "bar [c # cs]" by (rule prop3) (simp, iprover)
qed
qed
primrec
is_prefix :: "'a list \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool"
where
"is_prefix [] f = True"
| "is_prefix (x # xs) f = (x = f (length xs) \<and> is_prefix xs f)"
theorem L_idx:
assumes L: "L w ws"
shows "is_prefix ws f \<Longrightarrow> \<exists>i. emb (f i) w \<and> i < length ws" using L
proof induct
case (L0 v ws)
hence "emb (f (length ws)) w" by simp
moreover have "length ws < length (v # ws)" by simp
ultimately show ?case by iprover
next
case (L1 ws v)
then obtain i where emb: "emb (f i) w" and "i < length ws"
by simp iprover
hence "i < length (v # ws)" by simp
with emb show ?case by iprover
qed
theorem good_idx:
assumes good: "good ws"
shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using good
proof induct
case (good0 w ws)
hence "w = f (length ws)" and "is_prefix ws f" by simp_all
with good0 show ?case by (iprover dest: L_idx)
next
case (good1 ws w)
thus ?case by simp
qed
theorem bar_idx:
assumes bar: "bar ws"
shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using bar
proof induct
case (bar1 ws)
thus ?case by (rule good_idx)
next
case (bar2 ws)
hence "is_prefix (f (length ws) # ws) f" by simp
thus ?case by (rule bar2)
qed
text {*
Strong version: yields indices of words that can be embedded into each other.
*}
theorem higman_idx: "\<exists>(i::nat) j. emb (f i) (f j) \<and> i < j"
proof (rule bar_idx)
show "bar []" by (rule higman)
show "is_prefix [] f" by simp
qed
text {*
Weak version: only yield sequence containing words
that can be embedded into each other.
*}
theorem good_prefix_lemma:
assumes bar: "bar ws"
shows "is_prefix ws f \<Longrightarrow> \<exists>vs. is_prefix vs f \<and> good vs" using bar
proof induct
case bar1
thus ?case by iprover
next
case (bar2 ws)
from bar2.prems have "is_prefix (f (length ws) # ws) f" by simp
thus ?case by (iprover intro: bar2)
qed
theorem good_prefix: "\<exists>vs. is_prefix vs f \<and> good vs"
using higman
by (rule good_prefix_lemma) simp+
end