theory WQO_Finite_Lists
imports "Seq"
begin
subsection {* Auxiliary Lemmas *}
lemma funpow_non_decreasing:
fixes f :: "'a::order \<Rightarrow> 'a"
assumes "\<forall>i\<ge>n. f i \<ge> i"
shows "(f ^^ i) n \<ge> n"
using assms by (induct i) auto
lemma funpow_mono:
assumes "\<forall>i\<ge>n::nat. f i > i" and "j > i"
shows "(f ^^ j) n > (f ^^ i) n"
using assms(2)
proof (induct "j - i" arbitrary: i j)
case 0 thus ?case by simp
next
case (Suc m)
then obtain j' where j: "j = Suc j'" by (cases j) auto
show ?case
proof (cases "i < j'")
case True
with Suc(1)[of j'] and Suc(2)[unfolded j]
have "(f ^^ j') n > (f ^^ i) n" by simp
moreover have "(f ^^ j) n > (f ^^ j') n"
proof -
have "(f ^^ j) n = f ((f ^^ j') n)" by (simp add: j)
also have "\<dots> > (f ^^ j') n" using assms and funpow_non_decreasing[of n f j'] by force
finally show ?thesis .
qed
ultimately show ?thesis by auto
next
case False
with Suc have i: "i = j'" unfolding j by (induct i) auto
show ?thesis unfolding i j using assms and funpow_non_decreasing[of n f j'] by force
qed
qed
subsection {* Basic Definitions *}
definition reflp_on :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool" where
"reflp_on P A \<equiv> \<forall>a\<in>A. P a a"
lemma reflp_onI [Pure.intro]:
"(\<And>a. a \<in> A \<Longrightarrow> P a a) \<Longrightarrow> reflp_on P A"
unfolding reflp_on_def by blast
definition transp_on :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool" where
"transp_on P A \<equiv> \<forall>a\<in>A. \<forall>b\<in>A. \<forall>c\<in>A. P a b \<and> P b c \<longrightarrow> P a c"
lemma transp_onI [Pure.intro]:
"(\<And>a b c. \<lbrakk>a \<in> A; b \<in> A; c \<in> A; P a b; P b c\<rbrakk> \<Longrightarrow> P a c) \<Longrightarrow> transp_on P A"
unfolding transp_on_def by blast
definition goodp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a seq \<Rightarrow> bool" where
"goodp P f \<equiv> \<exists>i j. i < j \<and> P\<^sup>=\<^sup>= (f i) (f j)"
abbreviation bad where "bad P f \<equiv> \<not> goodp P f"
definition wqo_on :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool" where
"wqo_on P A \<equiv> reflp_on P A \<and> transp_on P A \<and> (\<forall>f. (\<forall>i. f i \<in> A) \<longrightarrow> goodp P f)"
lemma wqo_onI [Pure.intro]:
"\<lbrakk>reflp_on P A; transp_on P A; \<And>f. \<forall>i. f i \<in> A \<Longrightarrow> goodp P f\<rbrakk> \<Longrightarrow> wqo_on P A"
unfolding wqo_on_def by blast
lemma reflp_on_reflclp [simp]:
assumes "reflp_on P A" and "a \<in> A" and "b \<in> A"
shows "P\<^sup>=\<^sup>= a b = P a b"
using assms by (auto simp: reflp_on_def)
lemma transp_on_tranclp:
assumes "transp_on P A"
shows "(\<lambda>x y. x \<in> A \<and> y \<in> A \<and> P x y)\<^sup>+\<^sup>+ a b \<longleftrightarrow> a \<in> A \<and> b \<in> A \<and> P a b"
(is "?lhs = ?rhs")
by (rule iffI, induction rule: tranclp.induct)
(insert assms, auto simp: transp_on_def)
lemma wqo_on_imp_reflp_on:
"wqo_on P A \<Longrightarrow> reflp_on P A"
by (auto simp: wqo_on_def)
lemma wqo_on_imp_transp_on:
"wqo_on P A \<Longrightarrow> transp_on P A"
by (auto simp: wqo_on_def)
lemma wqo_on_imp_goodp:
"wqo_on P A \<Longrightarrow> \<forall>i. f i \<in> A \<Longrightarrow> goodp P f"
by (auto simp: wqo_on_def)
lemma reflp_on_converse:
"reflp_on P A \<Longrightarrow> reflp_on P\<inverse>\<inverse> A"
unfolding reflp_on_def by blast
lemma transp_on_converse:
"transp_on P A \<Longrightarrow> transp_on P\<inverse>\<inverse> A"
unfolding transp_on_def by blast
subsection {* Dickson's Lemma *}
text {*When two sets are wqo, then their cartesian product is wqo.*}
definition
prod_le :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
where
"prod_le P1 P2 \<equiv> \<lambda>(p1, p2) (q1, q2). P1 p1 q1 \<and> P2 p2 q2"
lemma wqo_on_Sigma:
fixes A1 :: "'a set" and A2 :: "'b set"
assumes "wqo_on P1 A1" and "wqo_on P2 A2"
shows "wqo_on (prod_le P1 P2) (A1 \<times> A2)"
(is "wqo_on ?P ?A")
proof
show "reflp_on ?P ?A"
using assms by (auto simp: wqo_on_def reflp_on_def prod_le_def)
next
from assms have "transp_on P1 A1" and "transp_on P2 A2" by (auto simp: wqo_on_def)
thus "transp_on ?P ?A" unfolding transp_on_def prod_le_def by blast
next
fix g :: "('a \<times> 'b) seq"
let ?p = "\<lambda>i. fst (g i)"
let ?q = "\<lambda>i. snd (g i)"
assume g: "\<forall>i. g i \<in> ?A"
have p: "\<forall>i. ?p i \<in> A1"
proof
fix i
from g have "g i \<in> ?A" by simp
thus "?p i \<in> A1" by auto
qed
have q: "\<forall>i. ?q i \<in> A2"
proof
fix i
from g have "g i \<in> ?A" by simp
thus "?q i \<in> A2" by auto
qed
let ?T = "{m. \<forall>n>m. \<not> (P1 (?p m) (?p n))}"
have "finite ?T"
proof (rule ccontr)
assume "infinite ?T"
hence "INFM m. m \<in> ?T" unfolding INFM_iff_infinite by simp
then interpret infinitely_many "\<lambda>m. m \<in> ?T" by (unfold_locales) assumption
let ?p' = "\<lambda>i. ?p (index i)"
have p': "\<forall>i. ?p' i \<in> A1" using p by auto
have "bad P1 ?p'"
proof
assume "goodp P1 ?p'"
then obtain i j :: nat where "i < j"
and "P1\<^sup>=\<^sup>= (?p' i) (?p' j)" by (auto simp: goodp_def)
hence "P1 (?p' i) (?p' j)"
using p' and reflp_on_reflclp[OF wqo_on_imp_reflp_on[OF assms(1)]] by simp
moreover from index_ordered_less[OF `i < j`] have "index j > index i" .
moreover from index_p have "index i \<in> ?T" by simp
ultimately show False by blast
qed
with assms(1) show False using p' by (auto simp: wqo_on_def)
qed
then obtain n where "\<forall>r\<ge>n. r \<notin> ?T"
using infinite_nat_iff_unbounded_le[of "?T"] by auto
hence "\<forall>i\<in>{n..}. \<exists>j>i. P1 (?p i) (?p j)" by blast
with p have "\<forall>i\<in>{n..}. \<exists>j>i. ?p j \<in> A1 \<and> ?p i \<in> A1 \<and> P1 (?p i) (?p j)" by auto
from bchoice[OF this] obtain f :: "nat seq"
where 1: "\<forall>i\<ge>n. i < f i \<and> ?p i \<in> A1 \<and> ?p (f i) \<in> A1 \<and> P1 (?p i) (?p (f i))" by blast
from stepfun_imp_chainp[of n f "\<lambda>x y. x \<in> A1 \<and> y \<in> A1 \<and> P1 x y" ?p, OF this]
have chain: "chainp (\<lambda>x y. x \<in> A1 \<and> y \<in> A1 \<and> P1 x y) (\<lambda>i. ?p ((f^^i) n))" .
let ?f = "\<lambda>i. (f^^i) n"
from 1 have inc: "\<forall>i\<ge>n. f i > i" by simp
from wqo_on_imp_goodp[OF assms(2), of "?q \<circ> ?f"] and q
obtain i j where "\<And>i. ?q (?f i) \<in> A2" and "j > i" and "P2\<^sup>=\<^sup>= (?q (?f i)) (?q (?f j))"
by (auto simp: goodp_def)
hence "P2 (?q (?f i)) (?q (?f j))"
using reflp_on_reflclp[OF wqo_on_imp_reflp_on[OF assms(2)]] by simp
moreover from funpow_mono[OF inc `j > i`] have "?f j > ?f i" .
moreover from chainp_imp_tranclp[of "\<lambda>x y. x \<in> A1 \<and> y \<in> A1 \<and> P1 x y", OF chain `j > i`]
have "P1 (?p (?f i)) (?p (?f j))"
unfolding transp_on_tranclp[OF wqo_on_imp_transp_on[OF assms(1)]] by simp
ultimately have "\<exists>i j. j > i \<and> P1 (?p i) (?p j) \<and> P2 (?q i) (?q j)" by auto
thus "goodp ?P g" by (auto simp: split_def goodp_def prod_le_def)
qed
subsection {* Higman's Lemma *}
inductive
emb :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"
where
emb0 [intro]: "emb [] y"
| emb1 [intro]: "emb x y \<Longrightarrow> emb x (c # y)"
| emb2 [intro]: "emb x y \<Longrightarrow> emb (c # x) (c # y)"
lemma emb_refl [simp]: "emb xs xs"
by (induct xs) auto
lemma emb_Nil2 [simp]: "emb y [] \<Longrightarrow> y = []"
by (cases rule: emb.cases) auto
lemma emb_right [intro]:
assumes a: "emb x y"
shows "emb x (y @ y')"
using a
by (induct arbitrary: y') (auto)
lemma emb_left [intro]:
assumes a: "emb x y"
shows "emb x (y' @ y)"
using a by (induct y') (auto)
lemma emb_appendI [intro]:
assumes a: "emb x x'"
and b: "emb y y'"
shows "emb (x @ y) (x' @ y')"
using a b by (induct) (auto)
lemma emb_cons_leftD:
assumes "emb (a # x) y"
shows "\<exists>y1 y2. y = y1 @ [a] @ y2 \<and> emb x y2"
using assms
apply(induct x\<equiv>"a # x" y\<equiv>"y" arbitrary: a x y)
apply(auto)
apply(metis append_Cons)
done
lemma emb_append_leftD:
assumes "emb (x1 @ x2) y"
shows "\<exists>y1 y2. y = y1 @ y2 \<and> emb x1 y1 \<and> emb x2 y2"
using assms
apply(induct x1 arbitrary: x2 y)
apply(auto)
apply(drule emb_cons_leftD)
apply(auto)
apply(drule_tac x="x2" in meta_spec)
apply(drule_tac x="y2" in meta_spec)
apply(auto)
apply(rule_tac x="y1 @ (a # y1a)" in exI)
apply(rule_tac x="y2a" in exI)
apply(auto)
done
lemma emb_trans:
assumes a: "emb x1 x2"
and b: "emb x2 x3"
shows "emb x1 x3"
using a b
apply(induct arbitrary: x3)
apply(metis emb0)
apply(metis emb_cons_leftD emb_left)
apply(drule_tac emb_cons_leftD)
apply(auto)
done
lemma empty_imp_goodp_emb [simp]:
assumes "f i = []"
shows "goodp emb f"
proof (rule ccontr)
assume "bad emb f"
moreover have "(emb)\<^sup>=\<^sup>= (f i) (f (Suc i))"
unfolding assms by auto
ultimately show False
unfolding goodp_def by auto
qed
lemma bad_imp_not_empty:
"bad emb f \<Longrightarrow> f i \<noteq> []"
by auto
text {*Replace the elements of an infinite sequence, starting from a given
position, by those of another infinite sequence.*}
definition repl :: "nat \<Rightarrow> 'a seq \<Rightarrow> 'a seq \<Rightarrow> 'a seq" where
"repl i f g \<equiv> \<lambda>j. if j \<ge> i then g j else f j"
lemma repl_0 [simp]:
"repl 0 f g = g"
by (simp add: repl_def)
lemma repl_simps [simp]:
"j \<ge> i \<Longrightarrow> repl i f g j = g j"
"j < i \<Longrightarrow> repl i f g j = f j"
by (auto simp: repl_def)
lemma repl_ident [simp]:
"repl i f f = f"
by (auto simp: repl_def)
lemma repl_repl_ident [simp]:
"repl n f (repl n g h) = repl n f h"
by (auto simp: repl_def)
lemma repl_repl_ident' [simp]:
"repl n (repl n f g) h = repl n f h"
by (auto simp: repl_def)
lemma bad_emb_repl:
assumes "bad emb f"
and "bad emb g"
and "\<forall>i\<ge>n. \<exists>j\<ge>n. emb (g i) (f j)"
shows "bad emb (repl n f g)" (is "bad emb ?f")
proof (rule ccontr)
presume "goodp emb ?f"
then obtain i j where "i < j"
and good: "emb\<^sup>=\<^sup>= (?f i) (?f j)" by (auto simp: goodp_def)
{
assume "j < n"
with `i < j` and good have "emb\<^sup>=\<^sup>= (f i) (f j)" by simp
with assms(1) have False using `i < j` by (auto simp: goodp_def)
} moreover {
assume "n \<le> i"
with `i < j` and good have "i - n < j - n"
and "emb\<^sup>=\<^sup>= (g i) (g j)" by auto
with assms(2) have False by (auto simp: goodp_def)
} moreover {
assume "i < n" and "n \<le> j"
with assms(3) obtain k where "k \<ge> n" and emb: "emb (g j) (f k)" by blast
from `i < j` and `i < n` and `n \<le> j` and good
have "emb\<^sup>=\<^sup>= (f i) (g j)" by auto
hence "emb\<^sup>=\<^sup>= (f i) (f k)"
proof
assume fi: "f i = g j"
with emb_refl have "emb (f i) (f i)" by blast
with emb_trans[OF emb] show "emb\<^sup>=\<^sup>= (f i) (f k)" by (auto simp: fi)
next
assume "emb (f i) (g j)"
from emb_trans[OF this emb] show "emb\<^sup>=\<^sup>= (f i) (f k)" by auto
qed
with `i < n` and `n \<le> k` and assms(1) have False by (auto simp: goodp_def)
} ultimately show False using `i < j` by arith
qed simp
text {*A \emph{minimal bad prefix} of an infinite sequence, is a
prefix of its first @{text n} elements, such that every subsequence (of subsets)
starting with the same @{text n} elements is good, whenever the @{text n}-th
element is replaced by a proper subset of itself.*}
definition mbp :: "'a list seq \<Rightarrow> nat \<Rightarrow> bool" where
"mbp f n \<equiv>
\<forall>g. (\<forall>i<n. g i = f i) \<and> g n \<noteq> f n \<and> emb (g n) (f n) \<and> (\<forall>i\<ge>n. \<exists>j\<ge>n. emb (g i) (f j))
\<longrightarrow> goodp emb g"
lemma ex_repl_conv:
"(\<exists>j\<ge>n. P (repl n f g j)) \<longleftrightarrow> (\<exists>j\<ge>n. P (g j))"
by auto
lemma emb_strict_length:
assumes a: "emb x y" "x \<noteq> y"
shows "length x < length y"
using a by (induct) (auto simp add: less_Suc_eq)
lemma emb_wf:
shows "wf {(x, y). emb x y \<and> x \<noteq> y}"
proof -
have "wf (measure length)" by simp
moreover
have "{(x, y). emb x y \<and> x \<noteq> y} \<subseteq> measure length"
unfolding measure_def by (auto simp add: emb_strict_length)
ultimately
show "wf {(x, y). emb x y \<and> x \<noteq> y}" by (rule wf_subset)
qed
lemma minimal_bad_element:
fixes f :: "'a list seq"
assumes "mbp f n"
and "bad emb f"
shows "\<exists>M.
(\<forall>i\<le>n. M i = f i) \<and>
emb (M (Suc n)) (f (Suc n)) \<and>
(\<forall>i\<ge>Suc n. \<exists>j\<ge>Suc n. emb ((repl (Suc n) f M) i) (f j)) \<and>
bad emb (repl (Suc n) f M) \<and>
mbp (repl (Suc n) f M) (Suc n)"
using assms
proof (induct "f (Suc n)" arbitrary: f n rule: wf_induct_rule[OF emb_wf])
case (1 g)
show ?case
proof (cases "mbp g (Suc n)")
case True
let ?g = "repl (Suc n) g g"
have "\<forall>i\<le>n. ?g i = g i" by simp
moreover have "emb (g (Suc n)) (g (Suc n))" by simp
moreover have "\<forall>i\<ge>Suc n. \<exists>j\<ge>Suc n. emb ((repl (Suc n) g g) i) (g j)" by auto
moreover from `bad emb g`
have "bad emb (repl (Suc n) g g)" by simp
moreover from True have "mbp (repl (Suc n) g g) (Suc n)" by simp
ultimately show ?thesis by blast
next
case False
then obtain h where less: "\<forall>i<Suc n. h i = g i"
and emb: "(h (Suc n), g (Suc n)) \<in> {(x, y). emb x y \<and> x \<noteq> y}"
(is "_ \<in> ?emb")
and greater: "\<forall>i\<ge>Suc n. \<exists>j\<ge>Suc n. emb (h i) (g j)"
and bad: "bad emb h"
unfolding mbp_def by blast
let ?g = "repl (Suc n) g h"
from emb have emb': "(?g (Suc n), g (Suc n)) \<in> ?emb" by simp
have mbp: "mbp ?g n"
proof (unfold mbp_def, intro allI impI, elim conjE)
fix e
assume "\<forall>i<n. e i = ?g i"
hence 1: "\<forall>i<n. e i = g i" by auto
assume "e n \<noteq> ?g n"
hence 2: "e n \<noteq> ?g n" .
assume "emb (e n) (?g n)"
hence 3: "emb (e n) (g n)" by auto
assume *: "\<forall>i\<ge>n. \<exists>j\<ge>n. emb (e i) (?g j)"
have 4: "\<forall>i\<ge>n. \<exists>j\<ge>n. emb (e i) (g j)"
proof (intro allI impI)
fix i assume "n \<le> i"
with * obtain j where "j \<ge> n"
and **: "emb (e i) (?g j)" by auto
show "\<exists>j\<ge>n. emb (e i) (g j)"
proof (cases "j \<le> n")
case True with ** show ?thesis
using `j \<ge> n` by auto
next
case False
with `j \<ge> n` have "j \<ge> Suc n" by auto
with ** have "emb (e i) (h j)" by auto
with greater obtain k where "k \<ge> Suc n"
and "emb (h j) (g k)" using `j \<ge> Suc n` by auto
with `emb (e i) (h j)` have "emb (e i) (g k)" by (auto intro: emb_trans)
moreover from `k \<ge> Suc n` have "k \<ge> n" by auto
ultimately show ?thesis by blast
qed
qed
from `mbp g n`[unfolded mbp_def] and 1 and 2 and 3 and 4
show "goodp emb e" by auto
qed
have bad: "bad emb ?g"
using bad_emb_repl[OF `bad emb g` `bad emb h`, of "Suc n",
OF greater] .
let ?g' = "repl (Suc n) g"
from 1(1)[of ?g n, OF emb' mbp bad] obtain M
where "\<forall>i\<le>n. M i = g i"
and "emb (M (Suc n)) (?g' h (Suc n))"
and *: "\<forall>i\<ge>Suc n. \<exists>j\<ge>Suc n. emb (?g' M i) (h j)"
and "bad emb (?g' M)"
and "mbp (?g' M) (Suc n)"
unfolding ex_repl_conv by auto
moreover with emb have "emb (M (Suc n)) (g (Suc n))" by (auto intro: emb_trans)
moreover have "\<forall>i\<ge>Suc n. \<exists>j\<ge>Suc n. emb (?g' M i) (g j)"
proof (intro allI impI)
fix i assume "Suc n \<le> i"
with * obtain j where "j \<ge> Suc n" and "emb (?g' M i) (h j)" by auto
hence "j \<ge> Suc n" by auto
from greater and `j \<ge> Suc n` obtain k where "k \<ge> Suc n"
and "emb (h j) (g k)" by auto
with `emb (?g' M i) (h j)` show "\<exists>j\<ge>Suc n. emb (?g' M i) (g j)" by (blast intro: emb_trans)
qed
ultimately show ?thesis by blast
qed
qed
lemma choice2:
"\<forall>x y. P x y \<longrightarrow> (\<exists>z. Q x y z) \<Longrightarrow> \<exists>f. \<forall>x y. P x y \<longrightarrow> Q x y (f x y)"
using bchoice[of "{(x, y). P x y}" "\<lambda>(x, y) z. Q x y z"] by force
fun minimal_bad_seq :: "('a seq \<Rightarrow> nat \<Rightarrow> 'a seq) \<Rightarrow> 'a seq \<Rightarrow> nat \<Rightarrow> 'a seq" where
"minimal_bad_seq A f 0 = A f 0"
| "minimal_bad_seq A f (Suc n) = (
let g = minimal_bad_seq A f n in
repl (Suc n) g (A g n))"
lemma bad_imp_mbp:
assumes "bad emb f"
shows "\<exists>g. (\<forall>i. \<exists>j. emb (g i) (f j)) \<and> mbp g 0 \<and> bad emb g"
using assms
proof (induct "f 0" arbitrary: f rule: wf_induct_rule[OF emb_wf])
case (1 g)
show ?case
proof (cases "mbp g 0")
case True with 1 show ?thesis by (blast intro: emb_refl)
next
case False
then obtain h where less: "\<forall>i<0. h i = g i"
and emb: "(h 0, g 0) \<in> {(x, y). emb x y \<and> x \<noteq> y}" (is "_ \<in> ?emb")
and greater: "\<forall>i\<ge>0. \<exists>j\<ge>0. emb (h i) (g j)"
and bad: "bad emb h"
unfolding mbp_def by auto
from 1(1)[of h, OF emb bad] obtain e
where "\<forall>i. \<exists>j. emb (e i) (h j)" and "mbp e 0" and "bad emb e"
by auto
moreover with greater have "\<forall>i. \<exists>j. emb (e i) (g j)" by (force intro: emb_trans)
ultimately show ?thesis by blast
qed
qed
lemma repl_1 [simp]:
assumes "f 0 = g 0"
shows "repl (Suc 0) f g = g"
proof
fix i show "repl (Suc 0) f g i = g i"
by (induct i) (simp_all add: assms)
qed
lemma bad_repl:
assumes "\<forall>i. f i \<ge> f 0" and "\<forall>i j. i > j \<longrightarrow> f i > f j"
and "bad P (repl (f 0) A B)" (is "bad P ?A")
shows "bad P (B \<circ> f)"
proof
assume "goodp P (B \<circ> f)"
then obtain i j where "i < j" and "P\<^sup>=\<^sup>= (B (f i)) (B (f j))" by (auto simp: goodp_def)
hence "P\<^sup>=\<^sup>= (?A (f i)) (?A (f j))" using assms by auto
moreover from `i < j` have "f i < f j" using assms by auto
ultimately show False using assms(3) by (auto simp: goodp_def)
qed
lemma iterated_subseq:
assumes "\<forall>n>0::nat. \<forall>i\<ge>n. \<exists>j\<ge>n. emb (g n i) (g (n - 1) j)"
and "m \<le> n"
shows "\<forall>i\<ge>n. \<exists>j\<ge>m. emb (g n i) (g m j)"
using assms(2)
proof (induct "n - m" arbitrary: n)
case 0 thus ?case by auto
next
case (Suc k)
then obtain n' where n: "n = Suc n'" by (cases n) auto
with Suc have "k = n' - m" and "m \<le> n'" by auto
have "n > 0" by (auto simp: n)
show ?case
proof (intro allI impI)
fix i assume "i \<ge> n"
with assms(1)[rule_format, OF `n > 0`] obtain j where "j \<ge> n"
and "emb (g (Suc n') i) (g n' j)" by (auto simp: n)
with Suc(1)[OF `k = n' - m` `m \<le> n'`, THEN spec[of _ j]]
obtain k where "k \<ge> m" and "emb (g n' j) (g m k)" by (auto simp: n)
with `emb (g (Suc n') i) (g n' j)` have "emb (g n i) (g m k)" by (auto intro: emb_trans simp: n)
thus "\<exists>j\<ge>m. emb (g n i) (g m j)" using `k \<ge> m` by blast
qed
qed
lemma no_bad_of_special_shape_imp_goodp:
assumes "\<not> (\<exists>f:: nat seq. (\<forall>i. f 0 \<le> f i) \<and> bad P (B \<circ> f))"
and "\<forall>i. f i \<in> {B i | i. True}"
shows "goodp P f"
proof (rule ccontr)
assume "bad P f"
from assms(2) have "\<forall>i. \<exists>j. f i = B j" by blast
from choice[OF this] obtain g where "\<And>i. f i = B (g i)" by blast
with `bad P f` have "bad P (B \<circ> g)" by (auto simp: goodp_def)
have "\<forall>i. \<exists>j>i. g j \<ge> g 0"
proof (rule ccontr)
assume "\<not> ?thesis"
then obtain i::nat where "\<forall>j>i. \<not> (g j \<ge> g 0)" by auto
hence *: "\<forall>j>i. g j < g 0" by auto
let ?I = "{j. j > i}"
from * have "\<forall>j>i. g j \<in> {..<g 0}" by auto
hence "\<forall>j\<in>?I. g j \<in> {..<g 0}" by auto
hence "g ` ?I \<subseteq> {..<g 0}" unfolding image_subset_iff by auto
moreover have "finite {..<g 0}" by auto
ultimately have 1: "finite (g ` ?I)" using finite_subset by blast
have 2: "infinite ?I"
proof -
{
fix m have "\<exists>n>m. i < n"
proof (cases "m > i")
case True thus ?thesis by auto
next
case False
hence "m \<le> i" by auto
hence "Suc i > m" and "i < Suc i" by auto
thus ?thesis by blast
qed
}
thus ?thesis unfolding infinite_nat_iff_unbounded by auto
qed
from pigeonhole_infinite[OF 2 1]
obtain k where "k > i" and "infinite {j. j > i \<and> g j = g k}" by auto
then obtain l where "k < l" and "g l = g k"
unfolding infinite_nat_iff_unbounded by auto
hence "P\<^sup>=\<^sup>= (B (g k)) (B (g l))" by auto
with `k < l` and `bad P (B \<circ> g)` show False by (auto simp: goodp_def)
qed
from choice[OF this] obtain h
where "\<forall>i. (h i) > i" and *: "\<And>i. g (h i) \<ge> g 0" by blast
hence "\<forall>i\<ge>0. (h i) > i" by auto
from funpow_mono[OF this] have **: "\<And>i j. i < j \<Longrightarrow> (h ^^ i) 0 < (h ^^ j) 0" by auto
let ?i = "\<lambda>i. (h ^^ i) 0"
let ?f = "\<lambda>i. g (?i i)"
have "\<forall>i. ?f i \<ge> ?f 0"
proof
fix i show "?f i \<ge> ?f 0" using * by (induct i) auto
qed
moreover have "bad P (B \<circ> ?f)"
proof
assume "goodp P (B \<circ> ?f)"
then obtain i j where "i < j" and "P\<^sup>=\<^sup>= (B (?f i)) (B (?f j))" by (auto simp: goodp_def)
hence "P\<^sup>=\<^sup>= (B (g (?i i))) (B (g (?i j)))" by simp
moreover from **[OF `i < j`] have "?i i < ?i j" .
ultimately show False using `bad P (B \<circ> g)` by (auto simp: goodp_def)
qed
ultimately have "(\<forall>i. ?f i \<ge> ?f 0) \<and> bad P (B \<circ> ?f)" by auto
hence "\<exists>f. (\<forall>i. f i \<ge> f 0) \<and> bad P (B \<circ> f)" by (rule exI[of _ ?f])
with assms(1) show False by blast
qed
lemma emb_tl_left [simp]: "xs \<noteq> [] \<Longrightarrow> emb (tl xs) xs"
by (induct xs) auto
lemma tl_ne [simp]: "xs \<noteq> [] \<Longrightarrow> tl xs = xs \<Longrightarrow> False"
by (induct xs) auto
text {*Every reflexive and transitive relation on a finite set
is a wqo.*}
lemma finite_wqo_on:
fixes A :: "('a::finite) set"
assumes "reflp_on P A" and "transp_on P A"
shows "wqo_on P A"
proof
fix f::"'a::finite seq"
assume *: "\<forall>i. f i \<in> A"
let ?I = "UNIV::nat set"
have "f ` ?I \<subseteq> A" using * by auto
with finite[of A] and finite_subset have 1: "finite (f ` ?I)" by blast
have "infinite ?I" by auto
from pigeonhole_infinite[OF this 1]
obtain k where "infinite {j. f j = f k}" by auto
then obtain l where "k < l" and "f l = f k"
unfolding infinite_nat_iff_unbounded by auto
hence "P\<^sup>=\<^sup>= (f k) (f l)" by auto
with `k < l` show "goodp P f" by (auto simp: goodp_def)
qed fact+
lemma finite_eq_wqo_on:
"wqo_on (op =) (A::('a::finite) set)"
using finite_wqo_on[of "op =" A]
by (auto simp: reflp_on_def transp_on_def)
lemma wqo_on_finite_lists:
shows "wqo_on emb (UNIV::('a::finite) list set)"
(is "wqo_on ?P ?A")
proof -
{
from emb_refl
have "reflp_on ?P ?A" unfolding reflp_on_def by auto
}
note refl = this
{
from emb_trans
have "transp_on ?P ?A" unfolding transp_on_def by auto
}
note trans = this
{
have "\<forall>f. (\<forall>i. f i \<in> ?A) \<longrightarrow> goodp ?P f"
proof (rule ccontr)
assume "\<not> ?thesis"
then obtain f where "bad ?P f" by blast
from bad_imp_mbp[of f, OF `bad ?P f`] obtain g
where "\<forall>i. \<exists>j. emb (g i) (f j)"
and "mbp g 0"
and "bad ?P g"
by blast
from minimal_bad_element
have "\<forall>f n.
mbp f n \<and>
bad ?P f \<longrightarrow>
(\<exists>M.
(\<forall>i\<le>n. M i = f i) \<and>
emb (M (Suc n)) (f (Suc n)) \<and>
(\<forall>i\<ge>Suc n. \<exists>j\<ge>Suc n. emb (repl (Suc n) f M i) (f j)) \<and>
bad ?P (repl (Suc n) f M) \<and>
mbp (repl (Suc n) f M) (Suc n))"
(is "\<forall>f n. ?Q f n \<longrightarrow> (\<exists>M. ?Q' f n M)")
by blast
from choice2[OF this] obtain M
where *[rule_format]: "\<forall>f n. ?Q f n \<longrightarrow> ?Q' f n (M f n)" by force
let ?g = "minimal_bad_seq M g"
let ?A = "\<lambda>i. ?g i i"
have "\<forall>n. (n = 0 \<longrightarrow> (\<forall>i\<ge>n. \<exists>j\<ge>n. emb (?g n i) (g j))) \<and> (n > 0 \<longrightarrow> (\<forall>i\<ge>n. \<exists>j\<ge>n. emb (?g n i) (?g (n - 1) j))) \<and> (\<forall>i\<le>n. mbp (?g n) i) \<and> (\<forall>i\<le>n. ?A i = ?g n i) \<and> bad ?P (?g n)"
proof
fix n
show "(n = 0 \<longrightarrow> (\<forall>i\<ge>n. \<exists>j\<ge>n. emb (?g n i) (g j))) \<and> (n > 0 \<longrightarrow> (\<forall>i\<ge>n. \<exists>j\<ge>n. emb (?g n i) (?g (n - 1) j))) \<and> (\<forall>i\<le>n. mbp (?g n) i) \<and> (\<forall>i\<le>n. ?A i = ?g n i) \<and> bad ?P (?g n)"
proof (induction n)
case 0
have "mbp g 0" by fact
moreover have "bad ?P g" by fact
ultimately
have [simp]: "M g 0 0 = g 0" and "emb (M g 0 (Suc 0)) (g (Suc 0))"
and "bad ?P (M g 0)" and "mbp (M g 0) (Suc 0)"
and **: "\<forall>i\<ge>Suc 0. \<exists>j\<ge>Suc 0. emb (M g 0 i) (g j)"
using *[of g 0] by auto
moreover have "mbp (M g 0) 0"
proof (unfold mbp_def, intro allI impI, elim conjE)
fix e :: "'a list seq"
presume "(e 0, g 0) \<in> {(x, y). emb x y \<and> x \<noteq> y}" (is "_ \<in> ?emb")
and *: "\<forall>i. \<exists>j\<ge>0. emb (e i) (M g 0 j)"
have "\<forall>i. \<exists>j\<ge>0::nat. emb (e i) (g j)"
proof (intro allI impI)
fix i
from * obtain j where "j \<ge> 0" and "emb (e i) (M g 0 j)" by auto
show "\<exists>j\<ge>0. emb (e i) (g j)"
proof (cases "j = 0")
case True
with `emb (e i) (M g 0 j)` have "emb (e i) (g 0)" by auto
thus ?thesis by auto
next
case False
hence "j \<ge> Suc 0" by auto
with ** obtain k where "k \<ge> Suc 0" and "emb (M g 0 j) (g k)" by auto
with `emb (e i) (M g 0 j)` have "emb (e i) (g k)" by (blast intro: emb_trans)
moreover with `k \<ge> Suc 0` have "k \<ge> 0" by auto
ultimately show ?thesis by blast
qed
qed
with `mbp g 0`[unfolded mbp_def]
show "goodp ?P e" using `(e 0, g 0) \<in> ?emb` by (simp add: mbp_def)
qed auto
moreover have "\<forall>i\<ge>0. \<exists>j\<ge>0. emb (?g 0 i) (g j)"
proof (intro allI impI)
fix i::nat
assume "i \<ge> 0"
hence "i = 0 \<or> i \<ge> Suc 0" by auto
thus "\<exists>j\<ge>0. emb (?g 0 i) (g j)"
proof
assume "i \<ge> Suc 0"
with ** obtain j where "j \<ge> Suc 0" and "emb (?g 0 i) (g j)" by auto
moreover from this have "j \<ge> 0" by auto
ultimately show "?thesis" by auto
next
assume "i = 0"
hence "emb (?g 0 i) (g 0)" by auto
thus ?thesis by blast
qed
qed
ultimately show ?case by simp
next
case (Suc n)
with *[of "?g n" n]
have eq: "\<forall>i\<le>n. ?A i = ?g n i"
and emb: "emb (?g (Suc n) (Suc n)) (?g n (Suc n))"
and subseq: "\<forall>i\<ge>Suc n. \<exists>j\<ge>Suc n. emb (?g (Suc n) i) (?g n j)"
and "bad ?P (?g (Suc n))"
and mbp: "mbp (?g (Suc n)) (Suc n)"
by (simp_all add: Let_def)
moreover have *: "\<forall>i\<le>Suc n. ?A i = ?g (Suc n) i"
proof (intro allI impI)
fix i assume "i \<le> Suc n"
show "?A i = ?g (Suc n) i"
proof (cases "i = Suc n")
assume "i = Suc n"
thus ?thesis by simp
next
assume "i \<noteq> Suc n"
with `i \<le> Suc n` have "i < Suc n" by auto
thus ?thesis by (simp add: Let_def eq)
qed
qed
moreover have "\<forall>i\<le>Suc n. mbp (?g (Suc n)) i"
proof (intro allI impI)
fix i assume "i \<le> Suc n"
show "mbp (?g (Suc n)) i"
proof (cases "i = Suc n")
case True with mbp show ?thesis by simp
next
case False with `i \<le> Suc n` have le: "i \<le> Suc n" "i \<le> n" by auto
show ?thesis
proof (unfold mbp_def, intro allI impI, elim conjE)
fix e
note * = *[rule_format, symmetric] eq[rule_format, symmetric]
assume "\<forall>i'<i. e i' = ?g (Suc n) i'"
hence 1: "\<forall>i'<i. e i' = ?g n i'" using * and le by auto
presume "(e i, ?g (Suc n) i) \<in> {(x, y). emb x y \<and> x \<noteq> y}" (is "_ \<in> ?emb")
hence 2: "(e i, ?g n i) \<in> ?emb" using * and le by simp
assume **: "\<forall>j\<ge>i. \<exists>k\<ge>i. emb (e j) (?g (Suc n) k)"
have 3: "\<forall>j\<ge>i. \<exists>k\<ge>i. emb (e j) (?g n k)"
proof (intro allI impI)
fix j assume "i \<le> j"
with ** obtain k where "k \<ge> i" and "emb (e j) (?g (Suc n) k)" by blast
show "\<exists>k\<ge>i. emb (e j) (?g n k)"
proof (cases "k \<le> n")
case True with `emb (e j) (?g (Suc n) k)`
have "emb (e j) (?g n k)" using * by auto
thus ?thesis using `k \<ge> i` by auto
next
case False hence "k \<ge> Suc n" by auto
with subseq obtain l where "l \<ge> Suc n"
and "emb (?g (Suc n) k) (?g n l)" by blast
with `emb (e j) (?g (Suc n) k)` have "emb (e j) (?g n l)" by (auto intro: emb_trans)
moreover from `i \<le> Suc n` and `l \<ge> Suc n` have "l \<ge> i" by auto
ultimately show ?thesis by blast
qed
qed
from 1 2 3 and Suc[THEN conjunct2, THEN conjunct2] and `i \<le> n`
show "goodp ?P e" unfolding mbp_def by blast
qed simp
qed
qed
ultimately show ?case by simp
qed
qed
hence 1: "\<forall>n. \<forall>i\<le>n. mbp (?g n) i"
and 2: "\<forall>n. \<forall>i\<le>n. ?A i = ?g n i"
and 3: "\<forall>n. bad ?P (?g n)"
and 6: "\<forall>i\<ge>0. \<exists>j\<ge>0. emb (?g 0 i) (g j)"
and 7: "\<forall>n>0. \<forall>i\<ge>n. \<exists>j\<ge>n. emb (?g n i) (?g (n - 1) j)"
by auto
have ex_subset: "\<forall>n. \<forall>i. \<exists>j. emb (?g n i) (g j)"
proof
fix n show "\<forall>i. \<exists>j. emb (?g n i) (g j)"
proof (induct n)
case 0 with 6 show ?case by simp
next
case (Suc n)
show ?case
proof
fix i
have "i < Suc n \<or> i \<ge> Suc n" by auto
thus "\<exists>j. emb (?g (Suc n) i) (g j)"
proof
assume "i < Suc n" hence "i \<le> Suc n" and "i \<le> n" by auto
from `i \<le> Suc n` have "?g (Suc n) i = ?g i i" using 2 by auto
moreover from `i \<le> n` have "?g n i = ?g i i" using 2 by auto
ultimately have "?g (Suc n) i = ?g n i" by auto
with Suc show ?thesis by auto
next
assume "i \<ge> Suc n"
with 7[THEN spec[of _ "Suc n"]]
obtain j where "j \<ge> Suc n" and "emb (?g (Suc n) i) (?g n j)" by auto
moreover from Suc obtain k where "emb (?g n j) (g k)" by blast
ultimately show ?thesis by (blast intro: emb_trans)
qed
qed
qed
qed
have bad: "bad ?P ?A"
proof
assume "goodp ?P ?A"
then obtain i j :: nat where "i < j"
and "?P\<^sup>=\<^sup>= (?g i i) (?g j j)" unfolding goodp_def by auto
moreover with 2[rule_format, of i j]
have "?P\<^sup>=\<^sup>= (?g j i) (?g j j)" by auto
ultimately have "goodp ?P (?g j)" unfolding goodp_def by blast
with 3 show False by auto
qed
have non_empty: "\<forall>i. ?A i \<noteq> []" using bad and bad_imp_not_empty[of ?A] by auto
then obtain a as where a: "\<forall>i. hd (?A i) = a i \<and> tl (?A i) = as i" by force
let ?B = "\<lambda>i. tl (?A i)"
{
assume "\<exists>f::nat seq. (\<forall>i. f i \<ge> f 0) \<and> bad ?P (?B \<circ> f)"
then obtain f :: "nat seq" where ge: "\<forall>i. f i \<ge> f 0"
and "bad ?P (?B \<circ> f)" by auto
let ?C = "\<lambda>i. if i < f 0 then ?A i else ?B (f (i - f 0))"
have [simp]: "\<And>i. i < f 0 \<Longrightarrow> ?C i = ?A i" by auto
have [simp]: "\<And>i. f 0 \<le> i \<Longrightarrow> ?C i = ?B (f (i - f 0))" by auto
have "bad ?P ?C"
proof
assume "goodp ?P ?C"
then obtain i j where "i < j" and *: "?P\<^sup>=\<^sup>= (?C i) (?C j)" by (auto simp: goodp_def)
{
assume "j < f 0" with `i < j` and * have "?P\<^sup>=\<^sup>= (?A i) (?A j)" by simp
with `i < j` and `bad ?P ?A` have False by (auto simp: goodp_def)
} moreover {
assume "f 0 \<le> i" with `i < j` and * have "?P\<^sup>=\<^sup>= (?B (f (i - f 0))) (?B (f (j - f 0)))" by simp
moreover with `i < j` and `f 0 \<le> i` have "i - f 0 < j - f 0" by auto
ultimately have False using `bad ?P (?B \<circ> f)` by (auto simp: goodp_def)
} moreover {
have emb: "emb (?B (f (j - f 0))) (?A (f (j - f 0)))" using non_empty by simp
assume "i < f 0" and "f 0 \<le> j"
with * have "?P\<^sup>=\<^sup>= (?A i) (?B (f (j - f 0)))" by auto
hence "?P (?A i) (?B (f (j - f 0))) \<or> ?A i = ?B (f (j - f 0))" by simp
hence False
proof
assume "?P (?A i) (?B (f (j - f 0)))"
with emb have "?P (?A i) (?A (f (j - f 0)))" by (blast intro: emb_trans)
moreover from ge[THEN spec[of _ "j - f 0"]] and `i < f 0` have "i < f (j - f 0)" by auto
ultimately show ?thesis using `bad ?P ?A` by (auto simp: goodp_def)
next
assume "?A i = ?B (f (j - f 0))"
with emb have "emb (?A i) (?A (f (j - f 0)))" by auto
moreover have "?P (?A i) (?A i)" using emb_refl by auto
ultimately have "?P (?A i) (?A (f (j - f 0)))" by (blast intro: emb_trans)
moreover from ge[THEN spec[of _ "j - f 0"]] and `i < f 0` have "i < f (j - f 0)" by auto
ultimately show ?thesis using `bad ?P ?A` by (auto simp: goodp_def)
qed
} ultimately show False by arith
qed
have "\<forall>i<f 0. ?C i = ?g (f 0) i" using 2 by auto
moreover have "(?C (f 0), ?g (f 0) (f 0)) \<in> {(x, y). emb x y \<and> x \<noteq> y}" using non_empty tl_ne by auto
moreover have "\<forall>i\<ge>f 0. \<exists>j\<ge>f 0. emb (?C i) (?g (f 0) j)"
proof (intro allI impI)
fix i
let ?i = "f (i - f 0)"
assume "f 0 \<le> i"
with `\<forall>i. f 0 \<le> f i` have "f 0 \<le> ?i" by auto
from `f 0 \<le> i` have *: "?C i = ?B ?i" by auto
have "emb (?C i) (?g ?i ?i)" unfolding * using non_empty emb_tl_left by auto
from iterated_subseq[OF 7, of "f 0" "?i", THEN spec[of _ "?i"], OF `f 0 \<le> ?i`]
obtain j where "j \<ge> f 0" and "emb (?g ?i ?i) (?g (f 0) j)" by blast
with `emb (?C i) (?g ?i ?i)`
show "\<exists>j\<ge>f 0. emb (?C i) (?g (f 0) j)" by (blast intro: emb_trans)
qed
ultimately have "goodp ?P ?C"
using 1[rule_format, of "f 0", OF le_refl, unfolded mbp_def] by auto
with `bad ?P ?C` have False by blast
}
hence no_index: "\<not> (\<exists>f. (\<forall>i. f 0 \<le> f i) \<and> bad ?P (?B \<circ> f))" by blast
let ?B' = "{?B i | i. True}"
have subset: "?B' \<subseteq> UNIV" by auto
have "wqo_on ?P ?B'"
proof
from emb_refl show "reflp_on ?P ?B'" by (auto simp: reflp_on_def)
next
from emb_trans show "transp_on ?P ?B'" by (auto simp: transp_on_def)
next
fix f :: "'a list seq" assume "\<forall>i. f i \<in> ?B'"
from no_bad_of_special_shape_imp_goodp[of ?P ?B f, OF no_index this]
show "goodp ?P f" .
qed
let ?a' = "{a i | i. True}"
have "?a' \<subseteq> UNIV" by auto
with finite_eq_wqo_on
have "wqo_on op = ?a'"
using finite[of UNIV] and finite_subset by blast
from wqo_on_Sigma[OF `wqo_on op = ?a'` `wqo_on ?P ?B'`]
have wqo: "wqo_on (prod_le op = ?P) (?a' \<times> ?B')" .
let ?aB = "\<lambda>i. (a i, ?B i)"
let ?P' = "prod_le op = ?P"
have "\<forall>i. ?aB i \<in> (?a' \<times> ?B')" by auto
with wqo have "goodp ?P' ?aB" unfolding wqo_on_def by auto
then obtain i j where "i < j" and *: "?P'\<^sup>=\<^sup>= (?aB i) (?aB j)"
by (auto simp: goodp_def)
from hd_Cons_tl and non_empty
have hd_tl: "hd (?A i) # tl (?A i) = ?A i"
"hd (?A j) # tl (?A j) = ?A j" by auto
from * have "(a i = a j \<and> ?B i = ?B j) \<or> (a i = a j \<and> ?P (?B i) (?B j))"
unfolding prod_le_def by auto
thus False
proof
assume *: "a i = a j \<and> ?B i = ?B j"
hence "?A i = ?A j" using a and hd_tl by auto
hence "?P\<^sup>=\<^sup>= (?A i) (?A j)" by auto
with `i < j` and `bad ?P ?A` show False by (auto simp: goodp_def)
next
assume "op = (a i) (a j) \<and> ?P (?B i) (?B j)"
hence *: "op = (a i) (a j)" and **: "?P (?B i) (?B j)" by auto
with emb_appendI[OF emb_refl[of "[hd (?A i)]"] **]
have "emb (?A i) (?A j)" using hd_tl a by simp
hence "?P\<^sup>=\<^sup>= (?A i) (?A j)" by auto
with `i < j` and `bad ?P ?A` show False by (auto simp: goodp_def)
qed
qed
}
with refl and trans show ?thesis unfolding wqo_on_def by blast
qed
lemma Higman_antichains:
fixes A :: "('a::finite) list set"
assumes a: "\<forall>x \<in> A. \<forall>y \<in> A. x \<noteq> y \<longrightarrow> \<not>(emb x y) \<and> \<not>(emb y x)"
shows "finite A"
proof (rule ccontr)
assume "infinite A"
then obtain f :: "nat \<Rightarrow> ('a::finite) list" where b: "inj f" and c: "range f \<subseteq> A"
by (auto simp add: infinite_iff_countable_subset)
from wqo_on_imp_goodp[OF wqo_on_finite_lists, simplified, of f]
obtain i j where d: "i < j" and e: "emb (f i) (f j)" by (auto simp: goodp_def)
have "f i \<noteq> f j" using b d by (auto simp add: inj_on_def)
moreover
have "f i \<in> A" using c by auto
moreover
have "f j \<in> A" using c by auto
ultimately have "\<not> (emb (f i) (f j))" using a by simp
with e show "False" by simp
qed
end