theory Myhill_1
imports Regular
"~~/src/HOL/Library/While_Combinator"
begin
section {* Direction @{text "finite partition \<Rightarrow> regular language"} *}
lemma Pair_Collect[simp]:
shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
by simp
text {* Myhill-Nerode relation *}
definition
str_eq_rel :: "lang \<Rightarrow> (string \<times> string) set" ("\<approx>_" [100] 100)
where
"\<approx>A \<equiv> {(x, y). (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)}"
definition
finals :: "lang \<Rightarrow> lang set"
where
"finals A \<equiv> {\<approx>A `` {s} | s . s \<in> A}"
lemma lang_is_union_of_finals:
shows "A = \<Union> finals A"
unfolding finals_def
unfolding Image_def
unfolding str_eq_rel_def
by (auto) (metis append_Nil2)
lemma finals_in_partitions:
shows "finals A \<subseteq> (UNIV // \<approx>A)"
unfolding finals_def quotient_def
by auto
section {* Equational systems *}
text {* The two kinds of terms in the rhs of equations. *}
datatype trm =
Lam "rexp" (* Lambda-marker *)
| Trn "lang" "rexp" (* Transition *)
fun
L_trm::"trm \<Rightarrow> lang"
where
"L_trm (Lam r) = L_rexp r"
| "L_trm (Trn X r) = X \<cdot> L_rexp r"
fun
L_rhs::"trm set \<Rightarrow> lang"
where
"L_rhs rhs = \<Union> (L_trm ` rhs)"
lemma L_rhs_set:
shows "L_rhs {Trn X r | r. P r} = \<Union>{L_trm (Trn X r) | r. P r}"
by (auto)
lemma L_rhs_union_distrib:
fixes A B::"trm set"
shows "L_rhs A \<union> L_rhs B = L_rhs (A \<union> B)"
by simp
text {* Transitions between equivalence classes *}
definition
transition :: "lang \<Rightarrow> char \<Rightarrow> lang \<Rightarrow> bool" ("_ \<Turnstile>_\<Rightarrow>_" [100,100,100] 100)
where
"Y \<Turnstile>c\<Rightarrow> X \<equiv> Y \<cdot> {[c]} \<subseteq> X"
text {* Initial equational system *}
definition
"Init_rhs CS X \<equiv>
if ([] \<in> X) then
{Lam EMPTY} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y \<Turnstile>c\<Rightarrow> X}
else
{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y \<Turnstile>c\<Rightarrow> X}"
definition
"Init CS \<equiv> {(X, Init_rhs CS X) | X. X \<in> CS}"
section {* Arden Operation on equations *}
fun
Append_rexp :: "rexp \<Rightarrow> trm \<Rightarrow> trm"
where
"Append_rexp r (Lam rexp) = Lam (SEQ rexp r)"
| "Append_rexp r (Trn X rexp) = Trn X (SEQ rexp r)"
definition
"Append_rexp_rhs rhs rexp \<equiv> (Append_rexp rexp) ` rhs"
definition
"Arden X rhs \<equiv>
Append_rexp_rhs (rhs - {Trn X r | r. Trn X r \<in> rhs}) (STAR (\<Uplus> {r. Trn X r \<in> rhs}))"
section {* Substitution Operation on equations *}
definition
"Subst rhs X xrhs \<equiv>
(rhs - {Trn X r | r. Trn X r \<in> rhs}) \<union> (Append_rexp_rhs xrhs (\<Uplus> {r. Trn X r \<in> rhs}))"
definition
Subst_all :: "(lang \<times> trm set) set \<Rightarrow> lang \<Rightarrow> trm set \<Rightarrow> (lang \<times> trm set) set"
where
"Subst_all ES X xrhs \<equiv> {(Y, Subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"
definition
"Remove ES X xrhs \<equiv>
Subst_all (ES - {(X, xrhs)}) X (Arden X xrhs)"
section {* While-combinator *}
definition
"Iter X ES \<equiv> (let (Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) \<in> ES \<and> X \<noteq> Y
in Remove ES Y yrhs)"
lemma IterI2:
assumes "(Y, yrhs) \<in> ES"
and "X \<noteq> Y"
and "\<And>Y yrhs. \<lbrakk>(Y, yrhs) \<in> ES; X \<noteq> Y\<rbrakk> \<Longrightarrow> Q (Remove ES Y yrhs)"
shows "Q (Iter X ES)"
unfolding Iter_def using assms
by (rule_tac a="(Y, yrhs)" in someI2) (auto)
abbreviation
"Cond ES \<equiv> card ES \<noteq> 1"
definition
"Solve X ES \<equiv> while Cond (Iter X) ES"
section {* Invariants *}
definition
"distinctness ES \<equiv>
\<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"
definition
"soundness ES \<equiv> \<forall>(X, rhs) \<in> ES. X = L_rhs rhs"
definition
"ardenable rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L_rexp r)"
definition
"ardenable_all ES \<equiv> \<forall>(X, rhs) \<in> ES. ardenable rhs"
definition
"finite_rhs ES \<equiv> \<forall>(X, rhs) \<in> ES. finite rhs"
lemma finite_rhs_def2:
"finite_rhs ES = (\<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs)"
unfolding finite_rhs_def by auto
definition
"rhss rhs \<equiv> {X | X r. Trn X r \<in> rhs}"
definition
"lhss ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"
definition
"validity ES \<equiv> \<forall>(X, rhs) \<in> ES. rhss rhs \<subseteq> lhss ES"
lemma rhss_union_distrib:
shows "rhss (A \<union> B) = rhss A \<union> rhss B"
by (auto simp add: rhss_def)
lemma lhss_union_distrib:
shows "lhss (A \<union> B) = lhss A \<union> lhss B"
by (auto simp add: lhss_def)
definition
"invariant ES \<equiv> finite ES
\<and> finite_rhs ES
\<and> soundness ES
\<and> distinctness ES
\<and> ardenable_all ES
\<and> validity ES"
lemma invariantI:
assumes "soundness ES" "finite ES" "distinctness ES" "ardenable_all ES"
"finite_rhs ES" "validity ES"
shows "invariant ES"
using assms by (simp add: invariant_def)
subsection {* The proof of this direction *}
lemma finite_Trn:
assumes fin: "finite rhs"
shows "finite {r. Trn Y r \<in> rhs}"
proof -
have "finite {Trn Y r | Y r. Trn Y r \<in> rhs}"
by (rule rev_finite_subset[OF fin]) (auto)
then have "finite ((\<lambda>(Y, r). Trn Y r) ` {(Y, r) | Y r. Trn Y r \<in> rhs})"
by (simp add: image_Collect)
then have "finite {(Y, r) | Y r. Trn Y r \<in> rhs}"
by (erule_tac finite_imageD) (simp add: inj_on_def)
then show "finite {r. Trn Y r \<in> rhs}"
by (erule_tac f="snd" in finite_surj) (auto simp add: image_def)
qed
lemma finite_Lam:
assumes fin: "finite rhs"
shows "finite {r. Lam r \<in> rhs}"
proof -
have "finite {Lam r | r. Lam r \<in> rhs}"
by (rule rev_finite_subset[OF fin]) (auto)
then show "finite {r. Lam r \<in> rhs}"
apply(simp add: image_Collect[symmetric])
apply(erule finite_imageD)
apply(auto simp add: inj_on_def)
done
qed
lemma trm_soundness:
assumes finite:"finite rhs"
shows "L_rhs ({Trn X r| r. Trn X r \<in> rhs}) = X \<cdot> (L_rexp (\<Uplus>{r. Trn X r \<in> rhs}))"
proof -
have "finite {r. Trn X r \<in> rhs}"
by (rule finite_Trn[OF finite])
then show "L_rhs ({Trn X r| r. Trn X r \<in> rhs}) = X \<cdot> (L_rexp (\<Uplus>{r. Trn X r \<in> rhs}))"
by (simp only: L_rhs_set L_trm.simps) (auto simp add: Seq_def)
qed
lemma lang_of_append_rexp:
"L_trm (Append_rexp r trm) = L_trm trm \<cdot> L_rexp r"
by (induct rule: Append_rexp.induct)
(auto simp add: seq_assoc)
lemma lang_of_append_rexp_rhs:
"L_rhs (Append_rexp_rhs rhs r) = L_rhs rhs \<cdot> L_rexp r"
unfolding Append_rexp_rhs_def
by (auto simp add: Seq_def lang_of_append_rexp)
subsubsection {* Intial Equational System *}
lemma defined_by_str:
assumes "s \<in> X" "X \<in> UNIV // \<approx>A"
shows "X = \<approx>A `` {s}"
using assms
unfolding quotient_def Image_def str_eq_rel_def
by auto
lemma every_eqclass_has_transition:
assumes has_str: "s @ [c] \<in> X"
and in_CS: "X \<in> UNIV // \<approx>A"
obtains Y where "Y \<in> UNIV // \<approx>A" and "Y \<cdot> {[c]} \<subseteq> X" and "s \<in> Y"
proof -
def Y \<equiv> "\<approx>A `` {s}"
have "Y \<in> UNIV // \<approx>A"
unfolding Y_def quotient_def by auto
moreover
have "X = \<approx>A `` {s @ [c]}"
using has_str in_CS defined_by_str by blast
then have "Y \<cdot> {[c]} \<subseteq> X"
unfolding Y_def Image_def Seq_def
unfolding str_eq_rel_def
by clarsimp
moreover
have "s \<in> Y" unfolding Y_def
unfolding Image_def str_eq_rel_def by simp
ultimately show thesis using that by blast
qed
lemma l_eq_r_in_eqs:
assumes X_in_eqs: "(X, rhs) \<in> Init (UNIV // \<approx>A)"
shows "X = L_rhs rhs"
proof
show "X \<subseteq> L_rhs rhs"
proof
fix x
assume in_X: "x \<in> X"
{ assume empty: "x = []"
then have "x \<in> L_rhs rhs" using X_in_eqs in_X
unfolding Init_def Init_rhs_def
by auto
}
moreover
{ assume not_empty: "x \<noteq> []"
then obtain s c where decom: "x = s @ [c]"
using rev_cases by blast
have "X \<in> UNIV // \<approx>A" using X_in_eqs unfolding Init_def by auto
then obtain Y where "Y \<in> UNIV // \<approx>A" "Y \<cdot> {[c]} \<subseteq> X" "s \<in> Y"
using decom in_X every_eqclass_has_transition by blast
then have "x \<in> L_rhs {Trn Y (CHAR c)| Y c. Y \<in> UNIV // \<approx>A \<and> Y \<Turnstile>c\<Rightarrow> X}"
unfolding transition_def
using decom by (force simp add: Seq_def)
then have "x \<in> L_rhs rhs" using X_in_eqs in_X
unfolding Init_def Init_rhs_def by simp
}
ultimately show "x \<in> L_rhs rhs" by blast
qed
next
show "L_rhs rhs \<subseteq> X" using X_in_eqs
unfolding Init_def Init_rhs_def transition_def
by auto
qed
lemma test:
assumes X_in_eqs: "(X, rhs) \<in> Init (UNIV // \<approx>A)"
shows "X = \<Union> (L_trm ` rhs)"
using assms l_eq_r_in_eqs by (simp)
lemma finite_Init_rhs:
assumes finite: "finite CS"
shows "finite (Init_rhs CS X)"
proof-
def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y \<cdot> {[c]} \<subseteq> X}"
def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"
have "finite (CS \<times> (UNIV::char set))" using finite by auto
then have "finite S" using S_def
by (rule_tac B = "CS \<times> UNIV" in finite_subset) (auto)
moreover have "{Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y \<cdot> {[c]} \<subseteq> X} = h ` S"
unfolding S_def h_def image_def by auto
ultimately
have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y \<cdot> {[c]} \<subseteq> X}" by auto
then show "finite (Init_rhs CS X)" unfolding Init_rhs_def transition_def by simp
qed
lemma Init_ES_satisfies_invariant:
assumes finite_CS: "finite (UNIV // \<approx>A)"
shows "invariant (Init (UNIV // \<approx>A))"
proof (rule invariantI)
show "soundness (Init (UNIV // \<approx>A))"
unfolding soundness_def
using l_eq_r_in_eqs by auto
show "finite (Init (UNIV // \<approx>A))" using finite_CS
unfolding Init_def by simp
show "distinctness (Init (UNIV // \<approx>A))"
unfolding distinctness_def Init_def by simp
show "ardenable_all (Init (UNIV // \<approx>A))"
unfolding ardenable_all_def Init_def Init_rhs_def ardenable_def
by auto
show "finite_rhs (Init (UNIV // \<approx>A))"
using finite_Init_rhs[OF finite_CS]
unfolding finite_rhs_def Init_def by auto
show "validity (Init (UNIV // \<approx>A))"
unfolding validity_def Init_def Init_rhs_def rhss_def lhss_def
by auto
qed
subsubsection {* Interation step *}
lemma Arden_keeps_eq:
assumes l_eq_r: "X = L_rhs rhs"
and not_empty: "ardenable rhs"
and finite: "finite rhs"
shows "X = L_rhs (Arden X rhs)"
proof -
def A \<equiv> "L_rexp (\<Uplus>{r. Trn X r \<in> rhs})"
def b \<equiv> "{Trn X r | r. Trn X r \<in> rhs}"
def B \<equiv> "L_rhs (rhs - b)"
have not_empty2: "[] \<notin> A"
using finite_Trn[OF finite] not_empty
unfolding A_def ardenable_def by simp
have "X = L_rhs rhs" using l_eq_r by simp
also have "\<dots> = L_rhs (b \<union> (rhs - b))" unfolding b_def by auto
also have "\<dots> = L_rhs b \<union> B" unfolding B_def by (simp only: L_rhs_union_distrib)
also have "\<dots> = X \<cdot> A \<union> B"
unfolding b_def
unfolding trm_soundness[OF finite]
unfolding A_def
by blast
finally have "X = X \<cdot> A \<union> B" .
then have "X = B \<cdot> A\<star>"
by (simp add: arden[OF not_empty2])
also have "\<dots> = L_rhs (Arden X rhs)"
unfolding Arden_def A_def B_def b_def
by (simp only: lang_of_append_rexp_rhs L_rexp.simps)
finally show "X = L_rhs (Arden X rhs)" by simp
qed
lemma Append_keeps_finite:
"finite rhs \<Longrightarrow> finite (Append_rexp_rhs rhs r)"
by (auto simp:Append_rexp_rhs_def)
lemma Arden_keeps_finite:
"finite rhs \<Longrightarrow> finite (Arden X rhs)"
by (auto simp:Arden_def Append_keeps_finite)
lemma Append_keeps_nonempty:
"ardenable rhs \<Longrightarrow> ardenable (Append_rexp_rhs rhs r)"
apply (auto simp:ardenable_def Append_rexp_rhs_def)
by (case_tac x, auto simp:Seq_def)
lemma nonempty_set_sub:
"ardenable rhs \<Longrightarrow> ardenable (rhs - A)"
by (auto simp:ardenable_def)
lemma nonempty_set_union:
"\<lbrakk>ardenable rhs; ardenable rhs'\<rbrakk> \<Longrightarrow> ardenable (rhs \<union> rhs')"
by (auto simp:ardenable_def)
lemma Arden_keeps_nonempty:
"ardenable rhs \<Longrightarrow> ardenable (Arden X rhs)"
by (simp only:Arden_def Append_keeps_nonempty nonempty_set_sub)
lemma Subst_keeps_nonempty:
"\<lbrakk>ardenable rhs; ardenable xrhs\<rbrakk> \<Longrightarrow> ardenable (Subst rhs X xrhs)"
by (simp only: Subst_def Append_keeps_nonempty nonempty_set_union nonempty_set_sub)
lemma Subst_keeps_eq:
assumes substor: "X = L_rhs xrhs"
and finite: "finite rhs"
shows "L_rhs (Subst rhs X xrhs) = L_rhs rhs" (is "?Left = ?Right")
proof-
def A \<equiv> "L_rhs (rhs - {Trn X r | r. Trn X r \<in> rhs})"
have "?Left = A \<union> L_rhs (Append_rexp_rhs xrhs (\<Uplus>{r. Trn X r \<in> rhs}))"
unfolding Subst_def
unfolding L_rhs_union_distrib[symmetric]
by (simp add: A_def)
moreover have "?Right = A \<union> L_rhs {Trn X r | r. Trn X r \<in> rhs}"
proof-
have "rhs = (rhs - {Trn X r | r. Trn X r \<in> rhs}) \<union> ({Trn X r | r. Trn X r \<in> rhs})" by auto
thus ?thesis
unfolding A_def
unfolding L_rhs_union_distrib
by simp
qed
moreover have "L_rhs (Append_rexp_rhs xrhs (\<Uplus>{r. Trn X r \<in> rhs})) = L_rhs {Trn X r | r. Trn X r \<in> rhs}"
using finite substor by (simp only: lang_of_append_rexp_rhs trm_soundness)
ultimately show ?thesis by simp
qed
lemma Subst_keeps_finite_rhs:
"\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (Subst rhs Y yrhs)"
by (auto simp: Subst_def Append_keeps_finite)
lemma Subst_all_keeps_finite:
assumes finite: "finite ES"
shows "finite (Subst_all ES Y yrhs)"
proof -
def eqns \<equiv> "{(X::lang, rhs) |X rhs. (X, rhs) \<in> ES}"
def h \<equiv> "\<lambda>(X::lang, rhs). (X, Subst rhs Y yrhs)"
have "finite (h ` eqns)" using finite h_def eqns_def by auto
moreover
have "Subst_all ES Y yrhs = h ` eqns" unfolding h_def eqns_def Subst_all_def by auto
ultimately
show "finite (Subst_all ES Y yrhs)" by simp
qed
lemma Subst_all_keeps_finite_rhs:
"\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (Subst_all ES Y yrhs)"
by (auto intro:Subst_keeps_finite_rhs simp add:Subst_all_def finite_rhs_def)
lemma append_rhs_keeps_cls:
"rhss (Append_rexp_rhs rhs r) = rhss rhs"
apply (auto simp:rhss_def Append_rexp_rhs_def)
apply (case_tac xa, auto simp:image_def)
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)
lemma Arden_removes_cl:
"rhss (Arden Y yrhs) = rhss yrhs - {Y}"
apply (simp add:Arden_def append_rhs_keeps_cls)
by (auto simp:rhss_def)
lemma lhss_keeps_cls:
"lhss (Subst_all ES Y yrhs) = lhss ES"
by (auto simp:lhss_def Subst_all_def)
lemma Subst_updates_cls:
"X \<notin> rhss xrhs \<Longrightarrow>
rhss (Subst rhs X xrhs) = rhss rhs \<union> rhss xrhs - {X}"
apply (simp only:Subst_def append_rhs_keeps_cls rhss_union_distrib)
by (auto simp:rhss_def)
lemma Subst_all_keeps_validity:
assumes sc: "validity (ES \<union> {(Y, yrhs)})" (is "validity ?A")
shows "validity (Subst_all ES Y (Arden Y yrhs))" (is "validity ?B")
proof -
{ fix X xrhs'
assume "(X, xrhs') \<in> ?B"
then obtain xrhs
where xrhs_xrhs': "xrhs' = Subst xrhs Y (Arden Y yrhs)"
and X_in: "(X, xrhs) \<in> ES" by (simp add:Subst_all_def, blast)
have "rhss xrhs' \<subseteq> lhss ?B"
proof-
have "lhss ?B = lhss ES" by (auto simp add:lhss_def Subst_all_def)
moreover have "rhss xrhs' \<subseteq> lhss ES"
proof-
have "rhss xrhs' \<subseteq> rhss xrhs \<union> rhss (Arden Y yrhs) - {Y}"
proof-
have "Y \<notin> rhss (Arden Y yrhs)"
using Arden_removes_cl by simp
thus ?thesis using xrhs_xrhs' by (auto simp:Subst_updates_cls)
qed
moreover have "rhss xrhs \<subseteq> lhss ES \<union> {Y}" using X_in sc
apply (simp only:validity_def lhss_union_distrib)
by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lhss_def)
moreover have "rhss (Arden Y yrhs) \<subseteq> lhss ES \<union> {Y}"
using sc
by (auto simp add:Arden_removes_cl validity_def lhss_def)
ultimately show ?thesis by auto
qed
ultimately show ?thesis by simp
qed
} thus ?thesis by (auto simp only:Subst_all_def validity_def)
qed
lemma Subst_all_satisfies_invariant:
assumes invariant_ES: "invariant (ES \<union> {(Y, yrhs)})"
shows "invariant (Subst_all ES Y (Arden Y yrhs))"
proof (rule invariantI)
have Y_eq_yrhs: "Y = L_rhs yrhs"
using invariant_ES by (simp only:invariant_def soundness_def, blast)
have finite_yrhs: "finite yrhs"
using invariant_ES by (auto simp:invariant_def finite_rhs_def)
have nonempty_yrhs: "ardenable yrhs"
using invariant_ES by (auto simp:invariant_def ardenable_all_def)
show "soundness (Subst_all ES Y (Arden Y yrhs))"
proof -
have "Y = L_rhs (Arden Y yrhs)"
using Y_eq_yrhs invariant_ES finite_yrhs
using finite_Trn[OF finite_yrhs]
apply(rule_tac Arden_keeps_eq)
apply(simp_all)
unfolding invariant_def ardenable_all_def ardenable_def
apply(auto)
done
thus ?thesis using invariant_ES
unfolding invariant_def finite_rhs_def2 soundness_def Subst_all_def
by (auto simp add: Subst_keeps_eq simp del: L_rhs.simps)
qed
show "finite (Subst_all ES Y (Arden Y yrhs))"
using invariant_ES by (simp add:invariant_def Subst_all_keeps_finite)
show "distinctness (Subst_all ES Y (Arden Y yrhs))"
using invariant_ES
unfolding distinctness_def Subst_all_def invariant_def by auto
show "ardenable_all (Subst_all ES Y (Arden Y yrhs))"
proof -
{ fix X rhs
assume "(X, rhs) \<in> ES"
hence "ardenable rhs" using invariant_ES
by (auto simp add:invariant_def ardenable_all_def)
with nonempty_yrhs
have "ardenable (Subst rhs Y (Arden Y yrhs))"
by (simp add:nonempty_yrhs
Subst_keeps_nonempty Arden_keeps_nonempty)
} thus ?thesis by (auto simp add:ardenable_all_def Subst_all_def)
qed
show "finite_rhs (Subst_all ES Y (Arden Y yrhs))"
proof-
have "finite_rhs ES" using invariant_ES
by (simp add:invariant_def finite_rhs_def)
moreover have "finite (Arden Y yrhs)"
proof -
have "finite yrhs" using invariant_ES
by (auto simp:invariant_def finite_rhs_def)
thus ?thesis using Arden_keeps_finite by simp
qed
ultimately show ?thesis
by (simp add:Subst_all_keeps_finite_rhs)
qed
show "validity (Subst_all ES Y (Arden Y yrhs))"
using invariant_ES Subst_all_keeps_validity by (simp add:invariant_def)
qed
lemma Remove_in_card_measure:
assumes finite: "finite ES"
and in_ES: "(X, rhs) \<in> ES"
shows "(Remove ES X rhs, ES) \<in> measure card"
proof -
def f \<equiv> "\<lambda> x. ((fst x)::lang, Subst (snd x) X (Arden X rhs))"
def ES' \<equiv> "ES - {(X, rhs)}"
have "Subst_all ES' X (Arden X rhs) = f ` ES'"
apply (auto simp: Subst_all_def f_def image_def)
by (rule_tac x = "(Y, yrhs)" in bexI, simp+)
then have "card (Subst_all ES' X (Arden X rhs)) \<le> card ES'"
unfolding ES'_def using finite by (auto intro: card_image_le)
also have "\<dots> < card ES" unfolding ES'_def
using in_ES finite by (rule_tac card_Diff1_less)
finally show "(Remove ES X rhs, ES) \<in> measure card"
unfolding Remove_def ES'_def by simp
qed
lemma Subst_all_cls_remains:
"(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (Subst_all ES Y yrhs)"
by (auto simp: Subst_all_def)
lemma card_noteq_1_has_more:
assumes card:"Cond ES"
and e_in: "(X, xrhs) \<in> ES"
and finite: "finite ES"
shows "\<exists>(Y, yrhs) \<in> ES. (X, xrhs) \<noteq> (Y, yrhs)"
proof-
have "card ES > 1" using card e_in finite
by (cases "card ES") (auto)
then have "card (ES - {(X, xrhs)}) > 0"
using finite e_in by auto
then have "(ES - {(X, xrhs)}) \<noteq> {}" using finite by (rule_tac notI, simp)
then show "\<exists>(Y, yrhs) \<in> ES. (X, xrhs) \<noteq> (Y, yrhs)"
by auto
qed
lemma iteration_step_measure:
assumes Inv_ES: "invariant ES"
and X_in_ES: "(X, xrhs) \<in> ES"
and Cnd: "Cond ES "
shows "(Iter X ES, ES) \<in> measure card"
proof -
have fin: "finite ES" using Inv_ES unfolding invariant_def by simp
then obtain Y yrhs
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)"
using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto)
then have "(Y, yrhs) \<in> ES " "X \<noteq> Y"
using X_in_ES Inv_ES unfolding invariant_def distinctness_def
by auto
then show "(Iter X ES, ES) \<in> measure card"
apply(rule IterI2)
apply(rule Remove_in_card_measure)
apply(simp_all add: fin)
done
qed
lemma iteration_step_invariant:
assumes Inv_ES: "invariant ES"
and X_in_ES: "(X, xrhs) \<in> ES"
and Cnd: "Cond ES"
shows "invariant (Iter X ES)"
proof -
have finite_ES: "finite ES" using Inv_ES by (simp add: invariant_def)
then obtain Y yrhs
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)"
using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto)
then have "(Y, yrhs) \<in> ES" "X \<noteq> Y"
using X_in_ES Inv_ES unfolding invariant_def distinctness_def
by auto
then show "invariant (Iter X ES)"
proof(rule IterI2)
fix Y yrhs
assume h: "(Y, yrhs) \<in> ES" "X \<noteq> Y"
then have "ES - {(Y, yrhs)} \<union> {(Y, yrhs)} = ES" by auto
then show "invariant (Remove ES Y yrhs)" unfolding Remove_def
using Inv_ES
by (rule_tac Subst_all_satisfies_invariant) (simp)
qed
qed
lemma iteration_step_ex:
assumes Inv_ES: "invariant ES"
and X_in_ES: "(X, xrhs) \<in> ES"
and Cnd: "Cond ES"
shows "\<exists>xrhs'. (X, xrhs') \<in> (Iter X ES)"
proof -
have finite_ES: "finite ES" using Inv_ES by (simp add: invariant_def)
then obtain Y yrhs
where "(Y, yrhs) \<in> ES" "(X, xrhs) \<noteq> (Y, yrhs)"
using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto)
then have "(Y, yrhs) \<in> ES " "X \<noteq> Y"
using X_in_ES Inv_ES unfolding invariant_def distinctness_def
by auto
then show "\<exists>xrhs'. (X, xrhs') \<in> (Iter X ES)"
apply(rule IterI2)
unfolding Remove_def
apply(rule Subst_all_cls_remains)
using X_in_ES
apply(auto)
done
qed
subsubsection {* Conclusion of the proof *}
lemma Solve:
assumes fin: "finite (UNIV // \<approx>A)"
and X_in: "X \<in> (UNIV // \<approx>A)"
shows "\<exists>rhs. Solve X (Init (UNIV // \<approx>A)) = {(X, rhs)} \<and> invariant {(X, rhs)}"
proof -
def Inv \<equiv> "\<lambda>ES. invariant ES \<and> (\<exists>rhs. (X, rhs) \<in> ES)"
have "Inv (Init (UNIV // \<approx>A))" unfolding Inv_def
using fin X_in by (simp add: Init_ES_satisfies_invariant, simp add: Init_def)
moreover
{ fix ES
assume inv: "Inv ES" and crd: "Cond ES"
then have "Inv (Iter X ES)"
unfolding Inv_def
by (auto simp add: iteration_step_invariant iteration_step_ex) }
moreover
{ fix ES
assume inv: "Inv ES" and not_crd: "\<not>Cond ES"
from inv obtain rhs where "(X, rhs) \<in> ES" unfolding Inv_def by auto
moreover
from not_crd have "card ES = 1" by simp
ultimately
have "ES = {(X, rhs)}" by (auto simp add: card_Suc_eq)
then have "\<exists>rhs'. ES = {(X, rhs')} \<and> invariant {(X, rhs')}" using inv
unfolding Inv_def by auto }
moreover
have "wf (measure card)" by simp
moreover
{ fix ES
assume inv: "Inv ES" and crd: "Cond ES"
then have "(Iter X ES, ES) \<in> measure card"
unfolding Inv_def
apply(clarify)
apply(rule_tac iteration_step_measure)
apply(auto)
done }
ultimately
show "\<exists>rhs. Solve X (Init (UNIV // \<approx>A)) = {(X, rhs)} \<and> invariant {(X, rhs)}"
unfolding Solve_def by (rule while_rule)
qed
lemma every_eqcl_has_reg:
assumes finite_CS: "finite (UNIV // \<approx>A)"
and X_in_CS: "X \<in> (UNIV // \<approx>A)"
shows "\<exists>r. X = L_rexp r"
proof -
from finite_CS X_in_CS
obtain xrhs where Inv_ES: "invariant {(X, xrhs)}"
using Solve by metis
def A \<equiv> "Arden X xrhs"
have "rhss xrhs \<subseteq> {X}" using Inv_ES
unfolding validity_def invariant_def rhss_def lhss_def
by auto
then have "rhss A = {}" unfolding A_def
by (simp add: Arden_removes_cl)
then have eq: "{Lam r | r. Lam r \<in> A} = A" unfolding rhss_def
by (auto, case_tac x, auto)
have "finite A" using Inv_ES unfolding A_def invariant_def finite_rhs_def
using Arden_keeps_finite by auto
then have fin: "finite {r. Lam r \<in> A}" by (rule finite_Lam)
have "X = L_rhs xrhs" using Inv_ES unfolding invariant_def soundness_def
by simp
then have "X = L_rhs A" using Inv_ES
unfolding A_def invariant_def ardenable_all_def finite_rhs_def
by (rule_tac Arden_keeps_eq) (simp_all add: finite_Trn)
then have "X = L_rhs {Lam r | r. Lam r \<in> A}" using eq by simp
then have "X = L_rexp (\<Uplus>{r. Lam r \<in> A})" using fin by auto
then show "\<exists>r. X = L_rexp r" by blast
qed
lemma bchoice_finite_set:
assumes a: "\<forall>x \<in> S. \<exists>y. x = f y"
and b: "finite S"
shows "\<exists>ys. (\<Union> S) = \<Union>(f ` ys) \<and> finite ys"
using bchoice[OF a] b
apply(erule_tac exE)
apply(rule_tac x="fa ` S" in exI)
apply(auto)
done
theorem Myhill_Nerode1:
assumes finite_CS: "finite (UNIV // \<approx>A)"
shows "\<exists>r. A = L_rexp r"
proof -
have fin: "finite (finals A)"
using finals_in_partitions finite_CS by (rule finite_subset)
have "\<forall>X \<in> (UNIV // \<approx>A). \<exists>r. X = L_rexp r"
using finite_CS every_eqcl_has_reg by blast
then have a: "\<forall>X \<in> finals A. \<exists>r. X = L_rexp r"
using finals_in_partitions by auto
then obtain rs::"rexp set" where "\<Union> (finals A) = \<Union>(L_rexp ` rs)" "finite rs"
using fin by (auto dest: bchoice_finite_set)
then have "A = L_rexp (\<Uplus>rs)"
unfolding lang_is_union_of_finals[symmetric] by simp
then show "\<exists>r. A = L_rexp r" by blast
qed
end