Some illustration added together with more explanations.
header {*
{\em abacus} a kind of register machine
*}
theory abacus
imports Main turing_basic
begin
text {*
{\em Abacus} instructions:
*}
datatype abc_inst =
-- {* @{text "Inc n"} increments the memory cell (or register) with address @{text "n"} by one.
*}
Inc nat
-- {*
@{text "Dec n label"} decrements the memory cell with address @{text "n"} by one.
If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
the instruction labeled by @{text "label"}.
*}
| Dec nat nat
-- {*
@{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
*}
| Goto nat
text {*
Abacus programs are defined as lists of Abacus instructions.
*}
type_synonym abc_prog = "abc_inst list"
section {*
Sample Abacus programs
*}
text {*
Abacus for addition and clearance.
*}
fun plus_clear :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"plus_clear m n e = [Dec m e, Inc n, Goto 0]"
text {*
Abacus for clearing memory untis.
*}
fun clear :: "nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"clear n e = [Dec n e, Goto 0]"
fun plus:: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"plus m n p e = [Dec m 4, Inc n, Inc p,
Goto 0, Dec p e, Inc m, Goto 4]"
fun mult :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"mult m1 m2 n p e = [Dec m1 e]@ plus m1 m2 p 1"
fun expo :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"expo n m1 m2 p e = [Inc n, Dec m1 e] @ mult m2 n n p 2"
text {*
The state of Abacus machine.
*}
type_synonym abc_state = nat
(* text {*
The memory of Abacus machine is defined as a function from address to contents.
*}
type_synonym abc_mem = "nat \<Rightarrow> nat" *)
text {*
The memory of Abacus machine is defined as a list of contents, with
every units addressed by index into the list.
*}
type_synonym abc_lm = "nat list"
text {*
Fetching contents out of memory. Units not represented by list elements are considered
as having content @{text "0"}.
*}
fun abc_lm_v :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_lm_v lm n = (if (n < length lm) then (lm!n) else 0)"
(*
fun abc_l2m :: "abc_lm \<Rightarrow> abc_mem"
where
"abc_l2m lm = abc_lm_v lm"
*)
text {*
Set the content of memory unit @{text "n"} to value @{text "v"}.
@{text "am"} is the Abacus memory before setting.
If address @{text "n"} is outside to scope of @{text "am"}, @{text "am"}
is extended so that @{text "n"} becomes in scope.
*}
fun abc_lm_s :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_lm"
where
"abc_lm_s am n v = (if (n < length am) then (am[n:=v]) else
am@ (replicate (n - length am) 0) @ [v])"
text {*
The configuration of Abaucs machines consists of its current state and its
current memory:
*}
type_synonym abc_conf_l = "abc_state \<times> abc_lm"
text {*
Fetch instruction out of Abacus program:
*}
fun abc_fetch :: "nat \<Rightarrow> abc_prog \<Rightarrow> abc_inst option"
where
"abc_fetch s p = (if (s < length p) then Some (p ! s)
else None)"
text {*
Single step execution of Abacus machine. If no instruction is feteched,
configuration does not change.
*}
fun abc_step_l :: "abc_conf_l \<Rightarrow> abc_inst option \<Rightarrow> abc_conf_l"
where
"abc_step_l (s, lm) a = (case a of
None \<Rightarrow> (s, lm) |
Some (Inc n) \<Rightarrow> (let nv = abc_lm_v lm n in
(s + 1, abc_lm_s lm n (nv + 1))) |
Some (Dec n e) \<Rightarrow> (let nv = abc_lm_v lm n in
if (nv = 0) then (e, abc_lm_s lm n 0)
else (s + 1, abc_lm_s lm n (nv - 1))) |
Some (Goto n) \<Rightarrow> (n, lm)
)"
text {*
Multi-step execution of Abacus machine.
*}
fun abc_steps_l :: "abc_conf_l \<Rightarrow> abc_prog \<Rightarrow> nat \<Rightarrow> abc_conf_l"
where
"abc_steps_l (s, lm) p 0 = (s, lm)" |
"abc_steps_l (s, lm) p (Suc n) = abc_steps_l (abc_step_l (s, lm) (abc_fetch s p)) p n"
section {*
Compiling Abacus machines into Truing machines
*}
subsection {*
Compiling functions
*}
text {*
@{text "findnth n"} returns the TM which locates the represention of
memory cell @{text "n"} on the tape and changes representation of zero
on the way.
*}
fun findnth :: "nat \<Rightarrow> tprog"
where
"findnth 0 = []" |
"findnth (Suc n) = (findnth n @ [(W1, 2 * n + 1),
(R, 2 * n + 2), (R, 2 * n + 3), (R, 2 * n + 2)])"
text {*
@{text "tinc_b"} returns the TM which increments the representation
of the memory cell under rw-head by one and move the representation
of cells afterwards to the right accordingly.
*}
definition tinc_b :: "tprog"
where
"tinc_b \<equiv> [(W1, 1), (R, 2), (W1, 3), (R, 2), (W1, 3), (R, 4),
(L, 7), (W0, 5), (R, 6), (W0, 5), (W1, 3), (R, 6),
(L, 8), (L, 7), (R, 9), (L, 7), (R, 10), (W0, 9)]"
text {*
@{text "tshift tm off"} shifts @{text "tm"} by offset @{text "off"}, leaving
instructions concerning state @{text "0"} unchanged, because state @{text "0"}
is the end state, which needs not be changed with shift operation.
*}
fun tshift :: "tprog \<Rightarrow> nat \<Rightarrow> tprog"
where
"tshift tp off = (map (\<lambda> (action, state).
(action, (if state = 0 then 0
else state + off))) tp)"
text {*
@{text "tinc ss n"} returns the TM which simulates the execution of
Abacus instruction @{text "Inc n"}, assuming that TM is located at
location @{text "ss"} in the final TM complied from the whole
Abacus program.
*}
fun tinc :: "nat \<Rightarrow> nat \<Rightarrow> tprog"
where
"tinc ss n = tshift (findnth n @ tshift tinc_b (2 * n)) (ss - 1)"
text {*
@{text "tinc_b"} returns the TM which decrements the representation
of the memory cell under rw-head by one and move the representation
of cells afterwards to the left accordingly.
*}
definition tdec_b :: "tprog"
where
"tdec_b \<equiv> [(W1, 1), (R, 2), (L, 14), (R, 3), (L, 4), (R, 3),
(R, 5), (W0, 4), (R, 6), (W0, 5), (L, 7), (L, 8),
(L, 11), (W0, 7), (W1, 8), (R, 9), (L, 10), (R, 9),
(R, 5), (W0, 10), (L, 12), (L, 11), (R, 13), (L, 11),
(R, 17), (W0, 13), (L, 15), (L, 14), (R, 16), (L, 14),
(R, 0), (W0, 16)]"
text {*
@{text "sete tp e"} attaches the termination edges (edges leading to state @{text "0"})
of TM @{text "tp"} to the intruction labelled by @{text "e"}.
*}
fun sete :: "tprog \<Rightarrow> nat \<Rightarrow> tprog"
where
"sete tp e = map (\<lambda> (action, state). (action, if state = 0 then e else state)) tp"
text {*
@{text "tdec ss n label"} returns the TM which simulates the execution of
Abacus instruction @{text "Dec n label"}, assuming that TM is located at
location @{text "ss"} in the final TM complied from the whole
Abacus program.
*}
fun tdec :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tprog"
where
"tdec ss n e = sete (tshift (findnth n @ tshift tdec_b (2 * n))
(ss - 1)) e"
text {*
@{text "tgoto f(label)"} returns the TM simulating the execution of Abacus instruction
@{text "Goto label"}, where @{text "f(label)"} is the corresponding location of
@{text "label"} in the final TM compiled from the overall Abacus program.
*}
fun tgoto :: "nat \<Rightarrow> tprog"
where
"tgoto n = [(Nop, n), (Nop, n)]"
text {*
The layout of the final TM compiled from an Abacus program is represented
as a list of natural numbers, where the list element at index @{text "n"} represents the
starting state of the TM simulating the execution of @{text "n"}-th instruction
in the Abacus program.
*}
type_synonym layout = "nat list"
text {*
@{text "length_of i"} is the length of the
TM simulating the Abacus instruction @{text "i"}.
*}
fun length_of :: "abc_inst \<Rightarrow> nat"
where
"length_of i = (case i of
Inc n \<Rightarrow> 2 * n + 9 |
Dec n e \<Rightarrow> 2 * n + 16 |
Goto n \<Rightarrow> 1)"
text {*
@{text "layout_of ap"} returns the layout of Abacus program @{text "ap"}.
*}
fun layout_of :: "abc_prog \<Rightarrow> layout"
where "layout_of ap = map length_of ap"
text {*
@{text "start_of layout n"} looks out the starting state of @{text "n"}-th
TM in the finall TM.
*}
fun start_of :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
where
"start_of ly 0 = Suc 0" |
"start_of ly (Suc as) =
(if as < length ly then start_of ly as + (ly ! as)
else start_of ly as)"
text {*
@{text "ci lo ss i"} complies Abacus instruction @{text "i"}
assuming the TM of @{text "i"} starts from state @{text "ss"}
within the overal layout @{text "lo"}.
*}
fun ci :: "layout \<Rightarrow> nat \<Rightarrow> abc_inst \<Rightarrow> tprog"
where
"ci ly ss i = (case i of
Inc n \<Rightarrow> tinc ss n |
Dec n e \<Rightarrow> tdec ss n (start_of ly e) |
Goto n \<Rightarrow> tgoto (start_of ly n))"
text {*
@{text "tpairs_of ap"} transfroms Abacus program @{text "ap"} pairing
every instruction with its starting state.
*}
fun tpairs_of :: "abc_prog \<Rightarrow> (nat \<times> abc_inst) list"
where "tpairs_of ap = (zip (map (start_of (layout_of ap))
[0..<(length ap)]) ap)"
text {*
@{text "tms_of ap"} returns the list of TMs, where every one of them simulates
the corresponding Abacus intruction in @{text "ap"}.
*}
fun tms_of :: "abc_prog \<Rightarrow> tprog list"
where "tms_of ap = map (\<lambda> (n, tm). ci (layout_of ap) n tm)
(tpairs_of ap)"
text {*
@{text "tm_of ap"} returns the final TM machine compiled from Abacus program @{text "ap"}.
*}
fun tm_of :: "abc_prog \<Rightarrow> tprog"
where "tm_of ap = concat (tms_of ap)"
text {*
The following two functions specify the well-formedness of complied TM.
*}
fun t_ncorrect :: "tprog \<Rightarrow> bool"
where
"t_ncorrect tp = (length tp mod 2 = 0)"
fun abc2t_correct :: "abc_prog \<Rightarrow> bool"
where
"abc2t_correct ap = list_all (\<lambda> (n, tm).
t_ncorrect (ci (layout_of ap) n tm)) (tpairs_of ap)"
lemma findnth_length: "length (findnth n) div 2 = 2 * n"
apply(induct n, simp, simp)
done
lemma ci_length : "length (ci ns n ai) div 2 = length_of ai"
apply(auto simp: ci.simps tinc_b_def tdec_b_def findnth_length
split: abc_inst.splits)
done
subsection {*
Representation of Abacus memory by TM tape
*}
consts tape_of :: "'a \<Rightarrow> block list" ("<_>" 100)
text {*
@{text "tape_of_nat_list am"} returns the TM tape representing
Abacus memory @{text "am"}.
*}
fun tape_of_nat_list :: "nat list \<Rightarrow> block list"
where
"tape_of_nat_list [] = []" |
"tape_of_nat_list [n] = Oc\<^bsup>n+1\<^esup>" |
"tape_of_nat_list (n#ns) = (Oc\<^bsup>n+1\<^esup>) @ [Bk] @ (tape_of_nat_list ns)"
defs (overloaded)
tape_of_nl_abv: "<am> \<equiv> tape_of_nat_list am"
tape_of_nat_abv : "<(n::nat)> \<equiv> Oc\<^bsup>n+1\<^esup>"
text {*
@{text "crsp_l acf tcf"} meams the abacus configuration @{text "acf"}
is corretly represented by the TM configuration @{text "tcf"}.
*}
fun crsp_l :: "layout \<Rightarrow> abc_conf_l \<Rightarrow> t_conf \<Rightarrow> block list \<Rightarrow> bool"
where
"crsp_l ly (as, lm) (ts, (l, r)) inres =
(ts = start_of ly as \<and> (\<exists> rn. r = <lm> @ Bk\<^bsup>rn\<^esup>)
\<and> l = Bk # Bk # inres)"
declare crsp_l.simps[simp del]
subsection {*
A more general definition of TM execution.
*}
(*
fun nnth_of :: "(taction \<times> nat) list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (taction \<times> nat)"
where
"nnth_of p s b = (if 2*s < length p
then (p ! (2*s + b)) else (Nop, 0))"
thm nth_of.simps
fun nfetch :: "tprog \<Rightarrow> nat \<Rightarrow> block \<Rightarrow> taction \<times> nat"
where
"nfetch p 0 b = (Nop, 0)" |
"nfetch p (Suc s) b =
(case b of
Bk \<Rightarrow> nnth_of p s 0 |
Oc \<Rightarrow> nnth_of p s 1)"
*)
text {*
@{text "t_step tcf (tp, ss)"} returns the result of one step exection of TM @{text "tp"}
assuming @{text "tp"} starts from instial state @{text "ss"}.
*}
fun t_step :: "t_conf \<Rightarrow> (tprog \<times> nat) \<Rightarrow> t_conf"
where
"t_step c (p, off) =
(let (state, leftn, rightn) = c in
let (action, next_state) = fetch p (state-off)
(case rightn of
[] \<Rightarrow> Bk |
Bk # xs \<Rightarrow> Bk |
Oc # xs \<Rightarrow> Oc
)
in
(next_state, new_tape action (leftn, rightn)))"
text {*
@{text "t_steps tcf (tp, ss) n"} returns the result of @{text "n"}-step exection
of TM @{text "tp"} assuming @{text "tp"} starts from instial state @{text "ss"}.
*}
fun t_steps :: "t_conf \<Rightarrow> (tprog \<times> nat) \<Rightarrow> nat \<Rightarrow> t_conf"
where
"t_steps c (p, off) 0 = c" |
"t_steps c (p, off) (Suc n) = t_steps
(t_step c (p, off)) (p, off) n"
lemma stepn: "t_steps c (p, off) (Suc n) =
t_step (t_steps c (p, off) n) (p, off)"
apply(induct n arbitrary: c, simp add: t_steps.simps)
apply(simp add: t_steps.simps)
done
text {*
The type of invarints expressing correspondence between
Abacus configuration and TM configuration.
*}
type_synonym inc_inv_t = "abc_conf_l \<Rightarrow> t_conf \<Rightarrow> block list \<Rightarrow> bool"
declare tms_of.simps[simp del] tm_of.simps[simp del]
layout_of.simps[simp del] abc_fetch.simps [simp del]
t_step.simps[simp del] t_steps.simps[simp del]
tpairs_of.simps[simp del] start_of.simps[simp del]
fetch.simps [simp del] t_ncorrect.simps[simp del]
new_tape.simps [simp del] ci.simps [simp del] length_of.simps[simp del]
layout_of.simps[simp del] crsp_l.simps[simp del]
abc2t_correct.simps[simp del]
lemma tct_div2: "t_ncorrect tp \<Longrightarrow> (length tp) mod 2 = 0"
apply(simp add: t_ncorrect.simps)
done
lemma t_shift_fetch:
"\<lbrakk>t_ncorrect tp1; t_ncorrect tp;
length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + length tp div 2\<rbrakk>
\<Longrightarrow> fetch tp (a - length tp1 div 2) b =
fetch (tp1 @ tp @ tp2) a b"
apply(subgoal_tac "\<exists> x. a = length tp1 div 2 + x", erule exE, simp)
apply(case_tac x, simp)
apply(subgoal_tac "length tp1 div 2 + Suc nat =
Suc (length tp1 div 2 + nat)")
apply(simp only: fetch.simps nth_of.simps, auto)
apply(case_tac b, simp)
apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp)
apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, simp)
apply(simp add: t_ncorrect.simps, auto)
apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp)
apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, auto)
apply(simp add: t_ncorrect.simps, auto)
apply(rule_tac x = "a - length tp1 div 2" in exI, simp)
done
lemma t_shift_in_step:
"\<lbrakk>t_step (a, aa, ba) (tp, length tp1 div 2) = (s, l, r);
t_ncorrect tp1; t_ncorrect tp;
length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + length tp div 2\<rbrakk>
\<Longrightarrow> t_step (a, aa, ba) (tp1 @ tp @ tp2, 0) = (s, l, r)"
apply(simp add: t_step.simps)
apply(subgoal_tac "fetch tp (a - length tp1 div 2) (case ba of [] \<Rightarrow>
Bk | x # xs \<Rightarrow> x)
= fetch (tp1 @ tp @ tp2) a (case ba of [] \<Rightarrow> Bk | x # xs
\<Rightarrow> x)")
apply(case_tac "fetch tp (a - length tp1 div 2) (case ba of [] \<Rightarrow> Bk
| x # xs \<Rightarrow> x)")
apply(auto intro: t_shift_fetch)
apply(case_tac ba, simp, simp)
apply(case_tac aaa, simp, simp)
done
declare add_Suc_right[simp del]
lemma t_step_add: "t_steps c (p, off) (m + n) =
t_steps (t_steps c (p, off) m) (p, off) n"
apply(induct m arbitrary: n, simp add: t_steps.simps, simp)
apply(subgoal_tac "t_steps c (p, off) (Suc (m + n)) =
t_steps c (p, off) (m + Suc n)", simp)
apply(subgoal_tac "t_steps (t_steps c (p, off) m) (p, off) (Suc n) =
t_steps (t_step (t_steps c (p, off) m) (p, off))
(p, off) n")
apply(simp, simp add: stepn)
apply(simp only: t_steps.simps)
apply(simp only: add_Suc_right)
done
declare add_Suc_right[simp]
lemma s_out_fetch: "\<lbrakk>t_ncorrect tp;
\<not> (length tp1 div 2 < a \<and> a \<le> length tp1 div 2 +
length tp div 2)\<rbrakk>
\<Longrightarrow> fetch tp (a - length tp1 div 2) b = (Nop, 0)"
apply(auto)
apply(simp add: fetch.simps)
apply(subgoal_tac "\<exists> x. a - length tp1 div 2 = length tp div 2 + x")
apply(erule exE, simp)
apply(case_tac x, simp)
apply(auto simp add: fetch.simps)
apply(subgoal_tac "2 * (length tp div 2) = length tp")
apply(auto simp: t_ncorrect.simps split: block.splits)
apply(rule_tac x = "a - length tp1 div 2 - length tp div 2" in exI
, simp)
done
lemma conf_keep_step:
"\<lbrakk>t_ncorrect tp;
\<not> (length tp1 div 2 < a \<and> a \<le> length tp1 div 2 +
length tp div 2)\<rbrakk>
\<Longrightarrow> t_step (a, aa, ba) (tp, length tp1 div 2) = (0, aa, ba)"
apply(simp add: t_step.simps)
apply(subgoal_tac "fetch tp (a - length tp1 div 2) (case ba of [] \<Rightarrow>
Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc) = (Nop, 0)")
apply(simp add: new_tape.simps)
apply(rule s_out_fetch, simp, simp)
done
lemma conf_keep:
"\<lbrakk>t_ncorrect tp;
\<not> (length tp1 div 2 < a \<and>
a \<le> length tp1 div 2 + length tp div 2); n > 0\<rbrakk>
\<Longrightarrow> t_steps (a, aa, ba) (tp, length tp1 div 2) n = (0, aa, ba)"
apply(induct n, simp)
apply(case_tac n, simp add: t_steps.simps)
apply(rule_tac conf_keep_step, simp+)
apply(subgoal_tac " t_steps (a, aa, ba)
(tp, length tp1 div 2) (Suc (Suc nat))
= t_step (t_steps (a, aa, ba)
(tp, length tp1 div 2) (Suc nat)) (tp, length tp1 div 2)")
apply(simp)
apply(rule_tac conf_keep_step, simp, simp)
apply(rule stepn)
done
lemma state_bef_inside:
"\<lbrakk>t_ncorrect tp1; t_ncorrect tp;
t_steps (s0, l0, r0) (tp, length tp1 div 2) stp = (s, l, r);
length tp1 div 2 < s0 \<and>
s0 \<le> length tp1 div 2 + length tp div 2;
length tp1 div 2 < s \<and> s \<le> length tp1 div 2 + length tp div 2;
n < stp; t_steps (s0, l0, r0) (tp, length tp1 div 2) n =
(a, aa, ba)\<rbrakk>
\<Longrightarrow> length tp1 div 2 < a \<and>
a \<le> length tp1 div 2 + length tp div 2"
apply(subgoal_tac "\<exists> x. stp = n + x", erule exE)
apply(simp only: t_step_add)
apply(rule classical)
apply(subgoal_tac "t_steps (a, aa, ba)
(tp, length tp1 div 2) x = (0, aa, ba)")
apply(simp)
apply(rule conf_keep, simp, simp, simp)
apply(rule_tac x = "stp - n" in exI, simp)
done
lemma turing_shift_inside:
"\<lbrakk>t_steps (s0, l0, r0) (tp, length tp1 div 2) stp = (s, l, r);
length tp1 div 2 < s0 \<and>
s0 \<le> length tp1 div 2 + length tp div 2;
t_ncorrect tp1; t_ncorrect tp;
length tp1 div 2 < s \<and>
s \<le> length tp1 div 2 + length tp div 2\<rbrakk>
\<Longrightarrow> t_steps (s0, l0, r0) (tp1 @ tp @ tp2, 0) stp = (s, l, r)"
apply(induct stp arbitrary: s l r)
apply(simp add: t_steps.simps)
apply(subgoal_tac " t_steps (s0, l0, r0)
(tp, length tp1 div 2) (Suc stp)
= t_step (t_steps (s0, l0, r0)
(tp, length tp1 div 2) stp) (tp, length tp1 div 2)")
apply(case_tac "t_steps (s0, l0, r0) (tp, length tp1 div 2) stp")
apply(subgoal_tac "length tp1 div 2 < a \<and>
a \<le> length tp1 div 2 + length tp div 2")
apply(subgoal_tac "t_steps (s0, l0, r0)
(tp1 @ tp @ tp2, 0) stp = (a, b, c)")
apply(simp only: stepn, simp)
apply(rule_tac t_shift_in_step, simp+)
defer
apply(rule stepn)
apply(rule_tac n = stp and stp = "Suc stp" and a = a
and aa = b and ba = c in state_bef_inside, simp+)
done
lemma take_Suc_last[elim]: "Suc as \<le> length xs \<Longrightarrow>
take (Suc as) xs = take as xs @ [xs ! as]"
apply(induct xs arbitrary: as, simp, simp)
apply(case_tac as, simp, simp)
done
lemma concat_suc: "Suc as \<le> length xs \<Longrightarrow>
concat (take (Suc as) xs) = concat (take as xs) @ xs! as"
apply(subgoal_tac "take (Suc as) xs = take as xs @ [xs ! as]", simp)
by auto
lemma concat_take_suc_iff: "Suc n \<le> length tps \<Longrightarrow>
concat (take n tps) @ (tps ! n) = concat (take (Suc n) tps)"
apply(drule_tac concat_suc, simp)
done
lemma concat_drop_suc_iff:
"Suc n < length tps \<Longrightarrow> concat (drop (Suc n) tps) =
tps ! Suc n @ concat (drop (Suc (Suc n)) tps)"
apply(induct tps arbitrary: n, simp, simp)
apply(case_tac tps, simp, simp)
apply(case_tac n, simp, simp)
done
declare append_assoc[simp del]
lemma tm_append: "\<lbrakk>n < length tps; tp = tps ! n\<rbrakk> \<Longrightarrow>
\<exists> tp1 tp2. concat tps = tp1 @ tp @ tp2 \<and> tp1 =
concat (take n tps) \<and> tp2 = concat (drop (Suc n) tps)"
apply(rule_tac x = "concat (take n tps)" in exI)
apply(rule_tac x = "concat (drop (Suc n) tps)" in exI)
apply(auto)
apply(induct n, simp)
apply(case_tac tps, simp, simp, simp)
apply(subgoal_tac "concat (take n tps) @ (tps ! n) =
concat (take (Suc n) tps)")
apply(simp only: append_assoc[THEN sym], simp only: append_assoc)
apply(subgoal_tac " concat (drop (Suc n) tps) = tps ! Suc n @
concat (drop (Suc (Suc n)) tps)", simp)
apply(rule_tac concat_drop_suc_iff, simp)
apply(rule_tac concat_take_suc_iff, simp)
done
declare append_assoc[simp]
lemma map_of: "n < length xs \<Longrightarrow> (map f xs) ! n = f (xs ! n)"
by(auto)
lemma [simp]: "length (tms_of aprog) = length aprog"
apply(auto simp: tms_of.simps tpairs_of.simps)
done
lemma ci_nth: "\<lbrakk>ly = layout_of aprog; as < length aprog;
abc_fetch as aprog = Some ins\<rbrakk>
\<Longrightarrow> ci ly (start_of ly as) ins = tms_of aprog ! as"
apply(simp add: tms_of.simps tpairs_of.simps
abc_fetch.simps map_of del: map_append)
done
lemma t_split:"\<lbrakk>
ly = layout_of aprog;
as < length aprog; abc_fetch as aprog = Some ins\<rbrakk>
\<Longrightarrow> \<exists> tp1 tp2. concat (tms_of aprog) =
tp1 @ (ci ly (start_of ly as) ins) @ tp2
\<and> tp1 = concat (take as (tms_of aprog)) \<and>
tp2 = concat (drop (Suc as) (tms_of aprog))"
apply(insert tm_append[of "as" "tms_of aprog"
"ci ly (start_of ly as) ins"], simp)
apply(subgoal_tac "ci ly (start_of ly as) ins = (tms_of aprog) ! as")
apply(subgoal_tac "length (tms_of aprog) = length aprog", simp, simp)
apply(rule_tac ci_nth, auto)
done
lemma math_sub: "\<lbrakk>x >= Suc 0; x - 1 = z\<rbrakk> \<Longrightarrow> x + y - Suc 0 = z + y"
by auto
lemma start_more_one: "as \<noteq> 0 \<Longrightarrow> start_of ly as >= Suc 0"
apply(induct as, simp add: start_of.simps)
apply(case_tac as, auto simp: start_of.simps)
done
lemma tm_ct: "\<lbrakk>abc2t_correct aprog; tp \<in> set (tms_of aprog)\<rbrakk> \<Longrightarrow>
t_ncorrect tp"
apply(simp add: abc2t_correct.simps tms_of.simps)
apply(auto)
apply(simp add:list_all_iff, auto)
done
lemma div_apart: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk>
\<Longrightarrow> (x + y) div 2 = x div 2 + y div 2"
apply(drule mod_eqD)+
apply(auto)
done
lemma div_apart_iff: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk> \<Longrightarrow>
(x + y) mod 2 = 0"
apply(auto)
done
lemma tms_ct: "\<lbrakk>abc2t_correct aprog; n < length aprog\<rbrakk> \<Longrightarrow>
t_ncorrect (concat (take n (tms_of aprog)))"
apply(induct n, simp add: t_ncorrect.simps, simp)
apply(subgoal_tac "concat (take (Suc n) (tms_of aprog)) =
concat (take n (tms_of aprog)) @ (tms_of aprog ! n)", simp)
apply(simp add: t_ncorrect.simps)
apply(rule_tac div_apart_iff, simp)
apply(subgoal_tac "t_ncorrect (tms_of aprog ! n)",
simp add: t_ncorrect.simps)
apply(rule_tac tm_ct, simp)
apply(rule_tac nth_mem, simp add: tms_of.simps tpairs_of.simps)
apply(rule_tac concat_suc, simp add: tms_of.simps tpairs_of.simps)
done
lemma tcorrect_div2: "\<lbrakk>abc2t_correct aprog; Suc as < length aprog\<rbrakk>
\<Longrightarrow> (length (concat (take as (tms_of aprog))) + length (tms_of aprog
! as)) div 2 = length (concat (take as (tms_of aprog))) div 2 +
length (tms_of aprog ! as) div 2"
apply(subgoal_tac "t_ncorrect (tms_of aprog ! as)")
apply(subgoal_tac "t_ncorrect (concat (take as (tms_of aprog)))")
apply(rule_tac div_apart)
apply(rule tct_div2, simp)+
apply(erule_tac tms_ct, simp)
apply(rule_tac tm_ct, simp)
apply(rule_tac nth_mem)
apply(simp add: tms_of.simps tpairs_of.simps)
done
lemma [simp]: "length (layout_of aprog) = length aprog"
apply(auto simp: layout_of.simps)
done
lemma start_of_ind: "\<lbrakk>as < length aprog; ly = layout_of aprog\<rbrakk> \<Longrightarrow>
start_of ly (Suc as) = start_of ly as +
length ((tms_of aprog) ! as) div 2"
apply(simp only: start_of.simps, simp)
apply(auto simp: start_of.simps tms_of.simps layout_of.simps
tpairs_of.simps)
apply(simp add: ci_length)
done
lemma concat_take_suc: "Suc n \<le> length xs \<Longrightarrow>
concat (take (Suc n) xs) = concat (take n xs) @ (xs ! n)"
apply(subgoal_tac "take (Suc n) xs =
take n xs @ [xs ! n]")
apply(auto)
done
lemma ci_length_not0: "Suc 0 <= length (ci ly as i) div 2"
apply(subgoal_tac "length (ci ly as i) div 2 = length_of i")
apply(simp add: length_of.simps split: abc_inst.splits)
apply(rule ci_length)
done
lemma findnth_length2: "length (findnth n) = 4 * n"
apply(induct n, simp)
apply(simp)
done
lemma ci_length2: "length (ci ly as i) = 2 * (length_of i)"
apply(simp add: ci.simps length_of.simps tinc_b_def tdec_b_def
split: abc_inst.splits, auto)
apply(simp add: findnth_length2)+
done
lemma tm_mod2: "as < length aprog \<Longrightarrow>
length (tms_of aprog ! as) mod 2 = 0"
apply(simp add: tms_of.simps)
apply(subgoal_tac "map (\<lambda>(x, y). ci (layout_of aprog) x y)
(tpairs_of aprog) ! as
= (\<lambda>(x, y). ci (layout_of aprog) x y)
((tpairs_of aprog) ! as)", simp)
apply(case_tac "(tpairs_of aprog ! as)", simp)
apply(subgoal_tac "length (ci (layout_of aprog) a b) =
2 * (length_of b)", simp)
apply(rule ci_length2)
apply(rule map_of, simp add: tms_of.simps tpairs_of.simps)
done
lemma tms_mod2: "as \<le> length aprog \<Longrightarrow>
length (concat (take as (tms_of aprog))) mod 2 = 0"
apply(induct as, simp, simp)
apply(subgoal_tac "concat (take (Suc as) (tms_of aprog))
= concat (take as (tms_of aprog)) @
(tms_of aprog ! as)", auto)
apply(rule div_apart_iff, simp, rule tm_mod2, simp)
apply(rule concat_take_suc, simp add: tms_of.simps tpairs_of.simps)
done
lemma [simp]: "\<lbrakk>as < length aprog; (abc_fetch as aprog) = Some ins\<rbrakk>
\<Longrightarrow> ci (layout_of aprog)
(start_of (layout_of aprog) as) (ins) \<in> set (tms_of aprog)"
apply(insert ci_nth[of "layout_of aprog" aprog as], simp)
done
lemma startof_not0: "start_of ly as > 0"
apply(induct as, simp add: start_of.simps)
apply(case_tac as, auto simp: start_of.simps)
done
declare abc_step_l.simps[simp del]
lemma pre_lheq: "\<lbrakk>tp = concat (take as (tms_of aprog));
abc2t_correct aprog; as \<le> length aprog\<rbrakk> \<Longrightarrow>
start_of (layout_of aprog) as - Suc 0 = length tp div 2"
apply(induct as arbitrary: tp, simp add: start_of.simps, simp)
proof -
fix as tp
assume h1: "\<And>tp. tp = concat (take as (tms_of aprog)) \<Longrightarrow>
start_of (layout_of aprog) as - Suc 0 =
length (concat (take as (tms_of aprog))) div 2"
and h2: " abc2t_correct aprog" "Suc as \<le> length aprog"
from h2 show "start_of (layout_of aprog) (Suc as) - Suc 0 =
length (concat (take (Suc as) (tms_of aprog))) div 2"
apply(insert h1[of "concat (take as (tms_of aprog))"], simp)
apply(insert start_of_ind[of as aprog "layout_of aprog"], simp)
apply(subgoal_tac "(take (Suc as) (tms_of aprog)) =
take as (tms_of aprog) @ [(tms_of aprog) ! as]", simp)
apply(subgoal_tac "(length (concat (take as (tms_of aprog))) +
length (tms_of aprog ! as)) div 2
= length (concat (take as (tms_of aprog))) div 2 +
length (tms_of aprog ! as) div 2", simp)
apply(subgoal_tac "start_of (layout_of aprog) as =
length (concat (take as (tms_of aprog))) div 2 + Suc 0", simp)
apply(subgoal_tac "start_of (layout_of aprog) as > 0", simp,
rule_tac startof_not0)
apply(insert tm_mod2[of as aprog], simp)
apply(insert tms_mod2[of as aprog], simp, arith)
apply(rule take_Suc_last, simp)
done
qed
lemma crsp2stateq:
"\<lbrakk>as < length aprog; abc2t_correct aprog;
crsp_l (layout_of aprog) (as, am) (a, aa, ba) inres\<rbrakk> \<Longrightarrow>
a = length (concat (take as (tms_of aprog))) div 2 + 1"
apply(simp add: crsp_l.simps)
apply(insert pre_lheq[of "(concat (take as (tms_of aprog)))" as aprog]
, simp)
apply(subgoal_tac "start_of (layout_of aprog) as > 0",
auto intro: startof_not0)
done
lemma turing_shift_outside:
"\<lbrakk>t_steps (s0, l0, r0) (tp, length tp1 div 2) stp = (s, l, r);
s \<noteq> 0; stp > 0;
length tp1 div 2 < s0 \<and>
s0 \<le> length tp1 div 2 + length tp div 2;
t_ncorrect tp1; t_ncorrect tp;
\<not> (length tp1 div 2 < s \<and>
s \<le> length tp1 div 2 + length tp div 2)\<rbrakk>
\<Longrightarrow> \<exists>stp' > 0. t_steps (s0, l0, r0) (tp1 @ tp @ tp2, 0) stp'
= (s, l, r)"
apply(rule_tac x = stp in exI)
apply(case_tac stp, simp add: t_steps.simps)
apply(simp only: stepn)
apply(case_tac "t_steps (s0, l0, r0) (tp, length tp1 div 2) nat")
apply(subgoal_tac "length tp1 div 2 < a \<and>
a \<le> length tp1 div 2 + length tp div 2")
apply(subgoal_tac "t_steps (s0, l0, r0) (tp1 @ tp @ tp2, 0) nat
= (a, b, c)", simp)
apply(rule_tac t_shift_in_step, simp+)
apply(rule_tac turing_shift_inside, simp+)
apply(rule classical)
apply(subgoal_tac "t_step (a,b,c)
(tp, length tp1 div 2) = (0, b, c)", simp)
apply(rule_tac conf_keep_step, simp+)
done
lemma turing_shift:
"\<lbrakk>t_steps (s0, (l0, r0)) (tp, (length tp1 div 2)) stp
= (s, (l, r)); s \<noteq> 0; stp > 0;
(length tp1 div 2 < s0 \<and> s0 <= length tp1 div 2 + length tp div 2);
t_ncorrect tp1; t_ncorrect tp\<rbrakk> \<Longrightarrow>
\<exists> stp' > 0. t_steps (s0, (l0, r0)) (tp1 @ tp @ tp2, 0) stp' =
(s, (l, r))"
apply(case_tac "s > length tp1 div 2 \<and>
s <= length tp1 div 2 + length tp div 2")
apply(subgoal_tac " t_steps (s0, l0, r0) (tp1 @ tp @ tp2, 0) stp =
(s, l, r)")
apply(rule_tac x = stp in exI, simp)
apply(rule_tac turing_shift_inside, simp+)
apply(rule_tac turing_shift_outside, simp+)
done
lemma inc_startof_not0: "start_of ly as \<ge> Suc 0"
apply(induct as, simp add: start_of.simps)
apply(simp add: start_of.simps)
done
lemma s_crsp:
"\<lbrakk>as < length aprog; abc_fetch as aprog = Some ins;
abc2t_correct aprog;
crsp_l (layout_of aprog) (as, am) (a, aa, ba) inres\<rbrakk> \<Longrightarrow>
length (concat (take as (tms_of aprog))) div 2 < a
\<and> a \<le> length (concat (take as (tms_of aprog))) div 2 +
length (ci (layout_of aprog) (start_of (layout_of aprog) as)
ins) div 2"
apply(subgoal_tac "a = length (concat (take as (tms_of aprog))) div
2 + 1", simp)
apply(rule_tac ci_length_not0)
apply(rule crsp2stateq, simp+)
done
lemma tms_out_ex:
"\<lbrakk>ly = layout_of aprog; tprog = tm_of aprog;
abc2t_correct aprog;
crsp_l ly (as, am) tc inres; as < length aprog;
abc_fetch as aprog = Some ins;
t_steps tc (ci ly (start_of ly as) ins,
(start_of ly as) - 1) n = (s, l, r);
n > 0;
abc_step_l (as, am) (abc_fetch as aprog) = (as', am');
s = start_of ly as'
\<rbrakk>
\<Longrightarrow> \<exists> stp > 0. (t_steps tc (tprog, 0) stp = (s, (l, r)))"
apply(simp only: tm_of.simps)
apply(subgoal_tac "\<exists> tp1 tp2. concat (tms_of aprog) =
tp1 @ (ci ly (start_of ly as) ins) @ tp2
\<and> tp1 = concat (take as (tms_of aprog)) \<and>
tp2 = concat (drop (Suc as) (tms_of aprog))")
apply(erule exE, erule exE, erule conjE, erule conjE,
case_tac tc, simp)
apply(rule turing_shift)
apply(subgoal_tac "start_of (layout_of aprog) as - Suc 0
= length tp1 div 2", simp)
apply(rule_tac pre_lheq, simp, simp, simp)
apply(simp add: startof_not0, simp)
apply(rule_tac s_crsp, simp, simp, simp, simp)
apply(rule tms_ct, simp, simp)
apply(rule tm_ct, simp)
apply(subgoal_tac "ci (layout_of aprog)
(start_of (layout_of aprog) as) ins
= (tms_of aprog ! as)", simp)
apply(simp add: tms_of.simps tpairs_of.simps)
apply(simp add: tms_of.simps tpairs_of.simps abc_fetch.simps)
apply(erule_tac t_split, auto simp: tm_of.simps)
done
(*
subsection {* The compilation of @{text "Inc n"} *}
*)
text {*
The lemmas in this section lead to the correctness of
the compilation of @{text "Inc n"} instruction.
*}
fun at_begin_fst_bwtn :: "inc_inv_t"
where
"at_begin_fst_bwtn (as, lm) (s, l, r) ires =
(\<exists> lm1 tn rn. lm1 = (lm @ (0\<^bsup>tn\<^esup>)) \<and> length lm1 = s \<and>
(if lm1 = [] then l = Bk # Bk # ires
else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = (Bk\<^bsup>rn\<^esup>))"
fun at_begin_fst_awtn :: "inc_inv_t"
where
"at_begin_fst_awtn (as, lm) (s, l, r) ires =
(\<exists> lm1 tn rn. lm1 = (lm @ (0\<^bsup>tn\<^esup>)) \<and> length lm1 = s \<and>
(if lm1 = [] then l = Bk # Bk # ires
else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = [Oc]@Bk\<^bsup>rn\<^esup>
)"
fun at_begin_norm :: "inc_inv_t"
where
"at_begin_norm (as, lm) (s, l, r) ires=
(\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and> length lm1 = s \<and>
(if lm1 = [] then l = Bk # Bk # ires
else l = Bk # <rev lm1> @ Bk# Bk # ires ) \<and> r = <lm2> @ (Bk\<^bsup>rn\<^esup>))"
fun in_middle :: "inc_inv_t"
where
"in_middle (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<^bsup>tn\<^esup> = lm1 @ [m] @ lm2
\<and> length lm1 = s \<and> m + 1 = ml + mr \<and>
ml \<noteq> 0 \<and> tn = s + 1 - length lm \<and>
(if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = (Oc\<^bsup>ml\<^esup>)@[Bk]@<rev lm1>@
Bk # Bk # ires) \<and> (r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2>@ (Bk\<^bsup>rn\<^esup>) \<or>
(lm2 = [] \<and> r = (Oc\<^bsup>mr\<^esup>)))
)"
fun inv_locate_a :: "inc_inv_t"
where "inv_locate_a (as, lm) (s, l, r) ires =
(at_begin_norm (as, lm) (s, l, r) ires \<or>
at_begin_fst_bwtn (as, lm) (s, l, r) ires \<or>
at_begin_fst_awtn (as, lm) (s, l, r) ires
)"
fun inv_locate_b :: "inc_inv_t"
where "inv_locate_b (as, lm) (s, l, r) ires =
(in_middle (as, lm) (s, l, r)) ires "
fun inv_after_write :: "inc_inv_t"
where "inv_after_write (as, lm) (s, l, r) ires =
(\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and>
(if lm1 = [] then l = Oc\<^bsup>m\<^esup> @ Bk # Bk # ires
else Oc # l = Oc\<^bsup>Suc m \<^esup>@ Bk # <rev lm1> @
Bk # Bk # ires) \<and> r = [Oc] @ <lm2> @ (Bk\<^bsup>rn\<^esup>))"
fun inv_after_move :: "inc_inv_t"
where "inv_after_move (as, lm) (s, l, r) ires =
(\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and>
(if lm1 = [] then l = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # ires
else l = Oc\<^bsup>Suc m\<^esup>@ Bk # <rev lm1> @ Bk # Bk # ires) \<and>
r = <lm2> @ (Bk\<^bsup>rn\<^esup>))"
fun inv_after_clear :: "inc_inv_t"
where "inv_after_clear (as, lm) (s, l, r) ires =
(\<exists> rn m lm1 lm2 r'. lm = lm1 @ m # lm2 \<and>
(if lm1 = [] then l = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # ires
else l = Oc\<^bsup>Suc m\<^esup>@ Bk # <rev lm1> @ Bk # Bk # ires) \<and>
r = Bk # r' \<and> Oc # r' = <lm2> @ (Bk\<^bsup>rn\<^esup>))"
fun inv_on_right_moving :: "inc_inv_t"
where "inv_on_right_moving (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = m \<and>
(if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = (Oc\<^bsup>ml\<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
((r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2> @ (Bk\<^bsup>rn\<^esup>)) \<or>
(r = (Oc\<^bsup>mr\<^esup>) \<and> lm2 = [])))"
fun inv_on_left_moving_norm :: "inc_inv_t"
where "inv_on_left_moving_norm (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc m \<and> mr > 0 \<and> (if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = (Oc\<^bsup>ml\<^esup>) @ Bk # <rev lm1> @ Bk # Bk # ires)
\<and> (r = (Oc\<^bsup>mr\<^esup>) @ Bk # <lm2> @ (Bk\<^bsup>rn\<^esup>) \<or>
(lm2 = [] \<and> r = Oc\<^bsup>mr\<^esup>)))"
fun inv_on_left_moving_in_middle_B:: "inc_inv_t"
where "inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and>
(if lm1 = [] then l = Bk # ires
else l = <rev lm1> @ Bk # Bk # ires) \<and>
r = Bk # <lm2> @ (Bk\<^bsup>rn\<^esup>))"
fun inv_on_left_moving :: "inc_inv_t"
where "inv_on_left_moving (as, lm) (s, l, r) ires =
(inv_on_left_moving_norm (as, lm) (s, l, r) ires \<or>
inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires)"
fun inv_check_left_moving_on_leftmost :: "inc_inv_t"
where "inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires =
(\<exists> rn. l = ires \<and> r = [Bk, Bk] @ <lm> @ (Bk\<^bsup>rn\<^esup>))"
fun inv_check_left_moving_in_middle :: "inc_inv_t"
where "inv_check_left_moving_in_middle (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 r' rn. lm = lm1 @ lm2 \<and>
(Oc # l = <rev lm1> @ Bk # Bk # ires) \<and> r = Oc # Bk # r' \<and>
r' = <lm2> @ (Bk\<^bsup>rn\<^esup>))"
fun inv_check_left_moving :: "inc_inv_t"
where "inv_check_left_moving (as, lm) (s, l, r) ires =
(inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires \<or>
inv_check_left_moving_in_middle (as, lm) (s, l, r) ires)"
fun inv_after_left_moving :: "inc_inv_t"
where "inv_after_left_moving (as, lm) (s, l, r) ires=
(\<exists> rn. l = Bk # ires \<and> r = Bk # <lm> @ (Bk\<^bsup>rn\<^esup>))"
fun inv_stop :: "inc_inv_t"
where "inv_stop (as, lm) (s, l, r) ires=
(\<exists> rn. l = Bk # Bk # ires \<and> r = <lm> @ (Bk\<^bsup>rn\<^esup>))"
fun inc_inv :: "layout \<Rightarrow> nat \<Rightarrow> inc_inv_t"
where
"inc_inv ly n (as, lm) (s, l, r) ires =
(let ss = start_of ly as in
let lm' = abc_lm_s lm n ((abc_lm_v lm n)+1) in
if s = 0 then False
else if s < ss then False
else if s < ss + 2 * n then
if (s - ss) mod 2 = 0 then
inv_locate_a (as, lm) ((s - ss) div 2, l, r) ires
else inv_locate_b (as, lm) ((s - ss) div 2, l, r) ires
else if s = ss + 2 * n then
inv_locate_a (as, lm) (n, l, r) ires
else if s = ss + 2 * n + 1 then
inv_locate_b (as, lm) (n, l, r) ires
else if s = ss + 2 * n + 2 then
inv_after_write (as, lm') (s - ss, l, r) ires
else if s = ss + 2 * n + 3 then
inv_after_move (as, lm') (s - ss, l, r) ires
else if s = ss + 2 * n + 4 then
inv_after_clear (as, lm') (s - ss, l, r) ires
else if s = ss + 2 * n + 5 then
inv_on_right_moving (as, lm') (s - ss, l, r) ires
else if s = ss + 2 * n + 6 then
inv_on_left_moving (as, lm') (s - ss, l, r) ires
else if s = ss + 2 * n + 7 then
inv_check_left_moving (as, lm') (s - ss, l, r) ires
else if s = ss + 2 * n + 8 then
inv_after_left_moving (as, lm') (s - ss, l, r) ires
else if s = ss + 2 * n + 9 then
inv_stop (as, lm') (s - ss, l, r) ires
else False) "
lemma fetch_intro:
"\<lbrakk>\<And>xs.\<lbrakk>ba = Oc # xs\<rbrakk> \<Longrightarrow> P (fetch prog i Oc);
\<And>xs.\<lbrakk>ba = Bk # xs\<rbrakk> \<Longrightarrow> P (fetch prog i Bk);
ba = [] \<Longrightarrow> P (fetch prog i Bk)
\<rbrakk> \<Longrightarrow> P (fetch prog i
(case ba of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))"
by (auto split:list.splits block.splits)
lemma length_findnth[simp]: "length (findnth n) = 4 * n"
apply(induct n, simp)
apply(simp)
done
declare tshift.simps[simp del]
declare findnth.simps[simp del]
lemma findnth_nth:
"\<lbrakk>n > q; x < 4\<rbrakk> \<Longrightarrow>
(findnth n) ! (4 * q + x) = (findnth (Suc q) ! (4 * q + x))"
apply(induct n, simp)
apply(case_tac "q < n", simp add: findnth.simps, auto)
apply(simp add: nth_append)
apply(subgoal_tac "q = n", simp)
apply(arith)
done
lemma Suc_pre[simp]: "\<not> a < start_of ly as \<Longrightarrow>
(Suc a - start_of ly as) = Suc (a - start_of ly as)"
apply(arith)
done
lemma fetch_locate_a_o: "
\<And>a q xs.
\<lbrakk>\<not> a < start_of (layout_of aprog) as;
a < start_of (layout_of aprog) as + 2 * n;
a - start_of (layout_of aprog) as = 2 * q;
start_of (layout_of aprog) as > 0\<rbrakk>
\<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Inc n)) (Suc (2 * q)) Oc) = (R, a+1)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append Suc_pre)
apply(subgoal_tac "(findnth n ! Suc (4 * q)) =
findnth (Suc q) ! (4 * q + 1)")
apply(simp add: findnth.simps nth_append)
apply(subgoal_tac " findnth n !(4 * q + 1) =
findnth (Suc q) ! (4 * q + 1)", simp)
apply(rule_tac findnth_nth, auto)
done
lemma fetch_locate_a_b: "
\<And>a q xs.
\<lbrakk>abc_fetch as aprog = Some (Inc n);
\<not> a < start_of (layout_of aprog) as;
a < start_of (layout_of aprog) as + 2 * n;
a - start_of (layout_of aprog) as = 2 * q;
start_of (layout_of aprog) as > 0\<rbrakk>
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (Suc (2 * q)) Bk)
= (W1, a)"
apply(auto simp: ci.simps findnth.simps fetch.simps
tshift.simps nth_append)
apply(subgoal_tac "(findnth n ! (4 * q)) =
findnth (Suc q) ! (4 * q )")
apply(simp add: findnth.simps nth_append)
apply(subgoal_tac " findnth n !(4 * q + 0) =
findnth (Suc q) ! (4 * q + 0)", simp)
apply(rule_tac findnth_nth, auto)
done
lemma [intro]: "x mod 2 = Suc 0 \<Longrightarrow> \<exists> q. x = Suc (2 * q)"
apply(drule mod_eqD, auto)
done
lemma add3_Suc: "x + 3 = Suc (Suc (Suc x))"
apply(arith)
done
declare start_of.simps[simp]
(*
lemma layout_not0: "start_of ly as > 0"
by(induct as, auto)
*)
lemma [simp]:
"\<lbrakk>\<not> a < start_of (layout_of aprog) as;
a - start_of (layout_of aprog) as = Suc (2 * q);
abc_fetch as aprog = Some (Inc n);
start_of (layout_of aprog) as > 0\<rbrakk>
\<Longrightarrow> Suc (Suc (2 * q + start_of (layout_of aprog) as - Suc 0)) = a"
apply(subgoal_tac
"Suc (Suc (2 * q + start_of (layout_of aprog) as - Suc 0))
= 2 + 2 * q + start_of (layout_of aprog) as - Suc 0",
simp, simp add: inc_startof_not0)
done
lemma fetch_locate_b_o: "
\<And>a xs.
\<lbrakk>0 < a; \<not> a < start_of (layout_of aprog) as;
a < start_of (layout_of aprog) as + 2 * n;
(a - start_of (layout_of aprog) as) mod 2 = Suc 0;
start_of (layout_of aprog) as > 0\<rbrakk>
\<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Inc n)) (Suc (a - start_of (layout_of aprog) as)) Oc) = (R, a)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append)
apply(subgoal_tac "\<exists> q. (a - start_of (layout_of aprog) as) =
2 * q + 1", auto)
apply(subgoal_tac "(findnth n ! Suc (Suc (Suc (4 * q))))
= findnth (Suc q) ! (4 * q + 3)")
apply(simp add: findnth.simps nth_append)
apply(subgoal_tac " findnth n ! (4 * q + 3) =
findnth (Suc q) ! (4 * q + 3)", simp add: add3_Suc)
apply(rule_tac findnth_nth, auto)
done
lemma fetch_locate_b_b: "
\<And>a xs.
\<lbrakk>0 < a; \<not> a < start_of (layout_of aprog) as;
a < start_of (layout_of aprog) as + 2 * n;
(a - start_of (layout_of aprog) as) mod 2 = Suc 0;
start_of (layout_of aprog) as > 0\<rbrakk>
\<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Inc n)) (Suc (a - start_of (layout_of aprog) as)) Bk)
= (R, a + 1)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append)
apply(subgoal_tac "\<exists> q. (a - start_of (layout_of aprog) as) =
2 * q + 1", auto)
apply(subgoal_tac "(findnth n ! Suc ((Suc (4 * q)))) =
findnth (Suc q) ! (4 * q + 2)")
apply(simp add: findnth.simps nth_append)
apply(subgoal_tac " findnth n ! (4 * q + 2) =
findnth (Suc q) ! (4 * q + 2)", simp)
apply(rule_tac findnth_nth, auto)
done
lemma fetch_locate_n_a_o:
"start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (Suc (2 * n)) Oc) =
(R, start_of (layout_of aprog) as + 2 * n + 1)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tinc_b_def)
done
lemma fetch_locate_n_a_b: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (Suc (2 * n)) Bk)
= (W1, start_of (layout_of aprog) as + 2 * n)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tinc_b_def)
done
lemma fetch_locate_n_b_o: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Inc n)) (Suc (Suc (2 * n))) Oc) =
(R, start_of (layout_of aprog) as + 2 * n + 1)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tinc_b_def)
done
lemma fetch_locate_n_b_b: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Inc n)) (Suc (Suc (2 * n))) Bk) =
(W1, start_of (layout_of aprog) as + 2 * n + 2)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tinc_b_def)
done
lemma fetch_after_write_o: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Inc n)) (Suc (Suc (Suc (2 * n)))) Oc) =
(R, start_of (layout_of aprog) as + 2*n + 3)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tinc_b_def)
done
lemma fetch_after_move_o: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (4 + 2 * n) Oc)
= (W0, start_of (layout_of aprog) as + 2 * n + 4)"
apply(auto simp: ci.simps findnth.simps tshift.simps
tinc_b_def add3_Suc)
apply(subgoal_tac "4 + 2*n = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_after_move_b: "
start_of (layout_of aprog) as > 0
\<Longrightarrow>(fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (4 + 2 * n) Bk)
= (L, start_of (layout_of aprog) as + 2 * n + 6)"
apply(auto simp: ci.simps findnth.simps tshift.simps
tinc_b_def add3_Suc)
apply(subgoal_tac "4 + 2*n = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_clear_b: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (5 + 2 * n) Bk)
= (R, start_of (layout_of aprog) as + 2 * n + 5)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tinc_b_def add3_Suc)
apply(subgoal_tac "5 + 2*n = Suc (2*n + 4)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_right_move_o: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (6 + 2*n) Oc)
= (R, start_of (layout_of aprog) as + 2 * n + 5)"
apply(auto simp: ci.simps findnth.simps tshift.simps
tinc_b_def add3_Suc)
apply(subgoal_tac "6 + 2*n = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_right_move_b: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (6 + 2*n) Bk)
= (W1, start_of (layout_of aprog) as + 2 * n + 2)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tinc_b_def add3_Suc)
apply(subgoal_tac "6 + 2*n = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_left_move_o: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (7 + 2*n) Oc)
= (L, start_of (layout_of aprog) as + 2 * n + 6)"
apply(auto simp: ci.simps findnth.simps tshift.simps
tinc_b_def add3_Suc)
apply(subgoal_tac "7 + 2*n = Suc (2*n + 6)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_left_move_b: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (7 + 2*n) Bk)
= (L, start_of (layout_of aprog) as + 2 * n + 7)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tinc_b_def add3_Suc)
apply(subgoal_tac "7 + 2*n = Suc (2*n + 6)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_check_left_move_o: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (8 + 2*n) Oc)
= (L, start_of (layout_of aprog) as + 2 * n + 6)"
apply(auto simp: ci.simps findnth.simps tshift.simps tinc_b_def)
apply(subgoal_tac "8 + 2 * n = Suc (2 * n + 7)",
simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_check_left_move_b: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (8 + 2*n) Bk)
= (R, start_of (layout_of aprog) as + 2 * n + 8) "
apply(auto simp: ci.simps findnth.simps
tshift.simps tinc_b_def add3_Suc)
apply(subgoal_tac "8 + 2*n= Suc (2*n + 7)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma fetch_after_left_move: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (9 + 2*n) Bk)
= (R, start_of (layout_of aprog) as + 2 * n + 9)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tinc_b_def)
done
lemma fetch_stop: "
start_of (layout_of aprog) as > 0
\<Longrightarrow> (fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) (10 + 2 *n) b)
= (Nop, 0)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tinc_b_def
split: block.splits)
done
lemma fetch_state0: "
(fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n)) 0 b)
= (Nop, 0)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tinc_b_def)
done
lemmas fetch_simps =
fetch_locate_a_o fetch_locate_a_b fetch_locate_b_o fetch_locate_b_b
fetch_locate_n_a_b fetch_locate_n_a_o fetch_locate_n_b_o
fetch_locate_n_b_b fetch_after_write_o fetch_after_move_o
fetch_after_move_b fetch_clear_b fetch_right_move_o
fetch_right_move_b fetch_left_move_o fetch_left_move_b
fetch_after_left_move fetch_check_left_move_o fetch_stop
fetch_state0 fetch_check_left_move_b
text {* *}
declare exponent_def[simp del] tape_of_nat_list.simps[simp del]
at_begin_norm.simps[simp del] at_begin_fst_bwtn.simps[simp del]
at_begin_fst_awtn.simps[simp del] in_middle.simps[simp del]
abc_lm_s.simps[simp del] abc_lm_v.simps[simp del]
ci.simps[simp del] t_step.simps[simp del]
inv_after_move.simps[simp del]
inv_on_left_moving_norm.simps[simp del]
inv_on_left_moving_in_middle_B.simps[simp del]
inv_after_clear.simps[simp del]
inv_after_write.simps[simp del] inv_on_left_moving.simps[simp del]
inv_on_right_moving.simps[simp del]
inv_check_left_moving.simps[simp del]
inv_check_left_moving_in_middle.simps[simp del]
inv_check_left_moving_on_leftmost.simps[simp del]
inv_after_left_moving.simps[simp del]
inv_stop.simps[simp del] inv_locate_a.simps[simp del]
inv_locate_b.simps[simp del]
declare tms_of.simps[simp del] tm_of.simps[simp del]
layout_of.simps[simp del] abc_fetch.simps [simp del]
t_step.simps[simp del] t_steps.simps[simp del]
tpairs_of.simps[simp del] start_of.simps[simp del]
fetch.simps [simp del] new_tape.simps [simp del]
nth_of.simps [simp del] ci.simps [simp del]
length_of.simps[simp del]
(*! Start point *)
lemma [simp]: "Suc (2 * q) mod 2 = Suc 0"
by arith
lemma [simp]: "Suc (2 * q) div 2 = q"
by arith
lemma [simp]: "\<lbrakk> \<not> a < start_of ly as;
a < start_of ly as + 2 * n; a - start_of ly as = 2 * q\<rbrakk>
\<Longrightarrow> Suc a < start_of ly as + 2 * n"
apply(arith)
done
lemma [simp]: "x mod 2 = Suc 0 \<Longrightarrow> (Suc x) mod 2 = 0"
by arith
lemma [simp]: "x mod 2 = Suc 0 \<Longrightarrow> (Suc x) div 2 = Suc (x div 2)"
by arith
lemma exp_def[simp]: "a\<^bsup>Suc n \<^esup>= a # a\<^bsup>n\<^esup>"
by(simp add: exponent_def)
lemma [intro]: "Bk # r = Oc\<^bsup>mr\<^esup> @ r' \<Longrightarrow> mr = 0"
by(case_tac mr, auto simp: exponent_def)
lemma [intro]: "Bk # r = replicate mr Oc \<Longrightarrow> mr = 0"
by(case_tac mr, auto)
lemma tape_of_nl_abv_cons[simp]: "xs \<noteq> [] \<Longrightarrow>
<x # xs> = Oc\<^bsup>Suc x\<^esup>@ Bk # <xs>"
apply(simp add: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac xs, simp, simp add: tape_of_nat_list.simps)
done
lemma [simp]: "<[]::nat list> = []"
by(auto simp: tape_of_nl_abv tape_of_nat_list.simps)
lemma [simp]: "Oc # r = <(lm::nat list)> @ Bk\<^bsup>rn\<^esup>\<Longrightarrow> lm \<noteq> []"
apply(auto simp: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac rn, auto simp: exponent_def)
done
lemma BkCons_nil: "Bk # xs = <lm::nat list> @ Bk\<^bsup>rn\<^esup>\<Longrightarrow> lm = []"
apply(case_tac lm, simp)
apply(case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps)
done
lemma BkCons_nil': "Bk # xs = <lm::nat list> @ Bk\<^bsup>ln\<^esup>\<Longrightarrow> lm = []"
by(auto intro: BkCons_nil)
lemma hd_tl_tape_of_nat_list:
"tl (lm::nat list) \<noteq> [] \<Longrightarrow> <lm> = <hd lm> @ Bk # <tl lm>"
apply(frule tape_of_nl_abv_cons[of "tl lm" "hd lm"])
apply(simp add: tape_of_nat_abv Bk_def del: tape_of_nl_abv_cons)
apply(subgoal_tac "lm = hd lm # tl lm", auto)
apply(case_tac lm, auto)
done
lemma [simp]: "Oc # xs = Oc\<^bsup>mr\<^esup> @ Bk # <lm2> @ Bk\<^bsup>rn\<^esup>\<Longrightarrow> mr > 0"
apply(case_tac mr, auto simp: exponent_def)
done
lemma tape_of_nat_list_cons: "xs \<noteq> [] \<Longrightarrow> tape_of_nat_list (x # xs) =
replicate (Suc x) Oc @ Bk # tape_of_nat_list xs"
apply(drule tape_of_nl_abv_cons[of xs x])
apply(auto simp: tape_of_nl_abv tape_of_nat_abv Oc_def Bk_def exponent_def)
done
lemma rev_eq: "rev xs = rev ys \<Longrightarrow> xs = ys"
by simp
lemma tape_of_nat_list_eq: " xs = ys \<Longrightarrow>
tape_of_nat_list xs = tape_of_nat_list ys"
by simp
lemma tape_of_nl_nil_eq: "<(lm::nat list)> = [] = (lm = [])"
apply(simp add: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac lm, simp add: tape_of_nat_list.simps)
apply(case_tac "list")
apply(auto simp: tape_of_nat_list.simps)
done
lemma rep_ind: "replicate (Suc n) a = replicate n a @ [a]"
apply(induct n, simp, simp)
done
lemma [simp]: "Oc # r = <lm::nat list> @ replicate rn Bk \<Longrightarrow> Suc 0 \<le> length lm"
apply(rule_tac classical, auto)
apply(case_tac lm, simp, case_tac rn, auto)
done
lemma Oc_Bk_Cons: "Oc # Bk # list = <lm::nat list> @ Bk\<^bsup>ln\<^esup> \<Longrightarrow>
lm \<noteq> [] \<and> hd lm = 0"
apply(case_tac lm, simp, case_tac ln, simp add: exponent_def, simp add: exponent_def, simp)
apply(case_tac lista, auto simp: tape_of_nl_abv tape_of_nat_list.simps)
done
(*lemma Oc_Oc_Cons: "Oc # Oc # list = <lm::nat list> @ Bk\<^bsup>ln\<^esup> \<Longrightarrow>
lm \<noteq> [] \<and> hd lm > 0"
apply(case_tac lm, simp add: exponent_def, case_tac ln, simp, simp)
apply(case_tac lista,
auto simp: tape_of_nl_abv tape_of_nat_list.simps exponent_def)
apply(case_tac [!] a, auto)
apply(case_tac ln, auto)
done
*)
lemma Oc_nil_zero[simp]: "[Oc] = <lm::nat list> @ Bk\<^bsup>ln\<^esup>
\<Longrightarrow> lm = [0] \<and> ln = 0"
apply(case_tac lm, simp)
apply(case_tac ln, auto simp: exponent_def)
apply(case_tac [!] list,
auto simp: tape_of_nl_abv tape_of_nat_list.simps)
done
lemma [simp]: "Oc # r = <lm2> @ replicate rn Bk \<Longrightarrow>
(\<exists>rn. r = replicate (hd lm2) Oc @ Bk # <tl lm2> @
replicate rn Bk) \<or>
tl lm2 = [] \<and> r = replicate (hd lm2) Oc"
apply(rule_tac disjCI, simp)
apply(case_tac "tl lm2 = []", simp)
apply(case_tac lm2, simp add: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac rn, simp, simp, simp)
apply(simp add: tape_of_nl_abv tape_of_nat_list.simps exponent_def)
apply(case_tac rn, simp, simp)
apply(rule_tac x = rn in exI)
apply(simp add: hd_tl_tape_of_nat_list)
apply(simp add: tape_of_nat_abv Oc_def exponent_def)
done
(*inv: from locate_a to locate_b*)
lemma [simp]:
"inv_locate_a (as, lm) (q, l, Oc # r) ires
\<Longrightarrow> inv_locate_b (as, lm) (q, Oc # l, r) ires"
apply(simp only: inv_locate_a.simps inv_locate_b.simps in_middle.simps
at_begin_norm.simps at_begin_fst_bwtn.simps
at_begin_fst_awtn.simps)
apply(erule disjE, erule exE, erule exE, erule exE)
apply(rule_tac x = lm1 in exI, rule_tac x = "tl lm2" in exI, simp)
apply(rule_tac x = "0" in exI, rule_tac x = "hd lm2" in exI,
auto simp: exponent_def)
apply(rule_tac x = "Suc 0" in exI, simp add:exponent_def)
apply(rule_tac x = "lm @ replicate tn 0" in exI,
rule_tac x = "[]" in exI,
rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI)
apply(simp only: rep_ind, simp)
apply(rule_tac x = "Suc 0" in exI, auto)
apply(case_tac [1-3] rn, simp_all )
apply(rule_tac x = "lm @ replicate tn 0" in exI,
rule_tac x = "[]" in exI,
rule_tac x = "Suc tn" in exI,
rule_tac x = 0 in exI, simp add: rep_ind del: replicate_Suc split:if_splits)
apply(rule_tac x = "Suc 0" in exI, auto)
apply(case_tac rn, simp, simp)
apply(rule_tac [!] x = "Suc 0" in exI, auto)
apply(case_tac [!] rn, simp_all)
done
(*inv: from locate_a to _locate_a*)
lemma locate_a_2_locate_a[simp]: "inv_locate_a (as, am) (q, aaa, Bk # xs) ires
\<Longrightarrow> inv_locate_a (as, am) (q, aaa, Oc # xs) ires"
apply(simp only: inv_locate_a.simps at_begin_norm.simps
at_begin_fst_bwtn.simps at_begin_fst_awtn.simps)
apply(erule_tac disjE, erule exE, erule exE, erule exE,
rule disjI2, rule disjI2)
defer
apply(erule_tac disjE, erule exE, erule exE,
erule exE, rule disjI2, rule disjI2)
prefer 2
apply(simp)
proof-
fix lm1 tn rn
assume k: "lm1 = am @ 0\<^bsup>tn\<^esup> \<and> length lm1 = q \<and> (if lm1 = [] then aaa = Bk # Bk #
ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Bk # xs = Bk\<^bsup>rn\<^esup>"
thus "\<exists>lm1 tn rn. lm1 = am @ 0\<^bsup>tn\<^esup> \<and> length lm1 = q \<and> (if lm1 = [] then
aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Oc # xs = [Oc] @ Bk\<^bsup>rn\<^esup>"
(is "\<exists>lm1 tn rn. ?P lm1 tn rn")
proof -
from k have "?P lm1 tn (rn - 1)"
apply(auto simp: Oc_def)
by(case_tac [!] "rn::nat", auto simp: exponent_def)
thus ?thesis by blast
qed
next
fix lm1 lm2 rn
assume h1: "am = lm1 @ lm2 \<and> length lm1 = q \<and> (if lm1 = []
then aaa = Bk # Bk # ires else aaa = Bk # <rev lm1> @ Bk # Bk # ires) \<and>
Bk # xs = <lm2> @ Bk\<^bsup>rn\<^esup>"
from h1 have h2: "lm2 = []"
proof(rule_tac xs = xs and rn = rn in BkCons_nil, simp)
qed
from h1 and h2 show "\<exists>lm1 tn rn. lm1 = am @ 0\<^bsup>tn\<^esup> \<and> length lm1 = q \<and>
(if lm1 = [] then aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
Oc # xs = [Oc] @ Bk\<^bsup>rn\<^esup>"
(is "\<exists>lm1 tn rn. ?P lm1 tn rn")
proof -
from h1 and h2 have "?P lm1 0 (rn - 1)"
apply(auto simp: Oc_def exponent_def
tape_of_nl_abv tape_of_nat_list.simps)
by(case_tac "rn::nat", simp, simp)
thus ?thesis by blast
qed
qed
lemma [intro]: "\<exists>rn. [a] = a\<^bsup>rn\<^esup>"
by(rule_tac x = "Suc 0" in exI, simp add: exponent_def)
lemma [intro]: "\<exists>tn. [] = a\<^bsup>tn\<^esup>"
apply(rule_tac x = 0 in exI, simp add: exponent_def)
done
lemma [intro]: "at_begin_norm (as, am) (q, aaa, []) ires
\<Longrightarrow> at_begin_norm (as, am) (q, aaa, [Bk]) ires"
apply(simp add: at_begin_norm.simps, erule_tac exE, erule_tac exE)
apply(rule_tac x = lm1 in exI, simp, auto)
done
lemma [intro]: "at_begin_fst_bwtn (as, am) (q, aaa, []) ires
\<Longrightarrow> at_begin_fst_bwtn (as, am) (q, aaa, [Bk]) ires"
apply(simp only: at_begin_fst_bwtn.simps, erule_tac exE, erule_tac exE, erule_tac exE)
apply(rule_tac x = "am @ 0\<^bsup>tn\<^esup>" in exI, auto)
done
lemma [intro]: "at_begin_fst_awtn (as, am) (q, aaa, []) ires
\<Longrightarrow> at_begin_fst_awtn (as, am) (q, aaa, [Bk]) ires"
apply(auto simp: at_begin_fst_awtn.simps)
done
lemma [intro]: "inv_locate_a (as, am) (q, aaa, []) ires
\<Longrightarrow> inv_locate_a (as, am) (q, aaa, [Bk]) ires"
apply(simp only: inv_locate_a.simps)
apply(erule disj_forward)
defer
apply(erule disj_forward, auto)
done
lemma [simp]: "inv_locate_a (as, am) (q, aaa, []) ires \<Longrightarrow>
inv_locate_a (as, am) (q, aaa, [Oc]) ires"
apply(insert locate_a_2_locate_a [of as am q aaa "[]"])
apply(subgoal_tac "inv_locate_a (as, am) (q, aaa, [Bk]) ires", auto)
done
(*inv: from locate_b to locate_b*)
lemma [simp]: "inv_locate_b (as, am) (q, aaa, Oc # xs) ires
\<Longrightarrow> inv_locate_b (as, am) (q, Oc # aaa, xs) ires"
apply(simp only: inv_locate_b.simps in_middle.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = tn in exI, rule_tac x = m in exI)
apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - 1" in exI,
rule_tac x = rn in exI)
apply(case_tac mr, simp_all add: exponent_def, auto)
done
lemma zero_and_nil[intro]: "(Bk # Bk\<^bsup>n\<^esup> = Oc\<^bsup>mr\<^esup> @ Bk # <lm::nat list> @
Bk\<^bsup>rn \<^esup>) \<or> (lm2 = [] \<and> Bk # Bk\<^bsup>n\<^esup> = Oc\<^bsup>mr\<^esup>)
\<Longrightarrow> mr = 0 \<and> lm = []"
apply(rule context_conjI)
apply(case_tac mr, auto simp:exponent_def)
apply(insert BkCons_nil[of "replicate (n - 1) Bk" lm rn])
apply(case_tac n, auto simp: exponent_def Bk_def tape_of_nl_nil_eq)
done
lemma tape_of_nat_def: "<[m::nat]> = Oc # Oc\<^bsup>m\<^esup>"
apply(simp add: tape_of_nl_abv tape_of_nat_list.simps)
done
lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires; \<exists>n. xs = Bk\<^bsup>n\<^esup>\<rbrakk>
\<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
apply(simp add: inv_locate_b.simps inv_locate_a.simps)
apply(rule_tac disjI2, rule_tac disjI1)
apply(simp only: in_middle.simps at_begin_fst_bwtn.simps)
apply(erule_tac exE)+
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = tn in exI, simp)
apply(subgoal_tac "mr = 0 \<and> lm2 = []")
defer
apply(rule_tac n = n and mr = mr and lm = "lm2"
and rn = rn and n = n in zero_and_nil)
apply(auto simp: exponent_def)
apply(case_tac "lm1 = []", auto simp: tape_of_nat_def)
done
lemma length_equal: "xs = ys \<Longrightarrow> length xs = length ys"
by auto
lemma [simp]: "a\<^bsup>0\<^esup> = []"
by(simp add: exp_zero)
(*inv: from locate_b to locate_a*)
lemma [simp]: "length (a\<^bsup>b\<^esup>) = b"
apply(simp add: exponent_def)
done
lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires;
\<not> (\<exists>n. xs = Bk\<^bsup>n\<^esup>)\<rbrakk>
\<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
apply(simp add: inv_locate_b.simps inv_locate_a.simps)
apply(rule_tac disjI1)
apply(simp only: in_middle.simps at_begin_norm.simps)
apply(erule_tac exE)+
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = lm2 in exI, simp)
apply(subgoal_tac "tn = 0", simp add: exponent_def , auto split: if_splits)
apply(case_tac [!] mr, simp_all add: tape_of_nat_def, auto)
apply(case_tac lm2, simp, erule_tac x = rn in allE, simp)
apply(case_tac am, simp, simp)
apply(case_tac lm2, simp, erule_tac x = rn in allE, simp)
apply(drule_tac length_equal, simp)
done
lemma locate_b_2_a[intro]:
"inv_locate_b (as, am) (q, aaa, Bk # xs) ires
\<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
apply(case_tac "\<exists> n. xs = Bk\<^bsup>n\<^esup>", simp, simp)
done
lemma locate_b_2_locate_a[simp]:
"\<lbrakk>\<not> a < start_of ly as;
a < start_of ly as + 2 * n;
(a - start_of ly as) mod 2 = Suc 0;
inv_locate_b (as, am) ((a - start_of ly as) div 2, aaa, Bk # xs) ires\<rbrakk>
\<Longrightarrow> (Suc a < start_of ly as + 2 * n \<longrightarrow> inv_locate_a (as, am)
(Suc ((a - start_of ly as) div 2), Bk # aaa, xs) ires) \<and>
(\<not> Suc a < start_of ly as + 2 * n \<longrightarrow>
inv_locate_a (as, am) (n, Bk # aaa, xs) ires)"
apply(auto)
apply(subgoal_tac "n > 0")
apply(subgoal_tac "(a - start_of ly as) div 2 = n - 1")
apply(insert locate_b_2_a [of as am "n - 1" aaa xs], simp)
apply(arith)
apply(case_tac n, simp, simp)
done
lemma [simp]: "inv_locate_b (as, am) (q, l, []) ires
\<Longrightarrow> inv_locate_b (as, am) (q, l, [Bk]) ires"
apply(simp only: inv_locate_b.simps in_middle.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = tn in exI, rule_tac x = m in exI,
rule_tac x = ml in exI, rule_tac x = mr in exI)
apply(auto)
done
lemma locate_b_2_locate_a_B[simp]:
"\<lbrakk>\<not> a < start_of ly as;
a < start_of ly as + 2 * n;
(a - start_of ly as) mod 2 = Suc 0;
inv_locate_b (as, am) ((a - start_of ly as) div 2, aaa, []) ires\<rbrakk>
\<Longrightarrow> (Suc a < start_of ly as + 2 * n \<longrightarrow>
inv_locate_a (as, am)
(Suc ((a - start_of ly as) div 2), Bk # aaa, []) ires)
\<and> (\<not> Suc a < start_of ly as + 2 * n \<longrightarrow>
inv_locate_a (as, am) (n, Bk # aaa, []) ires)"
apply(insert locate_b_2_locate_a [of a ly as n am aaa "[]"], simp)
done
(*inv: from locate_b to after_write*)
lemma inv_locate_b_2_after_write[simp]:
"inv_locate_b (as, am) (n, aaa, Bk # xs) ires
\<Longrightarrow> inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)))
(Suc (Suc (2 * n)), aaa, Oc # xs) ires"
apply(auto simp: in_middle.simps inv_after_write.simps
abc_lm_v.simps abc_lm_s.simps inv_locate_b.simps)
apply(subgoal_tac [!] "mr = 0", auto simp: exponent_def split: if_splits)
apply(subgoal_tac "lm2 = []", simp)
apply(rule_tac x = rn in exI, rule_tac x = "Suc m" in exI,
rule_tac x = "lm1" in exI, simp, rule_tac x = "[]" in exI, simp)
apply(case_tac "Suc (length lm1) - length am", simp, simp only: rep_ind, simp)
apply(subgoal_tac "length lm1 - length am = nat", simp, arith)
apply(drule_tac length_equal, simp)
done
lemma [simp]: "inv_locate_b (as, am) (n, aaa, []) ires \<Longrightarrow>
inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)))
(Suc (Suc (2 * n)), aaa, [Oc]) ires"
apply(insert inv_locate_b_2_after_write [of as am n aaa "[]"])
by(simp)
(*inv: from after_write to after_move*)
lemma [simp]: "inv_after_write (as, lm) (Suc (Suc (2 * n)), l, Oc # r) ires
\<Longrightarrow> inv_after_move (as, lm) (2 * n + 3, Oc # l, r) ires"
apply(auto simp:inv_after_move.simps inv_after_write.simps split: if_splits)
done
lemma [simp]: "inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)
)) (Suc (Suc (2 * n)), aaa, Bk # xs) ires = False"
apply(simp add: inv_after_write.simps )
done
lemma [simp]:
"inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)))
(Suc (Suc (2 * n)), aaa, []) ires = False"
apply(simp add: inv_after_write.simps )
done
(*inv: from after_move to after_clear*)
lemma [simp]: "inv_after_move (as, lm) (s, l, Oc # r) ires
\<Longrightarrow> inv_after_clear (as, lm) (s', l, Bk # r) ires"
apply(auto simp: inv_after_move.simps inv_after_clear.simps split: if_splits)
done
(*inv: from after_move to on_leftmoving*)
lemma inv_after_move_2_inv_on_left_moving[simp]:
"inv_after_move (as, lm) (s, l, Bk # r) ires
\<Longrightarrow> (l = [] \<longrightarrow>
inv_on_left_moving (as, lm) (s', [], Bk # Bk # r) ires) \<and>
(l \<noteq> [] \<longrightarrow>
inv_on_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)"
apply(simp only: inv_after_move.simps inv_on_left_moving.simps)
apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI,
rule disjI1, simp only: inv_on_left_moving_norm.simps)
apply(erule exE)+
apply(subgoal_tac "lm2 = []")
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = m in exI,
rule_tac x = 1 in exI,
rule_tac x = "rn - 1" in exI, simp, case_tac rn)
apply(auto simp: exponent_def intro: BkCons_nil split: if_splits)
done
lemma [elim]: "[] = <lm::nat list> \<Longrightarrow> lm = []"
using tape_of_nl_nil_eq[of lm]
by simp
lemma inv_after_move_2_inv_on_left_moving_B[simp]:
"inv_after_move (as, lm) (s, l, []) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], [Bk]) ires) \<and>
(l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, [hd l]) ires)"
apply(simp only: inv_after_move.simps inv_on_left_moving.simps)
apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI, rule disjI1,
simp only: inv_on_left_moving_norm.simps)
apply(erule exE)+
apply(subgoal_tac "lm2 = []")
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = m in exI,
rule_tac x = 1 in exI, rule_tac x = "rn - 1" in exI, simp, case_tac rn)
apply(auto simp: exponent_def tape_of_nl_nil_eq intro: BkCons_nil split: if_splits)
done
(*inv: from after_clear to on_right_moving*)
lemma [simp]: "Oc # r = replicate rn Bk = False"
apply(case_tac rn, simp, simp)
done
lemma inv_after_clear_2_inv_on_right_moving[simp]:
"inv_after_clear (as, lm) (2 * n + 4, l, Bk # r) ires
\<Longrightarrow> inv_on_right_moving (as, lm) (2 * n + 5, Bk # l, r) ires"
apply(auto simp: inv_after_clear.simps inv_on_right_moving.simps )
apply(subgoal_tac "lm2 \<noteq> []")
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI,
rule_tac x = "hd lm2" in exI, simp)
apply(rule_tac x = 0 in exI, rule_tac x = "hd lm2" in exI)
apply(simp add: exponent_def, rule conjI)
apply(case_tac [!] "lm2::nat list", auto simp: exponent_def)
apply(case_tac rn, auto split: if_splits simp: tape_of_nat_def)
apply(case_tac list,
simp add: tape_of_nl_abv tape_of_nat_list.simps exponent_def)
apply(erule_tac x = "rn - 1" in allE,
case_tac rn, auto simp: exponent_def)
apply(case_tac list,
simp add: tape_of_nl_abv tape_of_nat_list.simps exponent_def)
apply(erule_tac x = "rn - 1" in allE,
case_tac rn, auto simp: exponent_def)
done
lemma [simp]: "inv_after_clear (as, lm) (2 * n + 4, l, []) ires\<Longrightarrow>
inv_after_clear (as, lm) (2 * n + 4, l, [Bk]) ires"
by(auto simp: inv_after_clear.simps)
lemma [simp]: "inv_after_clear (as, lm) (2 * n + 4, l, []) ires
\<Longrightarrow> inv_on_right_moving (as, lm) (2 * n + 5, Bk # l, []) ires"
by(insert
inv_after_clear_2_inv_on_right_moving[of as lm n l "[]"], simp)
(*inv: from on_right_moving to on_right_movign*)
lemma [simp]: "inv_on_right_moving (as, lm) (2 * n + 5, l, Oc # r) ires
\<Longrightarrow> inv_on_right_moving (as, lm) (2 * n + 5, Oc # l, r) ires"
apply(auto simp: inv_on_right_moving.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = "ml + mr" in exI, simp)
apply(rule_tac x = "Suc ml" in exI,
rule_tac x = "mr - 1" in exI, simp)
apply(case_tac mr, auto simp: exponent_def )
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac x = "ml + mr" in exI, simp)
apply(rule_tac x = "Suc ml" in exI,
rule_tac x = "mr - 1" in exI, simp)
apply(case_tac mr, auto split: if_splits simp: exponent_def)
done
lemma inv_on_right_moving_2_inv_on_right_moving[simp]:
"inv_on_right_moving (as, lm) (2 * n + 5, l, Bk # r) ires
\<Longrightarrow> inv_after_write (as, lm) (Suc (Suc (2 * n)), l, Oc # r) ires"
apply(auto simp: inv_on_right_moving.simps inv_after_write.simps )
apply(case_tac mr, auto simp: exponent_def split: if_splits)
apply(case_tac [!] mr, simp_all)
done
lemma [simp]: "inv_on_right_moving (as, lm) (2 * n + 5, l, []) ires\<Longrightarrow>
inv_on_right_moving (as, lm) (2 * n + 5, l, [Bk]) ires"
apply(auto simp: inv_on_right_moving.simps exponent_def)
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, simp)
apply (rule_tac x = m in exI, auto split: if_splits simp: exponent_def)
done
(*inv: from on_right_moving to after_write*)
lemma [simp]: "inv_on_right_moving (as, lm) (2 * n + 5, l, []) ires
\<Longrightarrow> inv_after_write (as, lm) (Suc (Suc (2 * n)), l, [Oc]) ires"
apply(rule_tac inv_on_right_moving_2_inv_on_right_moving, simp)
done
(*inv: from on_left_moving to on_left_moving*)
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm)
(s, l, Oc # r) ires = False"
apply(auto simp: inv_on_left_moving_in_middle_B.simps )
done
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, l, Bk # r) ires
= False"
apply(auto simp: inv_on_left_moving_norm.simps)
apply(case_tac [!] mr, auto simp: )
done
lemma [intro]: "\<exists>rna. Oc # Oc\<^bsup>m\<^esup> @ Bk # <lm> @ Bk\<^bsup>rn\<^esup> = <m # lm> @ Bk\<^bsup>rna\<^esup>"
apply(case_tac lm, simp add: tape_of_nl_abv tape_of_nat_list.simps)
apply(rule_tac x = "Suc rn" in exI, simp)
apply(case_tac list, simp_all add: tape_of_nl_abv tape_of_nat_list.simps, auto)
done
lemma [simp]:
"\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires;
hd l = Bk; l \<noteq> []\<rbrakk> \<Longrightarrow>
inv_on_left_moving_in_middle_B (as, lm) (s, tl l, Bk # Oc # r) ires"
apply(case_tac l, simp, simp)
apply(simp only: inv_on_left_moving_norm.simps
inv_on_left_moving_in_middle_B.simps)
apply(erule_tac exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = "m # lm2" in exI, auto)
apply(case_tac [!] ml, auto)
apply(rule_tac [!] x = 0 in exI, simp_all add: tape_of_nl_abv tape_of_nat_list.simps)
done
lemma [simp]: "\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires;
hd l = Oc; l \<noteq> []\<rbrakk>
\<Longrightarrow> inv_on_left_moving_norm (as, lm)
(s, tl l, Oc # Oc # r) ires"
apply(simp only: inv_on_left_moving_norm.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = "ml - 1" in exI,
rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, simp)
apply(case_tac ml, auto simp: exponent_def split: if_splits)
done
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, [], Oc # r) ires
\<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # Oc # r) ires"
apply(auto simp: inv_on_left_moving_norm.simps
inv_on_left_moving_in_middle_B.simps split: if_splits)
done
lemma [simp]:"inv_on_left_moving (as, lm) (s, l, Oc # r) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s, [], Bk # Oc # r) ires)
\<and> (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s, tl l, hd l # Oc # r) ires)"
apply(simp add: inv_on_left_moving.simps)
apply(case_tac "l \<noteq> []", rule conjI, simp, simp)
apply(case_tac "hd l", simp, simp, simp)
done
(*inv: from on_left_moving to check_left_moving*)
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm)
(s, Bk # list, Bk # r) ires
\<Longrightarrow> inv_check_left_moving_on_leftmost (as, lm)
(s', list, Bk # Bk # r) ires"
apply(auto simp: inv_on_left_moving_in_middle_B.simps
inv_check_left_moving_on_leftmost.simps split: if_splits)
apply(case_tac [!] "rev lm1", simp_all)
apply(case_tac [!] lista, simp_all add: tape_of_nl_abv tape_of_nat_list.simps)
done
lemma [simp]:
"inv_check_left_moving_in_middle (as, lm) (s, l, Bk # r) ires= False"
by(auto simp: inv_check_left_moving_in_middle.simps )
lemma [simp]:
"inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # r) ires\<Longrightarrow>
inv_check_left_moving_on_leftmost (as, lm) (s', [], Bk # Bk # r) ires"
apply(auto simp: inv_on_left_moving_in_middle_B.simps
inv_check_left_moving_on_leftmost.simps split: if_splits)
done
lemma [simp]: "inv_check_left_moving_on_leftmost (as, lm)
(s, list, Oc # r) ires= False"
by(auto simp: inv_check_left_moving_on_leftmost.simps split: if_splits)
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm)
(s, Oc # list, Bk # r) ires
\<Longrightarrow> inv_check_left_moving_in_middle (as, lm) (s', list, Oc # Bk # r) ires"
apply(auto simp: inv_on_left_moving_in_middle_B.simps
inv_check_left_moving_in_middle.simps split: if_splits)
done
lemma inv_on_left_moving_2_check_left_moving[simp]:
"inv_on_left_moving (as, lm) (s, l, Bk # r) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], Bk # Bk # r) ires)
\<and> (l \<noteq> [] \<longrightarrow>
inv_check_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)"
apply(simp add: inv_on_left_moving.simps inv_check_left_moving.simps)
apply(case_tac l, simp, simp)
apply(case_tac a, simp, simp)
done
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, l, []) ires = False"
apply(auto simp: inv_on_left_moving_norm.simps)
by(case_tac [!] mr, auto)
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires\<Longrightarrow>
inv_on_left_moving (as, lm) (6 + 2 * n, l, [Bk]) ires"
apply(simp add: inv_on_left_moving.simps)
apply(auto simp: inv_on_left_moving_in_middle_B.simps)
done
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires = False"
apply(simp add: inv_on_left_moving.simps)
apply(simp add: inv_on_left_moving_in_middle_B.simps)
done
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], [Bk]) ires) \<and>
(l \<noteq> [] \<longrightarrow> inv_check_left_moving (as, lm) (s', tl l, [hd l]) ires)"
by simp
lemma Oc_Bk_Cons_ex[simp]:
"Oc # Bk # list = <lm::nat list> @ Bk\<^bsup>ln\<^esup> \<Longrightarrow>
\<exists>ln. list = <tl (lm)> @ Bk\<^bsup>ln\<^esup>"
apply(case_tac "lm", simp)
apply(case_tac ln, simp_all add: exponent_def)
apply(case_tac lista,
auto simp: tape_of_nl_abv tape_of_nat_list.simps exponent_def)
apply(case_tac [!] a, auto simp: )
apply(case_tac ln, simp, rule_tac x = nat in exI, simp)
done
lemma [simp]:
"Oc # Bk # list = <rev lm1::nat list> @ Bk\<^bsup>ln\<^esup> \<Longrightarrow>
\<exists>rna. Oc # Bk # <lm2> @ Bk\<^bsup>rn\<^esup> = <hd (rev lm1) # lm2> @ Bk\<^bsup>rna\<^esup>"
apply(frule Oc_Bk_Cons, simp)
apply(case_tac lm2,
auto simp: tape_of_nl_abv tape_of_nat_list.simps exponent_def )
apply(rule_tac x = "Suc rn" in exI, simp)
done
(*inv: from check_left_moving to on_left_moving*)
lemma [intro]: "\<exists>rna. a # a\<^bsup>rn\<^esup> = a\<^bsup>rna\<^esup>"
apply(rule_tac x = "Suc rn" in exI, simp)
done
lemma
inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[simp]:
"inv_check_left_moving_in_middle (as, lm) (s, Bk # list, Oc # r) ires
\<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', list, Bk # Oc # r) ires"
apply(simp only: inv_check_left_moving_in_middle.simps
inv_on_left_moving_in_middle_B.simps)
apply(erule_tac exE)+
apply(rule_tac x = "rev (tl (rev lm1))" in exI,
rule_tac x = "[hd (rev lm1)] @ lm2" in exI, auto)
apply(case_tac [!] "rev lm1",simp_all add: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac [!] a, simp_all)
apply(case_tac [1] lm2, simp_all add: tape_of_nat_list.simps, auto)
apply(case_tac [3] lm2, simp_all add: tape_of_nat_list.simps, auto)
apply(case_tac [!] lista, simp_all add: tape_of_nat_list.simps)
done
lemma [simp]:
"inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires\<Longrightarrow>
inv_check_left_moving_in_middle (as, lm) (s', [Bk], Oc # r) ires"
apply(auto simp: inv_check_left_moving_in_middle.simps )
done
lemma [simp]:
"inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires
\<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', [], Bk # Oc # r) ires"
apply(insert
inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[of
as lm n "[]" r], simp)
done
lemma [simp]: "a\<^bsup>0\<^esup> = []"
apply(simp add: exponent_def)
done
lemma [simp]: "inv_check_left_moving_in_middle (as, lm)
(s, Oc # list, Oc # r) ires
\<Longrightarrow> inv_on_left_moving_norm (as, lm) (s', list, Oc # Oc # r) ires"
apply(auto simp: inv_check_left_moving_in_middle.simps
inv_on_left_moving_norm.simps)
apply(rule_tac x = "rev (tl (rev lm1))" in exI,
rule_tac x = lm2 in exI, rule_tac x = "hd (rev lm1)" in exI)
apply(rule_tac conjI)
apply(case_tac "rev lm1", simp, simp)
apply(rule_tac x = "hd (rev lm1) - 1" in exI, auto)
apply(rule_tac [!] x = "Suc (Suc 0)" in exI, simp)
apply(case_tac [!] "rev lm1", simp_all)
apply(case_tac [!] a, simp_all add: tape_of_nl_abv tape_of_nat_list.simps, auto)
done
lemma [simp]: "inv_check_left_moving (as, lm) (s, l, Oc # r) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], Bk # Oc # r) ires) \<and>
(l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, hd l # Oc # r) ires)"
apply(case_tac l,
auto simp: inv_check_left_moving.simps inv_on_left_moving.simps)
apply(case_tac a, simp, simp)
done
(*inv: check_left_moving to after_left_moving*)
lemma [simp]: "inv_check_left_moving (as, lm) (s, l, Bk # r) ires
\<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, r) ires"
apply(auto simp: inv_check_left_moving.simps
inv_check_left_moving_on_leftmost.simps inv_after_left_moving.simps)
done
lemma [simp]:"inv_check_left_moving (as, lm) (s, l, []) ires
\<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, []) ires"
by(simp add: inv_check_left_moving.simps
inv_check_left_moving_in_middle.simps
inv_check_left_moving_on_leftmost.simps)
(*inv: after_left_moving to inv_stop*)
lemma [simp]: "inv_after_left_moving (as, lm) (s, l, Bk # r) ires
\<Longrightarrow> inv_stop (as, lm) (s', Bk # l, r) ires"
apply(auto simp: inv_after_left_moving.simps inv_stop.simps)
done
lemma [simp]: "inv_after_left_moving (as, lm) (s, l, []) ires
\<Longrightarrow> inv_stop (as, lm) (s', Bk # l, []) ires"
by(auto simp: inv_after_left_moving.simps)
(*inv: stop to stop*)
lemma [simp]: "inv_stop (as, lm) (x, l, r) ires \<Longrightarrow>
inv_stop (as, lm) (y, l, r) ires"
apply(simp add: inv_stop.simps)
done
lemma [simp]: "inv_after_clear (as, lm) (s, aaa, Oc # xs) ires= False"
apply(auto simp: inv_after_clear.simps )
done
lemma [simp]:
"inv_after_left_moving (as, lm) (s, aaa, Oc # xs) ires = False"
by(auto simp: inv_after_left_moving.simps )
lemma start_of_not0: "as \<noteq> 0 \<Longrightarrow> start_of ly as > 0"
apply(rule startof_not0)
done
text {*
The single step currectness of the TM complied from Abacus instruction @{text "Inc n"}.
It shows every single step execution of this TM keeps the invariant.
*}
lemma inc_inv_step:
assumes
-- {* Invariant holds on the start *}
h11: "inc_inv ly n (as, am) tc ires"
-- {* The layout of Abacus program @{text "aprog"} is @{text "ly"} *}
and h12: "ly = layout_of aprog"
-- {* The instruction at position @{text "as"} is @{text "Inc n"} *}
and h21: "abc_fetch as aprog = Some (Inc n)"
-- {* TM not yet reach the final state, where @{text "start_of ly as + 2*n + 9"} is the state
where the current TM stops and the next TM starts. *}
and h22: "(\<lambda> (s, l, r). s \<noteq> start_of ly as + 2*n + 9) tc"
shows
-- {*
Single step execution of the TM keeps the invaraint, where
the TM compiled from @{text "Inc n"} is @{text "(ci ly (start_of ly as) (Inc n))"}
@{text "start_of ly as - Suc 0)"} is the offset used to execute this {\em shifted}
TM.
*}
"inc_inv ly n (as, am) (t_step tc (ci ly (start_of ly as) (Inc n), start_of ly as - Suc 0)) ires"
proof -
from h21 h22 have h3 : "start_of (layout_of aprog) as > 0"
apply(case_tac as, simp add: start_of.simps abc_fetch.simps)
apply(insert start_of_not0[of as "layout_of aprog"], simp)
done
from h11 h12 and h21 h22 and this show ?thesis
apply(case_tac tc, simp)
apply(case_tac "a = 0",
auto split:if_splits simp add:t_step.simps,
tactic {* ALLGOALS (resolve_tac [@{thm fetch_intro}]) *})
apply (simp_all add:fetch_simps new_tape.simps)
done
qed
lemma t_steps_ind: "t_steps tc (p, off) (Suc n)
= t_step (t_steps tc (p, off) n) (p, off)"
apply(induct n arbitrary: tc)
apply(simp add: t_steps.simps)
apply(simp add: t_steps.simps)
done
definition lex_pair :: "((nat \<times> nat) \<times> (nat \<times> nat)) set"
where
"lex_pair \<equiv> less_than <*lex*> less_than"
definition lex_triple ::
"((nat \<times> (nat \<times> nat)) \<times> (nat \<times> (nat \<times> nat))) set"
where "lex_triple \<equiv> less_than <*lex*> lex_pair"
definition lex_square ::
"((nat \<times> nat \<times> nat \<times> nat) \<times> (nat \<times> nat \<times> nat \<times> nat)) set"
where "lex_square \<equiv> less_than <*lex*> lex_triple"
fun abc_inc_stage1 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_inc_stage1 (s, l, r) ss n =
(if s = 0 then 0
else if s \<le> ss+2*n+1 then 5
else if s\<le> ss+2*n+5 then 4
else if s \<le> ss+2*n+7 then 3
else if s = ss+2*n+8 then 2
else 1)"
fun abc_inc_stage2 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_inc_stage2 (s, l, r) ss n =
(if s \<le> ss + 2*n + 1 then 0
else if s = ss + 2*n + 2 then length r
else if s = ss + 2*n + 3 then length r
else if s = ss + 2*n + 4 then length r
else if s = ss + 2*n + 5 then
if r \<noteq> [] then length r
else 1
else if s = ss+2*n+6 then length l
else if s = ss+2*n+7 then length l
else 0)"
fun abc_inc_stage3 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> nat"
where
"abc_inc_stage3 (s, l, r) ss n ires = (
if s = ss + 2*n + 3 then 4
else if s = ss + 2*n + 4 then 3
else if s = ss + 2*n + 5 then
if r \<noteq> [] \<and> hd r = Oc then 2
else 1
else if s = ss + 2*n + 2 then 0
else if s = ss + 2*n + 6 then
if l = Bk # ires \<and> r \<noteq> [] \<and> hd r = Oc then 2
else 1
else if s = ss + 2*n + 7 then
if r \<noteq> [] \<and> hd r = Oc then 3
else 0
else ss+2*n+9 - s)"
fun abc_inc_stage4 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> nat"
where
"abc_inc_stage4 (s, l, r) ss n ires =
(if s \<le> ss+2*n+1 \<and> (s - ss) mod 2 = 0 then
if (r\<noteq>[] \<and> hd r = Oc) then 0
else 1
else if (s \<le> ss+2*n+1 \<and> (s - ss) mod 2 = Suc 0)
then length r
else if s = ss + 2*n + 6 then
if l = Bk # ires \<and> hd r = Bk then 0
else Suc (length l)
else 0)"
fun abc_inc_measure :: "(t_conf \<times> nat \<times> nat \<times> block list) \<Rightarrow>
(nat \<times> nat \<times> nat \<times> nat)"
where
"abc_inc_measure (c, ss, n, ires) =
(abc_inc_stage1 c ss n, abc_inc_stage2 c ss n,
abc_inc_stage3 c ss n ires, abc_inc_stage4 c ss n ires)"
definition abc_inc_LE :: "(((nat \<times> block list \<times> block list) \<times> nat \<times>
nat \<times> block list) \<times> ((nat \<times> block list \<times> block list) \<times> nat \<times> nat \<times> block list)) set"
where "abc_inc_LE \<equiv> (inv_image lex_square abc_inc_measure)"
lemma wf_lex_triple: "wf lex_triple"
by (auto intro:wf_lex_prod simp:lex_triple_def lex_pair_def)
lemma wf_lex_square: "wf lex_square"
by (auto intro:wf_lex_triple simp:lex_triple_def lex_square_def lex_pair_def)
lemma wf_abc_inc_le[intro]: "wf abc_inc_LE"
by(auto intro:wf_inv_image wf_lex_square simp:abc_inc_LE_def)
(********************************************************************)
declare inc_inv.simps[simp del]
lemma halt_lemma2':
"\<lbrakk>wf LE; \<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow>
(Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE)); Q (f 0)\<rbrakk>
\<Longrightarrow> \<exists> n. P (f n)"
apply(intro exCI, simp)
apply(subgoal_tac "\<forall> n. Q (f n)", simp)
apply(drule_tac f = f in wf_inv_image)
apply(simp add: inv_image_def)
apply(erule wf_induct, simp)
apply(erule_tac x = x in allE)
apply(erule_tac x = n in allE, erule_tac x = n in allE)
apply(erule_tac x = "Suc x" in allE, simp)
apply(rule_tac allI)
apply(induct_tac n, simp)
apply(erule_tac x = na in allE, simp)
done
lemma halt_lemma2'':
"\<lbrakk>P (f n); \<not> P (f (0::nat))\<rbrakk> \<Longrightarrow>
\<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))"
apply(induct n rule: nat_less_induct, auto)
done
lemma halt_lemma2''':
"\<lbrakk>\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> LE;
Q (f 0); \<forall>i<na. \<not> P (f i)\<rbrakk> \<Longrightarrow> Q (f na)"
apply(induct na, simp, simp)
done
lemma halt_lemma2:
"\<lbrakk>wf LE;
\<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow> (Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE));
Q (f 0); \<not> P (f 0)\<rbrakk>
\<Longrightarrow> \<exists> n. P (f n) \<and> Q (f n)"
apply(insert halt_lemma2' [of LE P f Q], simp, erule_tac exE)
apply(subgoal_tac "\<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))")
apply(erule_tac exE)+
apply(rule_tac x = na in exI, auto)
apply(rule halt_lemma2''', simp, simp, simp)
apply(erule_tac halt_lemma2'', simp)
done
lemma [simp]:
"\<lbrakk>ly = layout_of aprog; abc_fetch as aprog = Some (Inc n)\<rbrakk>
\<Longrightarrow> start_of ly (Suc as) = start_of ly as + 2*n +9"
apply(case_tac as, auto simp: abc_fetch.simps start_of.simps
layout_of.simps length_of.simps split: if_splits)
done
lemma inc_inv_init:
"\<lbrakk>abc_fetch as aprog = Some (Inc n);
crsp_l ly (as, am) (start_of ly as, l, r) ires; ly = layout_of aprog\<rbrakk>
\<Longrightarrow> inc_inv ly n (as, am) (start_of ly as, l, r) ires"
apply(auto simp: crsp_l.simps inc_inv.simps
inv_locate_a.simps at_begin_fst_bwtn.simps
at_begin_fst_awtn.simps at_begin_norm.simps )
apply(auto intro: startof_not0)
done
lemma inc_inv_stop_pre[simp]:
"\<lbrakk>ly = layout_of aprog; inc_inv ly n (as, am) (s, l, r) ires;
s = start_of ly as; abc_fetch as aprog = Some (Inc n)\<rbrakk>
\<Longrightarrow> (\<forall>na. \<not> (\<lambda>((s, l, r), ss, n', ires'). s = start_of ly (Suc as))
(t_steps (s, l, r) (ci ly (start_of ly as)
(Inc n), start_of ly as - Suc 0) na, s, n, ires) \<and>
(\<lambda>((s, l, r), ss, n', ires'). inc_inv ly n (as, am) (s, l, r) ires')
(t_steps (s, l, r) (ci ly (start_of ly as)
(Inc n), start_of ly as - Suc 0) na, s, n, ires) \<longrightarrow>
(\<lambda>((s, l, r), ss, n', ires'). inc_inv ly n (as, am) (s, l, r) ires')
(t_steps (s, l, r) (ci ly (start_of ly as)
(Inc n), start_of ly as - Suc 0) (Suc na), s, n, ires) \<and>
((t_steps (s, l, r) (ci ly (start_of ly as) (Inc n),
start_of ly as - Suc 0) (Suc na), s, n, ires),
t_steps (s, l, r) (ci ly (start_of ly as)
(Inc n), start_of ly as - Suc 0) na, s, n, ires) \<in> abc_inc_LE)"
apply(rule allI, rule impI, simp add: t_steps_ind,
rule conjI, erule_tac conjE)
apply(rule_tac inc_inv_step, simp, simp, simp)
apply(case_tac "t_steps (start_of (layout_of aprog) as, l, r) (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na", simp)
proof -
fix na
assume h1: "abc_fetch as aprog = Some (Inc n)"
"\<not> (\<lambda>(s, l, r) (ss, n', ires'). s = start_of (layout_of aprog) as + 2 * n + 9)
(t_steps (start_of (layout_of aprog) as, l, r) (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na)
(start_of (layout_of aprog) as, n, ires) \<and>
inc_inv (layout_of aprog) n (as, am) (t_steps (start_of (layout_of aprog) as, l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na) ires"
from h1 have h2: "start_of (layout_of aprog) as > 0"
apply(rule_tac startof_not0)
done
from h1 and h2 show "((t_step (t_steps (start_of (layout_of aprog) as, l, r) (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0),
start_of (layout_of aprog) as, n, ires),
t_steps (start_of (layout_of aprog) as, l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na,
start_of (layout_of aprog) as, n, ires)
\<in> abc_inc_LE"
apply(case_tac "(t_steps (start_of (layout_of aprog) as, l, r)
(ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n),
start_of (layout_of aprog) as - Suc 0) na)", simp)
apply(case_tac "a = 0",
auto split:if_splits simp add:t_step.simps inc_inv.simps,
tactic {* ALLGOALS (resolve_tac [@{thm fetch_intro}]) *})
apply(simp_all add:fetch_simps new_tape.simps)
apply(auto simp add: abc_inc_LE_def
lex_square_def lex_triple_def lex_pair_def
inv_after_write.simps inv_after_move.simps inv_after_clear.simps
inv_on_left_moving.simps inv_on_left_moving_norm.simps split: if_splits)
done
qed
lemma inc_inv_stop_pre1:
"\<lbrakk>
ly = layout_of aprog;
abc_fetch as aprog = Some (Inc n);
s = start_of ly as;
inc_inv ly n (as, am) (s, l, r) ires
\<rbrakk> \<Longrightarrow>
(\<exists> stp > 0. (\<lambda> (s', l', r').
s' = start_of ly (Suc as) \<and>
inc_inv ly n (as, am) (s', l', r') ires)
(t_steps (s, l, r) (ci ly (start_of ly as) (Inc n),
start_of ly as - Suc 0) stp))"
apply(insert halt_lemma2[of abc_inc_LE
"\<lambda> ((s, l, r), ss, n', ires'). s = start_of ly (Suc as)"
"(\<lambda> stp. (t_steps (s, l, r)
(ci ly (start_of ly as) (Inc n),
start_of ly as - Suc 0) stp, s, n, ires))"
"\<lambda> ((s, l, r), ss, n'). inc_inv ly n (as, am) (s, l, r) ires"])
apply(insert wf_abc_inc_le)
apply(insert inc_inv_stop_pre[of ly aprog n as am s l r ires], simp)
apply(simp only: t_steps.simps, auto)
apply(rule_tac x = na in exI)
apply(case_tac "(t_steps (start_of (layout_of aprog) as, l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Inc n), start_of (layout_of aprog) as - Suc 0) na)", simp)
apply(case_tac na, simp add: t_steps.simps, simp)
done
lemma inc_inv_stop:
assumes program_and_layout:
-- {* There is an Abacus program @{text "aprog"} and its layout is @{text "ly"}: *}
"ly = layout_of aprog"
and an_instruction:
-- {* There is an instruction @{text "Inc n"} at postion @{text "as"} of @{text "aprog"} *}
"abc_fetch as aprog = Some (Inc n)"
and the_start_state:
-- {* According to @{text "ly"} and @{text "as"},
the start state of the TM compiled from this
@{text "Inc n"} instruction should be @{text "s"}:
*}
"s = start_of ly as"
and inv:
-- {* Invariant holds on configuration @{text "(s, l, r)"} *}
"inc_inv ly n (as, am) (s, l, r) ires"
shows -- {* After @{text "stp"} steps of execution, the compiled
TM reaches the start state of next compiled TM and the invariant
still holds.
*}
"(\<exists> stp > 0. (\<lambda> (s', l', r').
s' = start_of ly (Suc as) \<and>
inc_inv ly n (as, am) (s', l', r') ires)
(t_steps (s, l, r) (ci ly (start_of ly as) (Inc n),
start_of ly as - Suc 0) stp))"
proof -
from inc_inv_stop_pre1 [OF program_and_layout an_instruction the_start_state inv]
show ?thesis .
qed
lemma inc_inv_stop_cond:
"\<lbrakk>ly = layout_of aprog;
s' = start_of ly (as + 1);
inc_inv ly n (as, lm) (s', (l', r')) ires;
abc_fetch as aprog = Some (Inc n)\<rbrakk> \<Longrightarrow>
crsp_l ly (Suc as, abc_lm_s lm n (Suc (abc_lm_v lm n)))
(s', l', r') ires"
apply(subgoal_tac "s' = start_of ly as + 2*n + 9", simp)
apply(auto simp: inc_inv.simps inv_stop.simps crsp_l.simps )
done
lemma inc_crsp_ex_pre:
"\<lbrakk>ly = layout_of aprog;
crsp_l ly (as, am) tc ires;
abc_fetch as aprog = Some (Inc n)\<rbrakk>
\<Longrightarrow> \<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Inc n)))
(t_steps tc (ci ly (start_of ly as) (Inc n),
start_of ly as - Suc 0) stp) ires"
proof(case_tac tc, simp add: abc_step_l.simps)
fix a b c
assume h1: "ly = layout_of aprog"
"crsp_l (layout_of aprog) (as, am) (a, b, c) ires"
"abc_fetch as aprog = Some (Inc n)"
hence h2: "a = start_of ly as"
by(auto simp: crsp_l.simps)
from h1 and h2 have h3:
"inc_inv ly n (as, am) (start_of ly as, b, c) ires"
by(rule_tac inc_inv_init, simp, simp, simp)
from h1 and h2 and h3 have h4:
"(\<exists> stp > 0. (\<lambda> (s', l', r'). s' =
start_of ly (Suc as) \<and> inc_inv ly n (as, am) (s', l', r') ires)
(t_steps (a, b, c) (ci ly (start_of ly as)
(Inc n), start_of ly as - Suc 0) stp))"
apply(rule_tac inc_inv_stop, auto)
done
from h1 and h2 and h3 and h4 show
"\<exists>stp > 0. crsp_l (layout_of aprog)
(Suc as, abc_lm_s am n (Suc (abc_lm_v am n)))
(t_steps (a, b, c) (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n),
start_of (layout_of aprog) as - Suc 0) stp) ires"
apply(erule_tac exE)
apply(rule_tac x = stp in exI)
apply(case_tac "(t_steps (a, b, c) (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Inc n),
start_of (layout_of aprog) as - Suc 0) stp)", simp)
apply(rule_tac inc_inv_stop_cond, auto)
done
qed
text {*
The total correctness of the compilaton of @{text "Inc n"} instruction.
*}
lemma inc_crsp_ex:
assumes layout:
-- {* For any Abacus program @{text "aprog"}, assuming its layout is @{text "ly"} *}
"ly = layout_of aprog"
and corresponds:
-- {* Abacus configuration @{text "(as, am)"} is in correspondence with
TM configuration @{text "tc"} *}
"crsp_l ly (as, am) tc ires"
and inc:
-- {* There is an instruction @{text "Inc n"} at postion @{text "as"} of @{text "aprog"} *}
"abc_fetch as aprog = Some (Inc n)"
shows
-- {*
After @{text "stp"} steps of execution, the TM compiled from this @{text "Inc n"}
stops with a configuration which corresponds to the Abacus configuration obtained
from the execution of this @{text "Inc n"} instruction.
*}
"\<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Inc n)))
(t_steps tc (ci ly (start_of ly as) (Inc n),
start_of ly as - Suc 0) stp) ires"
proof -
from inc_crsp_ex_pre [OF layout corresponds inc] show ?thesis .
qed
(*
subsection {* The compilation of @{text "Dec n e"} *}
*)
text {*
The lemmas in this section lead to the correctness of the compilation
of @{text "Dec n e"} instruction using the same techniques as
@{text "Inc n"}.
*}
type_synonym dec_inv_t = "(nat * nat list) \<Rightarrow> t_conf \<Rightarrow> block list \<Rightarrow> bool"
fun dec_first_on_right_moving :: "nat \<Rightarrow> dec_inv_t"
where
"dec_first_on_right_moving n (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc m \<and> length lm1 = n \<and> ml > 0 \<and> m > 0 \<and>
(if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = (Oc\<^bsup>ml\<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
((r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2> @ (Bk\<^bsup>rn\<^esup>)) \<or> (r = (Oc\<^bsup>mr\<^esup>) \<and> lm2 = [])))"
fun dec_on_right_moving :: "dec_inv_t"
where
"dec_on_right_moving (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc (Suc m) \<and>
(if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = (Oc\<^bsup>ml\<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
((r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2> @ (Bk\<^bsup>rn\<^esup>)) \<or> (r = (Oc\<^bsup>mr\<^esup>) \<and> lm2 = [])))"
fun dec_after_clear :: "dec_inv_t"
where
"dec_after_clear (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc m \<and> ml = Suc m \<and> r \<noteq> [] \<and> r \<noteq> [] \<and>
(if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = (Oc\<^bsup>ml \<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
(tl r = Bk # <lm2> @ (Bk\<^bsup>rn\<^esup>) \<or> tl r = [] \<and> lm2 = []))"
fun dec_after_write :: "dec_inv_t"
where
"dec_after_write (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc m \<and> ml = Suc m \<and> lm2 \<noteq> [] \<and>
(if lm1 = [] then l = Bk # Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = Bk # (Oc\<^bsup>ml \<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
tl r = <lm2> @ (Bk\<^bsup>rn\<^esup>))"
fun dec_right_move :: "dec_inv_t"
where
"dec_right_move (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2
\<and> ml = Suc m \<and> mr = (0::nat) \<and>
(if lm1 = [] then l = Bk # Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = Bk # Oc\<^bsup>ml\<^esup>@ [Bk] @ <rev lm1> @ Bk # Bk # ires)
\<and> (r = Bk # <lm2> @ Bk\<^bsup>rn\<^esup>\<or> r = [] \<and> lm2 = []))"
fun dec_check_right_move :: "dec_inv_t"
where
"dec_check_right_move (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml = Suc m \<and> mr = (0::nat) \<and>
(if lm1 = [] then l = Bk # Bk # Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = Bk # Bk # Oc\<^bsup>ml \<^esup>@ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
r = <lm2> @ Bk\<^bsup>rn\<^esup>)"
fun dec_left_move :: "dec_inv_t"
where
"dec_left_move (as, lm) (s, l, r) ires =
(\<exists> lm1 m rn. (lm::nat list) = lm1 @ [m::nat] \<and>
rn > 0 \<and>
(if lm1 = [] then l = Bk # Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # ires
else l = Bk # Oc\<^bsup>Suc m\<^esup> @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> r = Bk\<^bsup>rn\<^esup>)"
declare
dec_on_right_moving.simps[simp del] dec_after_clear.simps[simp del]
dec_after_write.simps[simp del] dec_left_move.simps[simp del]
dec_check_right_move.simps[simp del] dec_right_move.simps[simp del]
dec_first_on_right_moving.simps[simp del]
fun inv_locate_n_b :: "inc_inv_t"
where
"inv_locate_n_b (as, lm) (s, l, r) ires=
(\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<^bsup>tn\<^esup> = lm1 @ [m] @ lm2 \<and>
length lm1 = s \<and> m + 1 = ml + mr \<and>
ml = 1 \<and> tn = s + 1 - length lm \<and>
(if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires
else l = Oc\<^bsup>ml\<^esup>@Bk#<rev lm1>@Bk#Bk#ires) \<and>
(r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2>@ (Bk\<^bsup>rn\<^esup>) \<or> (lm2 = [] \<and> r = (Oc\<^bsup>mr\<^esup>)))
)"
fun dec_inv_1 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
where
"dec_inv_1 ly n e (as, am) (s, l, r) ires =
(let ss = start_of ly as in
let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
let am'' = abc_lm_s am n (abc_lm_v am n) in
if s = start_of ly e then inv_stop (as, am'') (s, l, r) ires
else if s = ss then False
else if ss \<le> s \<and> s < ss + 2*n then
if (s - ss) mod 2 = 0 then
inv_locate_a (as, am) ((s - ss) div 2, l, r) ires
\<or> inv_locate_a (as, am'') ((s - ss) div 2, l, r) ires
else
inv_locate_b (as, am) ((s - ss) div 2, l, r) ires
\<or> inv_locate_b (as, am'') ((s - ss) div 2, l, r) ires
else if s = ss + 2 * n then
inv_locate_a (as, am) (n, l, r) ires
\<or> inv_locate_a (as, am'') (n, l, r) ires
else if s = ss + 2 * n + 1 then
inv_locate_b (as, am) (n, l, r) ires
else if s = ss + 2 * n + 13 then
inv_on_left_moving (as, am'') (s, l, r) ires
else if s = ss + 2 * n + 14 then
inv_check_left_moving (as, am'') (s, l, r) ires
else if s = ss + 2 * n + 15 then
inv_after_left_moving (as, am'') (s, l, r) ires
else False)"
fun dec_inv_2 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
where
"dec_inv_2 ly n e (as, am) (s, l, r) ires =
(let ss = start_of ly as in
let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
let am'' = abc_lm_s am n (abc_lm_v am n) in
if s = 0 then False
else if s = ss then False
else if ss \<le> s \<and> s < ss + 2*n then
if (s - ss) mod 2 = 0 then
inv_locate_a (as, am) ((s - ss) div 2, l, r) ires
else inv_locate_b (as, am) ((s - ss) div 2, l, r) ires
else if s = ss + 2 * n then
inv_locate_a (as, am) (n, l, r) ires
else if s = ss + 2 * n + 1 then
inv_locate_n_b (as, am) (n, l, r) ires
else if s = ss + 2 * n + 2 then
dec_first_on_right_moving n (as, am'') (s, l, r) ires
else if s = ss + 2 * n + 3 then
dec_after_clear (as, am') (s, l, r) ires
else if s = ss + 2 * n + 4 then
dec_right_move (as, am') (s, l, r) ires
else if s = ss + 2 * n + 5 then
dec_check_right_move (as, am') (s, l, r) ires
else if s = ss + 2 * n + 6 then
dec_left_move (as, am') (s, l, r) ires
else if s = ss + 2 * n + 7 then
dec_after_write (as, am') (s, l, r) ires
else if s = ss + 2 * n + 8 then
dec_on_right_moving (as, am') (s, l, r) ires
else if s = ss + 2 * n + 9 then
dec_after_clear (as, am') (s, l, r) ires
else if s = ss + 2 * n + 10 then
inv_on_left_moving (as, am') (s, l, r) ires
else if s = ss + 2 * n + 11 then
inv_check_left_moving (as, am') (s, l, r) ires
else if s = ss + 2 * n + 12 then
inv_after_left_moving (as, am') (s, l, r) ires
else if s = ss + 2 * n + 16 then
inv_stop (as, am') (s, l, r) ires
else False)"
(*begin: dec_fetch lemmas*)
lemma dec_fetch_locate_a_o:
"\<lbrakk>start_of ly as \<le> a;
a < start_of ly as + 2 * n; start_of ly as > 0;
a - start_of ly as = 2 * q\<rbrakk>
\<Longrightarrow> fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (Suc (2 * q)) Oc = (R, a + 1)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append Suc_pre)
apply(subgoal_tac "(findnth n ! Suc (4 * q)) =
findnth (Suc q) ! (4 * q + 1)")
apply(simp add: findnth.simps nth_append)
apply(subgoal_tac " findnth n !(4 * q + 1) =
findnth (Suc q) ! (4 * q + 1)", simp)
apply(rule_tac findnth_nth, auto)
done
lemma dec_fetch_locate_a_b:
"\<lbrakk>start_of ly as \<le> a;
a < start_of ly as + 2 * n;
start_of ly as > 0;
a - start_of ly as = 2 * q\<rbrakk>
\<Longrightarrow> fetch (ci (layout_of aprog) (start_of ly as) (Dec n e))
(Suc (2 * q)) Bk = (W1, a)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append)
apply(subgoal_tac "(findnth n ! (4 * q)) =
findnth (Suc q) ! (4 * q )")
apply(simp add: findnth.simps nth_append)
apply(subgoal_tac " findnth n !(4 * q + 0) =
findnth (Suc q) ! (4 * q + 0)", simp)
apply(rule_tac findnth_nth, auto)
done
lemma dec_fetch_locate_b_o:
"\<lbrakk>start_of ly as \<le> a;
a < start_of ly as + 2 * n;
(a - start_of ly as) mod 2 = Suc 0;
start_of ly as> 0\<rbrakk>
\<Longrightarrow> fetch (ci (layout_of aprog) (start_of ly as) (Dec n e))
(Suc (a - start_of ly as)) Oc = (R, a)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append)
apply(subgoal_tac "\<exists> q. (a - start_of ly as) = 2 * q + 1", auto)
apply(subgoal_tac "(findnth n ! Suc (Suc (Suc (4 * q)))) =
findnth (Suc q) ! (4 * q + 3)")
apply(simp add: findnth.simps nth_append)
apply(subgoal_tac " findnth n ! (4 * q + 3) =
findnth (Suc q) ! (4 * q + 3)", simp add: add3_Suc)
apply(rule_tac findnth_nth, auto)
done
lemma dec_fetch_locate_b_b:
"\<lbrakk>\<not> a < start_of ly as;
a < start_of ly as + 2 * n;
(a - start_of ly as) mod 2 = Suc 0;
start_of ly as > 0\<rbrakk>
\<Longrightarrow> fetch (ci (layout_of aprog) (start_of ly as) (Dec n e))
(Suc (a - start_of ly as)) Bk = (R, a + 1)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append)
apply(subgoal_tac "\<exists> q. (a - start_of ly as) = 2 * q + 1", auto)
apply(subgoal_tac "(findnth n ! Suc ((Suc (4 * q)))) =
findnth (Suc q) ! (4 * q + 2)")
apply(simp add: findnth.simps nth_append)
apply(subgoal_tac " findnth n ! (4 * q + 2) =
findnth (Suc q) ! (4 * q + 2)", simp)
apply(rule_tac findnth_nth, auto)
done
lemma dec_fetch_locate_n_a_o:
"start_of ly as > 0 \<Longrightarrow> fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (Suc (2 * n)) Oc
= (R, start_of ly as + 2*n + 1)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tdec_b_def)
done
lemma dec_fetch_locate_n_a_b:
"start_of ly as > 0 \<Longrightarrow> fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (Suc (2 * n)) Bk
= (W1, start_of ly as + 2*n)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tdec_b_def)
done
lemma dec_fetch_locate_n_b_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Oc
= (R, start_of ly as + 2*n + 2)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tdec_b_def)
done
lemma dec_fetch_locate_n_b_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Bk
= (L, start_of ly as + 2*n + 13)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tdec_b_def)
done
lemma dec_fetch_first_on_right_move_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (Suc (Suc (Suc (2 * n)))) Oc
= (R, start_of ly as + 2*n + 2)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tdec_b_def)
done
lemma dec_fetch_first_on_right_move_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog) (start_of ly as) (Dec n e))
(Suc (Suc (Suc (2 * n)))) Bk
= (L, start_of ly as + 2*n + 3)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append tdec_b_def)
done
lemma [simp]: "fetch x (a + 2 * n) b = fetch x (2 * n + a) b"
thm arg_cong
apply(rule_tac x = "a + 2*n" and y = "2*n + a" in arg_cong, simp)
done
lemma dec_fetch_first_after_clear_o:
"start_of ly as > 0 \<Longrightarrow> fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 4) Oc
= (W0, start_of ly as + 2*n + 3)"
apply(auto simp: ci.simps findnth.simps tshift.simps
tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_first_after_clear_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 4) Bk
= (R, start_of ly as + 2*n + 4)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 4= Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_right_move_b:
"start_of ly as > 0 \<Longrightarrow> fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 5) Bk
= (R, start_of ly as + 2*n + 5)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 5= Suc (2*n + 4)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_check_right_move_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 6) Bk
= (L, start_of ly as + 2*n + 6)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_check_right_move_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog) (start_of ly as)
(Dec n e)) (2 * n + 6) Oc
= (L, start_of ly as + 2*n + 7)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_left_move_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 7) Bk
= (L, start_of ly as + 2*n + 10)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 7 = Suc (2*n + 6)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_after_write_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 8) Bk
= (W1, start_of ly as + 2*n + 7)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 8 = Suc (2*n + 7)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_after_write_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 8) Oc
= (R, start_of ly as + 2*n + 8)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 8 = Suc (2*n + 7)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_on_right_move_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 9) Bk
= (L, start_of ly as + 2*n + 9)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 9 = Suc (2*n + 8)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_on_right_move_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 9) Oc
= (R, start_of ly as + 2*n + 8)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 9 = Suc (2*n + 8)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_after_clear_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 10) Bk
= (R, start_of ly as + 2*n + 4)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 10 = Suc (2*n + 9)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_after_clear_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 10) Oc
= (W0, start_of ly as + 2*n + 9)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 10= Suc (2*n + 9)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_on_left_move1_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 11) Oc
= (L, start_of ly as + 2*n + 10)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 11= Suc (2*n + 10)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_on_left_move1_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 11) Bk
= (L, start_of ly as + 2*n + 11)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 11 = Suc (2*n + 10)",
simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_check_left_move1_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 12) Oc
= (L, start_of ly as + 2*n + 10)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 12= Suc (2*n + 11)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_check_left_move1_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 12) Bk
= (R, start_of ly as + 2*n + 12)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 12 = Suc (2*n + 11)",
simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_after_left_move1_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 13) Bk
= (R, start_of ly as + 2*n + 16)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 13 = Suc (2*n + 12)",
simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_on_left_move2_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 14) Oc
= (L, start_of ly as + 2*n + 13)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 14 = Suc (2*n + 13)",
simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_on_left_move2_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 14) Bk
= (L, start_of ly as + 2*n + 14)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 14 = Suc (2*n + 13)",
simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_check_left_move2_o:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 15) Oc
= (L, start_of ly as + 2*n + 13)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 15 = Suc (2*n + 14)",
simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_check_left_move2_b:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2 * n + 15) Bk
= (R, start_of ly as + 2*n + 15)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 15= Suc (2*n + 14)", simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_after_left_move2_b:
"\<lbrakk>ly = layout_of aprog;
abc_fetch as aprog = Some (Dec n e);
start_of ly as > 0\<rbrakk> \<Longrightarrow>
fetch (ci (layout_of aprog) (start_of ly as)
(Dec n e)) (2 * n + 16) Bk
= (R, start_of ly e)"
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac "2*n + 16 = Suc (2*n + 15)",
simp only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
lemma dec_fetch_next_state:
"start_of ly as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog)
(start_of ly as) (Dec n e)) (2* n + 17) b
= (Nop, 0)"
apply(case_tac b)
apply(auto simp: ci.simps findnth.simps
tshift.simps tdec_b_def add3_Suc)
apply(subgoal_tac [!] "2*n + 17 = Suc (2*n + 16)",
simp_all only: fetch.simps)
apply(auto simp: nth_of.simps nth_append)
done
(*End: dec_fetch lemmas*)
lemmas dec_fetch_simps =
dec_fetch_locate_a_o dec_fetch_locate_a_b dec_fetch_locate_b_o
dec_fetch_locate_b_b dec_fetch_locate_n_a_o
dec_fetch_locate_n_a_b dec_fetch_locate_n_b_o
dec_fetch_locate_n_b_b dec_fetch_first_on_right_move_o
dec_fetch_first_on_right_move_b dec_fetch_first_after_clear_b
dec_fetch_first_after_clear_o dec_fetch_right_move_b
dec_fetch_on_right_move_b dec_fetch_on_right_move_o
dec_fetch_after_clear_b dec_fetch_after_clear_o
dec_fetch_check_right_move_b dec_fetch_check_right_move_o
dec_fetch_left_move_b dec_fetch_on_left_move1_b
dec_fetch_on_left_move1_o dec_fetch_check_left_move1_b
dec_fetch_check_left_move1_o dec_fetch_after_left_move1_b
dec_fetch_on_left_move2_b dec_fetch_on_left_move2_o
dec_fetch_check_left_move2_o dec_fetch_check_left_move2_b
dec_fetch_after_left_move2_b dec_fetch_after_write_b
dec_fetch_after_write_o dec_fetch_next_state
lemma [simp]:
"\<lbrakk>start_of ly as \<le> a;
a < start_of ly as + 2 * n;
(a - start_of ly as) mod 2 = Suc 0;
inv_locate_b (as, am) ((a - start_of ly as) div 2, aaa, Bk # xs) ires\<rbrakk>
\<Longrightarrow> \<not> Suc a < start_of ly as + 2 * n \<longrightarrow>
inv_locate_a (as, am) (n, Bk # aaa, xs) ires"
apply(insert locate_b_2_locate_a[of a ly as n am aaa xs], simp)
done
lemma [simp]:
"\<lbrakk>start_of ly as \<le> a;
a < start_of ly as + 2 * n;
(a - start_of ly as) mod 2 = Suc 0;
inv_locate_b (as, am) ((a - start_of ly as) div 2, aaa, []) ires\<rbrakk>
\<Longrightarrow> \<not> Suc a < start_of ly as + 2 * n \<longrightarrow>
inv_locate_a (as, am) (n, Bk # aaa, []) ires"
apply(insert locate_b_2_locate_a_B[of a ly as n am aaa], simp)
done
(*
lemma [simp]: "a\<^bsup>0\<^esup>=[]"
apply(simp add: exponent_def)
done
*)
lemma exp_ind: "a\<^bsup>Suc b\<^esup> = a\<^bsup>b\<^esup> @ [a]"
apply(simp only: exponent_def rep_ind)
done
lemma [simp]:
"inv_locate_b (as, am) (n, l, Oc # r) ires
\<Longrightarrow> dec_first_on_right_moving n (as, abc_lm_s am n (abc_lm_v am n))
(Suc (Suc (start_of ly as + 2 * n)), Oc # l, r) ires"
apply(simp only: inv_locate_b.simps
dec_first_on_right_moving.simps in_middle.simps
abc_lm_s.simps abc_lm_v.simps)
apply(erule_tac exE)+
apply(erule conjE)+
apply(case_tac "n < length am", simp)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = "Suc ml" in exI, rule_tac conjI, rule_tac [1-2] impI)
prefer 3
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, simp)
apply(subgoal_tac "Suc n - length am = Suc (n - length am)",
simp only:exponent_def rep_ind, simp)
apply(rule_tac x = "Suc ml" in exI, simp_all)
apply(rule_tac [!] x = "mr - 1" in exI, simp_all)
apply(case_tac [!] mr, auto)
done
lemma [simp]:
"\<lbrakk>inv_locate_b (as, am) (n, l, r) ires; l \<noteq> []\<rbrakk> \<Longrightarrow>
\<not> inv_on_left_moving_in_middle_B (as, abc_lm_s am n (abc_lm_v am n))
(s, tl l, hd l # r) ires"
apply(auto simp: inv_locate_b.simps
inv_on_left_moving_in_middle_B.simps in_middle.simps)
apply(case_tac [!] ml, auto split: if_splits)
done
lemma [simp]: "inv_locate_b (as, am) (n, l, r) ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: inv_locate_b.simps in_middle.simps split: if_splits)
done
lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (n, l, Bk # r) ires; n < length am\<rbrakk>
\<Longrightarrow> inv_on_left_moving_norm (as, am) (s, tl l, hd l # Bk # r) ires"
apply(simp only: inv_locate_b.simps inv_on_left_moving_norm.simps
in_middle.simps)
apply(erule_tac exE)+
apply(erule_tac conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = "ml - 1" in exI, auto)
apply(rule_tac [!] x = "Suc mr" in exI)
apply(case_tac [!] mr, auto)
done
lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (n, l, Bk # r) ires; \<not> n < length am\<rbrakk>
\<Longrightarrow> inv_on_left_moving_norm (as, am @
replicate (n - length am) 0 @ [0]) (s, tl l, hd l # Bk # r) ires"
apply(simp only: inv_locate_b.simps inv_on_left_moving_norm.simps
in_middle.simps)
apply(erule_tac exE)+
apply(erule_tac conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, simp)
apply(subgoal_tac "Suc n - length am = Suc (n - length am)", simp only: rep_ind exponent_def, simp_all)
apply(rule_tac x = "Suc mr" in exI, auto)
done
lemma inv_locate_b_2_on_left_moving[simp]:
"\<lbrakk>inv_locate_b (as, am) (n, l, Bk # r) ires\<rbrakk>
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as,
abc_lm_s am n (abc_lm_v am n)) (s, [], Bk # Bk # r) ires) \<and>
(l \<noteq> [] \<longrightarrow> inv_on_left_moving (as,
abc_lm_s am n (abc_lm_v am n)) (s, tl l, hd l # Bk # r) ires)"
apply(subgoal_tac "l\<noteq>[]")
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B
(as, abc_lm_s am n (abc_lm_v am n)) (s, tl l, hd l # Bk # r) ires")
apply(simp add:inv_on_left_moving.simps
abc_lm_s.simps abc_lm_v.simps split: if_splits, auto)
done
lemma [simp]:
"inv_locate_b (as, am) (n, l, []) ires \<Longrightarrow>
inv_locate_b (as, am) (n, l, [Bk]) ires"
apply(auto simp: inv_locate_b.simps in_middle.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac x = "Suc (length lm1) - length am" in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = ml in exI, rule_tac x = mr in exI)
apply(auto)
done
lemma nil_2_nil: "<lm::nat list> = [] \<Longrightarrow> lm = []"
apply(auto simp: tape_of_nl_abv)
apply(case_tac lm, simp)
apply(case_tac list, auto simp: tape_of_nat_list.simps)
done
lemma inv_locate_b_2_on_left_moving_b[simp]:
"inv_locate_b (as, am) (n, l, []) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as,
abc_lm_s am n (abc_lm_v am n)) (s, [], [Bk]) ires) \<and>
(l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, abc_lm_s am n
(abc_lm_v am n)) (s, tl l, [hd l]) ires)"
apply(insert inv_locate_b_2_on_left_moving[of as am n l "[]" ires s])
apply(simp only: inv_on_left_moving.simps, simp)
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B
(as, abc_lm_s am n (abc_lm_v am n)) (s, tl l, [hd l]) ires", simp)
apply(simp only: inv_on_left_moving_norm.simps)
apply(erule_tac exE)+
apply(erule_tac conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = ml in exI,
rule_tac x = mr in exI, simp)
apply(case_tac mr, simp, simp, case_tac nat, auto intro: nil_2_nil)
done
lemma [simp]:
"\<lbrakk>dec_first_on_right_moving n (as, am) (s, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> dec_first_on_right_moving n (as, am) (s', Oc # aaa, xs) ires"
apply(simp only: dec_first_on_right_moving.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = "Suc ml" in exI,
rule_tac x = "mr - 1" in exI, auto)
apply(case_tac [!] mr, auto)
done
lemma [simp]:
"dec_first_on_right_moving n (as, am) (s, l, Bk # xs) ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: dec_first_on_right_moving.simps split: if_splits)
done
lemma [elim]:
"\<lbrakk>\<not> length lm1 < length am;
am @ replicate (length lm1 - length am) 0 @ [0::nat] =
lm1 @ m # lm2;
0 < m\<rbrakk>
\<Longrightarrow> RR"
apply(subgoal_tac "lm2 = []", simp)
apply(drule_tac length_equal, simp)
done
lemma [simp]:
"\<lbrakk>dec_first_on_right_moving n (as,
abc_lm_s am n (abc_lm_v am n)) (s, l, Bk # xs) ires\<rbrakk>
\<Longrightarrow> dec_after_clear (as, abc_lm_s am n
(abc_lm_v am n - Suc 0)) (s', tl l, hd l # Bk # xs) ires"
apply(simp only: dec_first_on_right_moving.simps
dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps)
apply(erule_tac exE)+
apply(case_tac "n < length am")
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = "m - 1" in exI, auto simp: )
apply(case_tac [!] mr, auto)
done
lemma [simp]:
"\<lbrakk>dec_first_on_right_moving n (as,
abc_lm_s am n (abc_lm_v am n)) (s, l, []) ires\<rbrakk>
\<Longrightarrow> (l = [] \<longrightarrow> dec_after_clear (as,
abc_lm_s am n (abc_lm_v am n - Suc 0)) (s', [], [Bk]) ires) \<and>
(l \<noteq> [] \<longrightarrow> dec_after_clear (as, abc_lm_s am n
(abc_lm_v am n - Suc 0)) (s', tl l, [hd l]) ires)"
apply(subgoal_tac "l \<noteq> []",
simp only: dec_first_on_right_moving.simps
dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps)
apply(erule_tac exE)+
apply(case_tac "n < length am", simp)
apply(rule_tac x = lm1 in exI, rule_tac x = "m - 1" in exI, auto)
apply(case_tac [1-2] mr, auto)
apply(case_tac [1-2] m, auto simp: dec_first_on_right_moving.simps split: if_splits)
done
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Oc # r) ires\<rbrakk>
\<Longrightarrow> dec_after_clear (as, am) (s', l, Bk # r) ires"
apply(auto simp: dec_after_clear.simps)
done
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Bk # r) ires\<rbrakk>
\<Longrightarrow> dec_right_move (as, am) (s', Bk # l, r) ires"
apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits)
done
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk>
\<Longrightarrow> dec_right_move (as, am) (s', Bk # l, []) ires"
apply(auto simp: dec_after_clear.simps dec_right_move.simps )
done
lemma [simp]: "\<exists>rn. a::block\<^bsup>rn\<^esup> = []"
apply(rule_tac x = 0 in exI, simp)
done
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk>
\<Longrightarrow> dec_right_move (as, am) (s', Bk # l, [Bk]) ires"
apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits)
done
lemma [simp]:"dec_right_move (as, am) (s, l, Oc # r) ires = False"
apply(auto simp: dec_right_move.simps)
done
lemma dec_right_move_2_check_right_move[simp]:
"\<lbrakk>dec_right_move (as, am) (s, l, Bk # r) ires\<rbrakk>
\<Longrightarrow> dec_check_right_move (as, am) (s', Bk # l, r) ires"
apply(auto simp: dec_right_move.simps dec_check_right_move.simps split: if_splits)
done
lemma [simp]:
"dec_right_move (as, am) (s, l, []) ires=
dec_right_move (as, am) (s, l, [Bk]) ires"
apply(simp add: dec_right_move.simps)
apply(rule_tac iffI)
apply(erule_tac [!] exE)+
apply(erule_tac [2] exE)
apply(rule_tac [!] x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac [!] x = m in exI, auto)
apply(auto intro: nil_2_nil)
done
lemma [simp]: "\<lbrakk>dec_right_move (as, am) (s, l, []) ires\<rbrakk>
\<Longrightarrow> dec_check_right_move (as, am) (s, Bk # l, []) ires"
apply(insert dec_right_move_2_check_right_move[of as am s l "[]" s'],
simp)
done
lemma [simp]: "dec_check_right_move (as, am) (s, l, r) ires\<Longrightarrow> l \<noteq> []"
apply(auto simp: dec_check_right_move.simps split: if_splits)
done
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Oc # r) ires\<rbrakk>
\<Longrightarrow> dec_after_write (as, am) (s', tl l, hd l # Oc # r) ires"
apply(auto simp: dec_check_right_move.simps dec_after_write.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, auto)
done
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Bk # r) ires\<rbrakk>
\<Longrightarrow> dec_left_move (as, am) (s', tl l, hd l # Bk # r) ires"
apply(auto simp: dec_check_right_move.simps
dec_left_move.simps inv_after_move.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto)
apply(auto intro: BkCons_nil nil_2_nil dest: BkCons_nil)
apply(rule_tac x = "Suc rn" in exI)
apply(auto intro: BkCons_nil nil_2_nil dest: BkCons_nil)
done
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, []) ires\<rbrakk>
\<Longrightarrow> dec_left_move (as, am) (s', tl l, [hd l]) ires"
apply(auto simp: dec_check_right_move.simps
dec_left_move.simps inv_after_move.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto)
apply(auto intro: BkCons_nil nil_2_nil dest: BkCons_nil)
done
lemma [simp]: "dec_left_move (as, am) (s, aaa, Oc # xs) ires = False"
apply(auto simp: dec_left_move.simps inv_after_move.simps)
apply(case_tac [!] rn, auto)
done
lemma [simp]: "dec_left_move (as, am) (s, l, r) ires
\<Longrightarrow> l \<noteq> []"
apply(auto simp: dec_left_move.simps split: if_splits)
done
lemma tape_of_nl_abv_cons_ex[simp]:
"\<exists>lna. Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk\<^bsup>ln\<^esup> = <m # rev lm1> @ Bk\<^bsup>lna\<^esup>"
apply(case_tac "lm1=[]", auto simp: tape_of_nl_abv
tape_of_nat_list.simps)
apply(rule_tac x = "ln" in exI, simp)
apply(simp add: tape_of_nat_list_cons exponent_def)
done
(*
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm1 @ [m])
(s', Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk\<^bsup>ln\<^esup>, Bk # Bk\<^bsup>rn\<^esup>) ires"
apply(simp only: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "[]" in exI, auto)
done
*)
lemma [simp]: "inv_on_left_moving_in_middle_B (as, [m])
(s', Oc # Oc\<^bsup>m\<^esup> @ Bk # Bk # ires, Bk # Bk\<^bsup>rn\<^esup>) ires"
apply(simp add: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "[m]" in exI, simp, auto simp: tape_of_nat_def)
done
lemma [simp]: "inv_on_left_moving_in_middle_B (as, [m])
(s', Oc # Oc\<^bsup>m\<^esup> @ Bk # Bk # ires, [Bk]) ires"
apply(simp add: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "[m]" in exI, simp, auto simp: tape_of_nat_def)
done
lemma [simp]: "lm1 \<noteq> [] \<Longrightarrow>
inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s',
Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk # Bk # ires, Bk # Bk\<^bsup>rn\<^esup>) ires"
apply(simp only: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp, auto)
done
lemma [simp]: "lm1 \<noteq> [] \<Longrightarrow>
inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s',
Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk # Bk # ires, [Bk]) ires"
apply(simp only: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp, auto)
done
lemma [simp]: "dec_left_move (as, am) (s, l, Bk # r) ires
\<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, hd l # Bk # r) ires"
apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits)
done
(*
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm1 @ [m])
(s', Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk\<^bsup>ln\<^esup>, [Bk]) ires"
apply(auto simp: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "[]" in exI, auto)
done
*)
lemma [simp]: "dec_left_move (as, am) (s, l, []) ires
\<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, [hd l]) ires"
apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits)
done
lemma [simp]: "dec_after_write (as, am) (s, l, Oc # r) ires
\<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires"
apply(auto simp: dec_after_write.simps dec_on_right_moving.simps)
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI,
rule_tac x = "hd lm2" in exI, simp)
apply(rule_tac x = "Suc 0" in exI,rule_tac x = "Suc (hd lm2)" in exI)
apply(case_tac lm2, simp, simp)
apply(case_tac "list = []",
auto simp: tape_of_nl_abv tape_of_nat_list.simps split: if_splits )
apply(case_tac rn, auto)
apply(case_tac "rev lm1", simp, simp add: tape_of_nat_list.simps)
apply(case_tac rn, auto)
apply(case_tac list, simp_all add: tape_of_nat_list.simps, auto)
apply(case_tac "rev lm1", simp, simp add: tape_of_nat_list.simps)
apply(case_tac list, simp_all add: tape_of_nat_list.simps, auto)
done
lemma [simp]: "dec_after_write (as, am) (s, l, Bk # r) ires
\<Longrightarrow> dec_after_write (as, am) (s', l, Oc # r) ires"
apply(auto simp: dec_after_write.simps)
done
lemma [simp]: "dec_after_write (as, am) (s, aaa, []) ires
\<Longrightarrow> dec_after_write (as, am) (s', aaa, [Oc]) ires"
apply(auto simp: dec_after_write.simps)
done
lemma [simp]: "dec_on_right_moving (as, am) (s, l, Oc # r) ires
\<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires"
apply(simp only: dec_on_right_moving.simps)
apply(erule_tac exE)+
apply(erule conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = "m" in exI, rule_tac x = "Suc ml" in exI,
rule_tac x = "mr - 1" in exI, simp)
apply(case_tac mr, auto)
done
lemma [simp]: "dec_on_right_moving (as, am) (s, l, r) ires\<Longrightarrow> l \<noteq> []"
apply(auto simp: dec_on_right_moving.simps split: if_splits)
done
lemma [simp]: "dec_on_right_moving (as, am) (s, l, Bk # r) ires
\<Longrightarrow> dec_after_clear (as, am) (s', tl l, hd l # Bk # r) ires"
apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps)
apply(case_tac [!] mr, auto split: if_splits)
done
lemma [simp]: "dec_on_right_moving (as, am) (s, l, []) ires
\<Longrightarrow> dec_after_clear (as, am) (s', tl l, [hd l]) ires"
apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps)
apply(case_tac mr, simp_all split: if_splits)
apply(rule_tac x = lm1 in exI, simp)
done
lemma start_of_le: "a < b \<Longrightarrow> start_of ly a \<le> start_of ly b"
proof(induct b arbitrary: a, simp, case_tac "a = b", simp)
fix b a
show "start_of ly b \<le> start_of ly (Suc b)"
apply(case_tac "b::nat",
simp add: start_of.simps, simp add: start_of.simps)
done
next
fix b a
assume h1: "\<And>a. a < b \<Longrightarrow> start_of ly a \<le> start_of ly b"
"a < Suc b" "a \<noteq> b"
hence "a < b"
by(simp)
from h1 and this have h2: "start_of ly a \<le> start_of ly b"
by(drule_tac h1, simp)
from h2 show "start_of ly a \<le> start_of ly (Suc b)"
proof -
have "start_of ly b \<le> start_of ly (Suc b)"
apply(case_tac "b::nat",
simp add: start_of.simps, simp add: start_of.simps)
done
from h2 and this show "start_of ly a \<le> start_of ly (Suc b)"
by simp
qed
qed
lemma start_of_dec_length[simp]:
"\<lbrakk>abc_fetch a aprog = Some (Dec n e)\<rbrakk> \<Longrightarrow>
start_of (layout_of aprog) (Suc a)
= start_of (layout_of aprog) a + 2*n + 16"
apply(case_tac a, auto simp: abc_fetch.simps start_of.simps
layout_of.simps length_of.simps
split: if_splits)
done
lemma start_of_ge:
"\<lbrakk>abc_fetch a aprog = Some (Dec n e); a < e\<rbrakk> \<Longrightarrow>
start_of (layout_of aprog) e >
start_of (layout_of aprog) a + 2*n + 15"
apply(case_tac "e = Suc a",
simp add: start_of.simps abc_fetch.simps layout_of.simps
length_of.simps split: if_splits)
apply(subgoal_tac "Suc a < e", drule_tac a = "Suc a"
and ly = "layout_of aprog" in start_of_le)
apply(subgoal_tac "start_of (layout_of aprog) (Suc a)
= start_of (layout_of aprog) a + 2*n + 16", simp)
apply(rule_tac start_of_dec_length, simp)
apply(arith)
done
lemma starte_not_equal[simp]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk>
\<Longrightarrow> (start_of ly e \<noteq> Suc (Suc (start_of ly as + 2 * n)) \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 3 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 4 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 5 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 6 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 7 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 8 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 9 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 10 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 11 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 12 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 13 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 14 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 15)"
apply(case_tac "e = as", simp)
apply(case_tac "e < as")
apply(drule_tac a = e and b = as and ly = ly in start_of_le, simp)
apply(drule_tac a = as and e = e in start_of_ge, simp, simp)
done
lemma [simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk>
\<Longrightarrow> (Suc (Suc (start_of ly as + 2 * n)) \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 3 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 4 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 5 \<noteq>start_of ly e \<and>
start_of ly as + 2 * n + 6 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 7 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 8 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 9 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 10 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 11 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 12 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 13 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 14 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 15 \<noteq> start_of ly e)"
apply(insert starte_not_equal[of as aprog n e ly],
simp del: starte_not_equal)
apply(erule_tac conjE)+
apply(rule_tac conjI, simp del: starte_not_equal)+
apply(rule not_sym, simp)
done
lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n as)) (Suc 0) Oc =
(R, Suc (start_of (layout_of aprog) as))"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append
Suc_pre tdec_b_def)
apply(insert findnth_nth[of 0 n "Suc 0"], simp)
apply(simp add: findnth.simps)
done
lemma start_of_inj[simp]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e); e \<noteq> as; ly = layout_of aprog\<rbrakk>
\<Longrightarrow> start_of ly as \<noteq> start_of ly e"
apply(case_tac "e < as")
apply(case_tac "as", simp, simp)
apply(case_tac "e = nat", simp add: start_of.simps
layout_of.simps length_of.simps)
apply(subgoal_tac "e < length aprog", simp add: length_of.simps
split: abc_inst.splits)
apply(simp add: abc_fetch.simps split: if_splits)
apply(subgoal_tac "e < nat", drule_tac a = e and b = nat
and ly =ly in start_of_le, simp)
apply(subgoal_tac "start_of ly nat < start_of ly (Suc nat)",
simp, simp add: start_of.simps layout_of.simps)
apply(subgoal_tac "nat < length aprog", simp)
apply(case_tac "aprog ! nat", auto simp: length_of.simps)
apply(simp add: abc_fetch.simps split: if_splits)
apply(subgoal_tac "e > as", drule_tac start_of_ge, auto)
done
lemma [simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); e < as\<rbrakk>
\<Longrightarrow> Suc (start_of (layout_of aprog) e) -
start_of (layout_of aprog) as = 0"
apply(frule_tac ly = "layout_of aprog" in start_of_le, simp)
apply(subgoal_tac "start_of (layout_of aprog) as \<noteq>
start_of (layout_of aprog) e", arith)
apply(rule start_of_inj, auto)
done
lemma [simp]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e);
0 < start_of (layout_of aprog) as\<rbrakk>
\<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e)) (Suc (start_of (layout_of aprog) e) -
start_of (layout_of aprog) as) Oc)
= (if e = as then (R, start_of (layout_of aprog) as + 1)
else (Nop, 0))"
apply(auto split: if_splits)
apply(case_tac "e < as", simp add: fetch.simps)
apply(subgoal_tac " e > as")
apply(drule start_of_ge, simp,
auto simp: fetch.simps ci_length nth_of.simps)
apply(subgoal_tac
"length (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e)) div 2= length_of (Dec n e)")
defer
apply(simp add: ci_length)
apply(subgoal_tac
"length (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e)) mod 2 = 0", auto simp: length_of.simps)
done
lemma [simp]:
"start_of (layout_of aprog) as > 0 \<Longrightarrow>
fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n as)) (Suc 0) Bk
= (W1, start_of (layout_of aprog) as)"
apply(auto simp: ci.simps findnth.simps fetch.simps nth_of.simps
tshift.simps nth_append Suc_pre tdec_b_def)
apply(insert findnth_nth[of 0 n "0"], simp)
apply(simp add: findnth.simps)
done
lemma [simp]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e);
0 < start_of (layout_of aprog) as\<rbrakk>
\<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e)) (Suc (start_of (layout_of aprog) e) -
start_of (layout_of aprog) as) Bk)
= (if e = as then (W1, start_of (layout_of aprog) as)
else (Nop, 0))"
apply(auto split: if_splits)
apply(case_tac "e < as", simp add: fetch.simps)
apply(subgoal_tac " e > as")
apply(drule start_of_ge, simp, auto simp: fetch.simps
ci_length nth_of.simps)
apply(subgoal_tac
"length (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e)) div 2= length_of (Dec n e)")
defer
apply(simp add: ci_length)
apply(subgoal_tac
"length (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e)) mod 2 = 0", auto simp: length_of.simps)
apply(simp add: ci.simps tshift.simps tdec_b_def)
done
lemma [simp]:
"inv_stop (as, abc_lm_s am n (abc_lm_v am n)) (s, l, r) ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: inv_stop.simps)
done
lemma [simp]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e); e \<noteq> as; ly = layout_of aprog\<rbrakk>
\<Longrightarrow> (\<not> (start_of ly as \<le> start_of ly e \<and>
start_of ly e < start_of ly as + 2 * n))
\<and> start_of ly e \<noteq> start_of ly as + 2*n \<and>
start_of ly e \<noteq> Suc (start_of ly as + 2*n) "
apply(case_tac "e < as")
apply(drule_tac ly = ly in start_of_le, simp)
apply(case_tac n, simp, drule start_of_inj, simp, simp, simp, simp)
apply(drule_tac start_of_ge, simp, simp)
done
lemma [simp]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e); start_of ly as \<le> s;
s < start_of ly as + 2 * n; ly = layout_of aprog\<rbrakk>
\<Longrightarrow> Suc s \<noteq> start_of ly e "
apply(case_tac "e = as", simp)
apply(case_tac "e < as")
apply(drule_tac a = e and b = as and ly = ly in start_of_le, simp)
apply(drule_tac start_of_ge, auto)
done
lemma [simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e);
ly = layout_of aprog\<rbrakk>
\<Longrightarrow> Suc (start_of ly as + 2 * n) \<noteq> start_of ly e"
apply(case_tac "e = as", simp)
apply(case_tac "e < as")
apply(drule_tac a = e and b = as and ly = ly in start_of_le, simp)
apply(drule_tac start_of_ge, auto)
done
lemma dec_false_1[simp]:
"\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> False"
apply(auto simp: inv_locate_b.simps in_middle.simps exponent_def)
apply(case_tac "length lm1 \<ge> length am", auto)
apply(subgoal_tac "lm2 = []", simp, subgoal_tac "m = 0", simp)
apply(case_tac mr, auto simp: )
apply(subgoal_tac "Suc (length lm1) - length am =
Suc (length lm1 - length am)",
simp add: rep_ind del: replicate.simps, simp)
apply(drule_tac xs = "am @ replicate (Suc (length lm1) - length am) 0"
and ys = "lm1 @ m # lm2" in length_equal, simp)
apply(case_tac mr, auto simp: abc_lm_v.simps)
apply(case_tac "mr = 0", simp_all add: exponent_def split: if_splits)
apply(subgoal_tac "Suc (length lm1) - length am =
Suc (length lm1 - length am)",
simp add: rep_ind del: replicate.simps, simp)
done
lemma [simp]:
"\<lbrakk>inv_locate_b (as, am) (n, aaa, Bk # xs) ires;
abc_lm_v am n = 0\<rbrakk>
\<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0)
(s, tl aaa, hd aaa # Bk # xs) ires"
apply(insert inv_locate_b_2_on_left_moving[of as am n aaa xs ires s], simp)
done
lemma [simp]:
"\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, []) ires\<rbrakk>
\<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0) (s, tl aaa, [hd aaa]) ires"
apply(insert inv_locate_b_2_on_left_moving_b[of as am n aaa ires s], simp)
done
lemma [simp]: "\<lbrakk>am ! n = (0::nat); n < length am\<rbrakk> \<Longrightarrow> am[n := 0] = am"
apply(simp add: list_update_same_conv)
done
lemma [simp]: "\<lbrakk>abc_lm_v am n = 0;
inv_locate_b (as, abc_lm_s am n 0) (n, Oc # aaa, xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_b (as, am) (n, Oc # aaa, xs) ires"
apply(simp only: inv_locate_b.simps in_middle.simps abc_lm_s.simps
abc_lm_v.simps)
apply(erule_tac exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, simp)
apply(case_tac "n < length am", simp_all)
apply(erule_tac conjE)+
apply(rule_tac x = tn in exI, rule_tac x = m in exI, simp)
apply(rule_tac x = ml in exI, rule_tac x = mr in exI, simp)
defer
apply(rule_tac x = "Suc n - length am" in exI, rule_tac x = m in exI)
apply(subgoal_tac "Suc n - length am = Suc (n - length am)")
apply(simp add: exponent_def rep_ind del: replicate.simps, auto)
done
lemma [intro]: "\<lbrakk>abc_lm_v (a # list) 0 = 0\<rbrakk> \<Longrightarrow> a = 0"
apply(simp add: abc_lm_v.simps split: if_splits)
done
lemma [simp]:
"inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, Oc # xs) ires
\<Longrightarrow> inv_locate_a (as, abc_lm_s am n 0) (0, aaa, Oc # xs) ires"
apply(simp add: inv_locate_a.simps)
apply(rule disjI1)
apply(auto simp: inv_stop.simps at_begin_norm.simps)
done
lemma [simp]:
"\<lbrakk>abc_lm_v am 0 = 0;
inv_stop (as, abc_lm_s am 0 0)
(start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk> \<Longrightarrow>
inv_locate_b (as, am) (0, Oc # aaa, xs) ires"
apply(auto simp: inv_stop.simps inv_locate_b.simps
in_middle.simps abc_lm_s.simps)
apply(case_tac "am = []", simp)
apply(rule_tac x = "[]" in exI, rule_tac x = "Suc 0" in exI,
rule_tac x = 0 in exI, simp)
apply(rule_tac x = "Suc 0" in exI, rule_tac x = 0 in exI,
simp add: tape_of_nl_abv tape_of_nat_list.simps, auto)
apply(case_tac rn, auto)
apply(rule_tac x = "tl am" in exI, rule_tac x = 0 in exI,
rule_tac x = "hd am" in exI, simp)
apply(rule_tac x = "Suc 0" in exI, rule_tac x = "hd am" in exI, simp)
apply(case_tac am, simp, simp)
apply(subgoal_tac "a = 0", case_tac list,
auto simp: tape_of_nat_list.simps tape_of_nl_abv)
apply(case_tac rn, auto)
done
lemma [simp]:
"\<lbrakk>inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_b (as, am) (0, Oc # aaa, xs) ires \<or>
inv_locate_b (as, abc_lm_s am n 0) (0, Oc # aaa, xs) ires"
apply(simp)
done
lemma [simp]:
"\<lbrakk>abc_lm_v am n = 0;
inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> \<not> Suc 0 < 2 * n \<longrightarrow> e = as \<longrightarrow>
inv_locate_b (as, am) (n, Oc # aaa, xs) ires"
apply(case_tac n, simp, simp)
done
lemma dec_false2:
"inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, Bk # xs) ires = False"
apply(auto simp: inv_stop.simps abc_lm_s.simps)
apply(case_tac "am", simp, case_tac n, simp add: tape_of_nl_abv)
apply(case_tac list, simp add: tape_of_nat_list.simps )
apply(simp add: tape_of_nat_list.simps , simp)
apply(case_tac "list[nat := 0]",
simp add: tape_of_nat_list.simps tape_of_nl_abv)
apply(simp add: tape_of_nat_list.simps )
apply(case_tac "am @ replicate (n - length am) 0 @ [0]", simp)
apply(case_tac list, auto simp: tape_of_nl_abv
tape_of_nat_list.simps )
done
lemma dec_false3:
"inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, []) ires = False"
apply(auto simp: inv_stop.simps abc_lm_s.simps)
apply(case_tac "am", case_tac n, auto)
apply(case_tac n, auto simp: tape_of_nl_abv)
apply(case_tac "list::nat list",
simp add: tape_of_nat_list.simps tape_of_nat_list.simps)
apply(simp add: tape_of_nat_list.simps)
apply(case_tac "list[nat := 0]",
simp add: tape_of_nat_list.simps tape_of_nat_list.simps)
apply(simp add: tape_of_nat_list.simps)
apply(case_tac "(am @ replicate (n - length am) 0 @ [0])", simp)
apply(case_tac list, auto simp: tape_of_nat_list.simps)
done
lemma [simp]:
"fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Dec n e)) 0 b = (Nop, 0)"
by(simp add: fetch.simps)
declare dec_inv_1.simps[simp del]
declare inv_locate_n_b.simps [simp del]
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n; 0 < n;
at_begin_norm (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
apply(simp only: at_begin_norm.simps inv_locate_n_b.simps)
apply(erule_tac exE)+
apply(rule_tac x = lm1 in exI, simp)
apply(case_tac "length lm2", simp)
apply(case_tac rn, simp, simp)
apply(rule_tac x = "tl lm2" in exI, rule_tac x = "hd lm2" in exI, simp)
apply(rule conjI)
apply(case_tac "lm2", simp, simp)
apply(case_tac "lm2", auto simp: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac [!] "list", auto simp: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac rn, auto)
done
lemma [simp]: "(\<exists>rn. Oc # xs = Bk\<^bsup>rn\<^esup>) = False"
apply(auto)
apply(case_tac rn, auto simp: )
done
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n; 0 < n;
at_begin_fst_bwtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
apply(simp add: at_begin_fst_bwtn.simps inv_locate_n_b.simps )
done
lemma Suc_minus:"length am + tn = n
\<Longrightarrow> Suc tn = Suc n - length am "
apply(arith)
done
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n; 0 < n;
at_begin_fst_awtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
apply(simp only: at_begin_fst_awtn.simps inv_locate_n_b.simps )
apply(erule exE)+
apply(erule conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI)
apply(simp add: exponent_def rep_ind del: replicate.simps)
apply(rule conjI)+
apply(auto)
apply(case_tac [!] rn, auto)
done
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n; 0 < n; inv_locate_a (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc#aaa, xs) ires"
apply(auto simp: inv_locate_a.simps)
done
lemma [simp]:
"\<lbrakk>inv_locate_n_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> dec_first_on_right_moving n (as, abc_lm_s am n (abc_lm_v am n))
(s, Oc # aaa, xs) ires"
apply(auto simp: inv_locate_n_b.simps dec_first_on_right_moving.simps
abc_lm_s.simps abc_lm_v.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = "Suc (Suc 0)" in exI,
rule_tac x = "m - 1" in exI, simp)
apply(case_tac m, auto simp: exponent_def)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI,
simp add: Suc_diff_le rep_ind del: replicate.simps)
apply(rule_tac x = "Suc (Suc 0)" in exI,
rule_tac x = "m - 1" in exI, simp)
apply(case_tac m, auto simp: exponent_def)
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = "Suc (Suc 0)" in exI,
rule_tac x = "m - 1" in exI, simp)
apply(case_tac m, auto)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI,
simp add: Suc_diff_le rep_ind del: replicate.simps, simp)
done
lemma dec_false_2:
"\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am) (n, aaa, Bk # xs) ires\<rbrakk>
\<Longrightarrow> False"
apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits)
apply(case_tac [!] m, auto)
done
lemma dec_false_2_b:
"\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am)
(n, aaa, []) ires\<rbrakk> \<Longrightarrow> False"
apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits)
apply(case_tac [!] m, auto simp: )
done
(*begin: dec halt1 lemmas*)
thm abc_inc_stage1.simps
fun abc_dec_1_stage1:: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_1_stage1 (s, l, r) ss n =
(if s > ss \<and> s \<le> ss + 2*n + 1 then 4
else if s = ss + 2 * n + 13 \<or> s = ss + 2*n + 14 then 3
else if s = ss + 2*n + 15 then 2
else 0)"
fun abc_dec_1_stage2:: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_1_stage2 (s, l, r) ss n =
(if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s)
else if s = ss + 2*n + 13 then length l
else if s = ss + 2*n + 14 then length l
else 0)"
fun abc_dec_1_stage3 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> nat"
where
"abc_dec_1_stage3 (s, l, r) ss n ires =
(if s \<le> ss + 2*n + 1 then
if (s - ss) mod 2 = 0 then
if r \<noteq> [] \<and> hd r = Oc then 0 else 1
else length r
else if s = ss + 2 * n + 13 then
if l = Bk # ires \<and> r \<noteq> [] \<and> hd r = Oc then 2
else 1
else if s = ss + 2 * n + 14 then
if r \<noteq> [] \<and> hd r = Oc then 3 else 0
else 0)"
fun abc_dec_1_measure :: "(t_conf \<times> nat \<times> nat \<times> block list) \<Rightarrow> (nat \<times> nat \<times> nat)"
where
"abc_dec_1_measure (c, ss, n, ires) = (abc_dec_1_stage1 c ss n,
abc_dec_1_stage2 c ss n, abc_dec_1_stage3 c ss n ires)"
definition abc_dec_1_LE ::
"(((nat \<times> block list \<times> block list) \<times> nat \<times>
nat \<times> block list) \<times> ((nat \<times> block list \<times> block list) \<times> nat \<times> nat \<times> block list)) set"
where "abc_dec_1_LE \<equiv> (inv_image lex_triple abc_dec_1_measure)"
lemma wf_dec_le: "wf abc_dec_1_LE"
by(auto intro:wf_inv_image wf_lex_triple simp:abc_dec_1_LE_def)
declare dec_inv_1.simps[simp del] dec_inv_2.simps[simp del]
lemma [elim]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e);
start_of (layout_of aprog) as < start_of (layout_of aprog) e;
start_of (layout_of aprog) e \<le>
Suc (start_of (layout_of aprog) as + 2 * n)\<rbrakk> \<Longrightarrow> False"
apply(case_tac "e = as", simp)
apply(case_tac "e < as")
apply(drule_tac a = e and b = as and ly = "layout_of aprog" in
start_of_le, simp)
apply(drule_tac start_of_ge, auto)
done
lemma [elim]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e);
start_of (layout_of aprog) e
= start_of (layout_of aprog) as + 2 * n + 13\<rbrakk>
\<Longrightarrow> False"
apply(insert starte_not_equal[of as aprog n e "layout_of aprog"],
simp)
done
lemma [elim]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e);
start_of (layout_of aprog) e =
start_of (layout_of aprog) as + 2 * n + 14\<rbrakk>
\<Longrightarrow> False"
apply(insert starte_not_equal[of as aprog n e "layout_of aprog"],
simp)
done
lemma [elim]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e);
start_of (layout_of aprog) as < start_of (layout_of aprog) e;
start_of (layout_of aprog) e \<le>
Suc (start_of (layout_of aprog) as + 2 * n)\<rbrakk>
\<Longrightarrow> False"
apply(case_tac "e = as", simp)
apply(case_tac "e < as")
apply(drule_tac a = e and b = as and ly = "layout_of aprog" in
start_of_le, simp)
apply(drule_tac start_of_ge, auto)
done
lemma [elim]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e);
start_of (layout_of aprog) e =
start_of (layout_of aprog) as + 2 * n + 13\<rbrakk>
\<Longrightarrow> False"
apply(insert starte_not_equal[of as aprog n e "layout_of aprog"],
simp)
done
lemma [simp]:
"abc_fetch as aprog = Some (Dec n e) \<Longrightarrow>
Suc (start_of (layout_of aprog) as) \<noteq> start_of (layout_of aprog) e"
apply(case_tac "e = as", simp)
apply(case_tac "e < as")
apply(drule_tac a = e and b = as and ly = "(layout_of aprog)" in
start_of_le, simp)
apply(drule_tac a = as and e = e in start_of_ge, simp, simp)
done
lemma [simp]: "inv_on_left_moving (as, am) (s, [], r) ires
= False"
apply(simp add: inv_on_left_moving.simps inv_on_left_moving_norm.simps
inv_on_left_moving_in_middle_B.simps)
done
lemma [simp]:
"inv_check_left_moving (as, abc_lm_s am n 0)
(start_of (layout_of aprog) as + 2 * n + 14, [], Oc # xs) ires
= False"
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
done
lemma dec_inv_stop1_pre:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e); abc_lm_v am n = 0;
start_of (layout_of aprog) as > 0\<rbrakk>
\<Longrightarrow> \<forall>na. \<not> (\<lambda>(s, l, r) (ss, n', ires'). s = start_of (layout_of aprog) e)
(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) na)
(start_of (layout_of aprog) as, n, ires) \<and>
dec_inv_1 (layout_of aprog) n e (as, am)
(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) na) ires
\<longrightarrow> dec_inv_1 (layout_of aprog) n e (as, am)
(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0)
(Suc na)) ires \<and>
((t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) (Suc na),
start_of (layout_of aprog) as, n, ires),
t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) na,
start_of (layout_of aprog) as, n, ires)
\<in> abc_dec_1_LE"
apply(rule allI, rule impI, simp add: t_steps_ind)
apply(case_tac "(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) na)", simp)
apply(auto split:if_splits simp add:t_step.simps dec_inv_1.simps,
tactic {* ALLGOALS (resolve_tac [@{thm fetch_intro}]) *})
apply(simp_all add:dec_fetch_simps new_tape.simps dec_inv_1.simps)
apply(auto simp add: abc_dec_1_LE_def lex_square_def
lex_triple_def lex_pair_def
split: if_splits)
apply(rule dec_false_1, simp, simp)
done
lemma dec_inv_stop1:
"\<lbrakk>ly = layout_of aprog;
dec_inv_1 ly n e (as, am) (start_of ly as + 1, l, r) ires;
abc_fetch as aprog = Some (Dec n e); abc_lm_v am n = 0\<rbrakk> \<Longrightarrow>
(\<exists> stp. (\<lambda> (s', l', r'). s' = start_of ly e \<and>
dec_inv_1 ly n e (as, am) (s', l' , r') ires)
(t_steps (start_of ly as + 1, l, r)
(ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp))"
apply(insert halt_lemma2[of abc_dec_1_LE
"\<lambda> ((s, l, r), ss, n', ires'). s = start_of ly e"
"(\<lambda> stp. (t_steps (start_of ly as + 1, l, r)
(ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0)
stp, start_of ly as, n, ires))"
"\<lambda> ((s, l, r), ss, n, ires'). dec_inv_1 ly n e (as, am) (s, l, r) ires'"],
simp)
apply(insert wf_dec_le, simp)
apply(insert dec_inv_stop1_pre[of as aprog n e am l r], simp)
apply(subgoal_tac "start_of (layout_of aprog) as > 0",
simp add: t_steps.simps)
apply(erule_tac exE, rule_tac x = na in exI)
apply(case_tac
"(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) na)",
case_tac b, auto)
apply(rule startof_not0)
done
(*begin: dec halt2 lemmas*)
lemma [simp]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e);
ly = layout_of aprog\<rbrakk> \<Longrightarrow>
start_of ly (Suc as) = start_of ly as + 2*n + 16"
by simp
fun abc_dec_2_stage1 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_2_stage1 (s, l, r) ss n =
(if s \<le> ss + 2*n + 1 then 7
else if s = ss + 2*n + 2 then 6
else if s = ss + 2*n + 3 then 5
else if s \<ge> ss + 2*n + 4 \<and> s \<le> ss + 2*n + 9 then 4
else if s = ss + 2*n + 6 then 3
else if s = ss + 2*n + 10 \<or> s = ss + 2*n + 11 then 2
else if s = ss + 2*n + 12 then 1
else 0)"
thm new_tape.simps
fun abc_dec_2_stage2 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_2_stage2 (s, l, r) ss n =
(if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s)
else if s = ss + 2*n + 10 then length l
else if s = ss + 2*n + 11 then length l
else if s = ss + 2*n + 4 then length r - 1
else if s = ss + 2*n + 5 then length r
else if s = ss + 2*n + 7 then length r - 1
else if s = ss + 2*n + 8 then
length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1
else if s = ss + 2*n + 9 then
length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1
else 0)"
fun abc_dec_2_stage3 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> nat"
where
"abc_dec_2_stage3 (s, l, r) ss n ires =
(if s \<le> ss + 2*n + 1 then
if (s - ss) mod 2 = 0 then if r \<noteq> [] \<and>
hd r = Oc then 0 else 1
else length r
else if s = ss + 2 * n + 10 then
if l = Bk # ires \<and> r \<noteq> [] \<and> hd r = Oc then 2
else 1
else if s = ss + 2 * n + 11 then
if r \<noteq> [] \<and> hd r = Oc then 3
else 0
else (ss + 2 * n + 16 - s))"
fun abc_dec_2_stage4 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_2_stage4 (s, l, r) ss n =
(if s = ss + 2*n + 2 then length r
else if s = ss + 2*n + 8 then length r
else if s = ss + 2*n + 3 then
if r \<noteq> [] \<and> hd r = Oc then 1
else 0
else if s = ss + 2*n + 7 then
if r \<noteq> [] \<and> hd r = Oc then 0
else 1
else if s = ss + 2*n + 9 then
if r \<noteq> [] \<and> hd r = Oc then 1
else 0
else 0)"
fun abc_dec_2_measure :: "(t_conf \<times> nat \<times> nat \<times> block list) \<Rightarrow>
(nat \<times> nat \<times> nat \<times> nat)"
where
"abc_dec_2_measure (c, ss, n, ires) =
(abc_dec_2_stage1 c ss n, abc_dec_2_stage2 c ss n,
abc_dec_2_stage3 c ss n ires, abc_dec_2_stage4 c ss n)"
definition abc_dec_2_LE ::
"(((nat \<times> block list \<times> block list) \<times> nat \<times> nat \<times> block list) \<times>
((nat \<times> block list \<times> block list) \<times> nat \<times> nat \<times> block list)) set"
where "abc_dec_2_LE \<equiv> (inv_image lex_square abc_dec_2_measure)"
lemma wf_dec_2_le: "wf abc_dec_2_LE"
by(auto intro:wf_inv_image wf_lex_triple wf_lex_square
simp:abc_dec_2_LE_def)
lemma [simp]: "dec_after_write (as, am) (s, aa, r) ires
\<Longrightarrow> takeWhile (\<lambda>a. a = Oc) aa = []"
apply(simp only : dec_after_write.simps)
apply(erule exE)+
apply(erule_tac conjE)+
apply(case_tac aa, simp)
apply(case_tac a, simp only: takeWhile.simps , simp, simp split: if_splits)
done
lemma [simp]:
"\<lbrakk>dec_on_right_moving (as, lm) (s, aa, []) ires;
length (takeWhile (\<lambda>a. a = Oc) (tl aa))
\<noteq> length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0\<rbrakk>
\<Longrightarrow> length (takeWhile (\<lambda>a. a = Oc) (tl aa)) <
length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0"
apply(simp only: dec_on_right_moving.simps)
apply(erule_tac exE)+
apply(erule_tac conjE)+
apply(case_tac mr, auto split: if_splits)
done
lemma [simp]:
"dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0))
(start_of (layout_of aprog) as + 2 * n + 9, aa, Bk # xs) ires
\<Longrightarrow> length xs - Suc 0 < length xs +
length (takeWhile (\<lambda>a. a = Oc) aa)"
apply(simp only: dec_after_clear.simps)
apply(erule_tac exE)+
apply(erule conjE)+
apply(simp split: if_splits )
done
lemma [simp]:
"\<lbrakk>dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0))
(start_of (layout_of aprog) as + 2 * n + 9, aa, []) ires\<rbrakk>
\<Longrightarrow> Suc 0 < length (takeWhile (\<lambda>a. a = Oc) aa)"
apply(simp add: dec_after_clear.simps split: if_splits)
done
lemma [simp]:
"\<lbrakk>dec_on_right_moving (as, am) (s, aa, Bk # xs) ires;
Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa)))
\<noteq> length (takeWhile (\<lambda>a. a = Oc) aa)\<rbrakk>
\<Longrightarrow> Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa)))
< length (takeWhile (\<lambda>a. a = Oc) aa)"
apply(simp only: dec_on_right_moving.simps)
apply(erule exE)+
apply(erule conjE)+
apply(case_tac ml, auto split: if_splits )
done
(*
lemma abc_dec_2_wf:
"\<lbrakk>ly = layout_of aprog; dec_inv_2 ly n e (as, am) (start_of ly as + 1, l, r); abc_fetch as aprog = Dec n e; abc_lm_v am n > 0\<rbrakk>
\<Longrightarrow> \<forall>na. \<not> (\<lambda>(s, l, r) (ss, n'). s = start_of (layout_of aprog) as + 2*n + 16)
(t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na)
(start_of (layout_of aprog) as, n) \<longrightarrow>
((t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) (Suc na),
start_of (layout_of aprog) as, n),
t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na,
start_of (layout_of aprog) as, n)
\<in> abc_dec_2_LE"
proof(rule allI, rule impI, simp add: t_steps_ind)
fix na
assume h1 :"ly = layout_of aprog" "dec_inv_2 (layout_of aprog) n e (as, am) (Suc (start_of (layout_of aprog) as), l, r)"
"abc_fetch as aprog = Dec n e" "abc_lm_v am n > 0"
"\<not> (\<lambda>(s, l, r) (ss, n'). s = start_of (layout_of aprog) as + 2*n + 16)
(t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na)
(start_of (layout_of aprog) as, n)"
thus "((t_step (t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0),
start_of (layout_of aprog) as, n),
t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na,
start_of (layout_of aprog) as, n)
\<in> abc_dec_2_LE"
proof(insert dec_inv_2_steps[of "layout_of aprog" n e as am "(start_of (layout_of aprog) as + 1, l, r)" aprog na],
case_tac "(t_steps (start_of (layout_of aprog) as + 1, l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na)", case_tac b, simp)
fix a b aa ba
assume "dec_inv_2 (layout_of aprog) n e (as, am) (a, aa, ba)" " a \<noteq> start_of (layout_of aprog) as + 2*n + 16" "abc_lm_v am n > 0" "abc_fetch as aprog = Dec n e "
thus "((t_step (a, aa, ba) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0), start_of (layout_of aprog) as, n), (a, aa, ba),
start_of (layout_of aprog) as, n)
\<in> abc_dec_2_LE"
apply(case_tac "a = 0", auto split:if_splits simp add:t_step.simps dec_inv_2.simps,
tactic {* ALLGOALS (resolve_tac (thms "fetch_intro")) *})
apply(simp_all add:dec_fetch_simps new_tape.simps)
apply(auto simp add: abc_dec_2_LE_def lex_square_def lex_triple_def lex_pair_def
split: if_splits)
done
qed
qed
*)
lemma [simp]: "inv_check_left_moving (as, abc_lm_s am n (abc_lm_v am n - Suc 0))
(start_of (layout_of aprog) as + 2 * n + 11, [], Oc # xs) ires = False"
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
done
lemma dec_inv_stop2_pre:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e); abc_lm_v am n > 0\<rbrakk> \<Longrightarrow>
\<forall>na. \<not> (\<lambda>(s, l, r) (ss, n', ires').
s = start_of (layout_of aprog) as + 2 * n + 16)
(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) na)
(start_of (layout_of aprog) as, n, ires) \<and>
dec_inv_2 (layout_of aprog) n e (as, am)
(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) na) ires
\<longrightarrow>
dec_inv_2 (layout_of aprog) n e (as, am)
(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) (Suc na)) ires \<and>
((t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) (Suc na),
start_of (layout_of aprog) as, n, ires),
t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) na,
start_of (layout_of aprog) as, n, ires)
\<in> abc_dec_2_LE"
apply(subgoal_tac "start_of (layout_of aprog) as > 0")
apply(rule allI, rule impI, simp add: t_steps_ind)
apply(case_tac "(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) na)", simp)
apply(auto split:if_splits simp add:t_step.simps dec_inv_2.simps,
tactic {* ALLGOALS (resolve_tac [@{thm fetch_intro}]) *})
apply(simp_all add:dec_fetch_simps new_tape.simps dec_inv_2.simps)
apply(auto simp add: abc_dec_2_LE_def lex_square_def lex_triple_def
lex_pair_def split: if_splits)
apply(auto intro: dec_false_2_b dec_false_2)
apply(rule startof_not0)
done
lemma dec_stop2:
"\<lbrakk>ly = layout_of aprog;
dec_inv_2 ly n e (as, am) (start_of ly as + 1, l, r) ires;
abc_fetch as aprog = Some (Dec n e);
abc_lm_v am n > 0\<rbrakk> \<Longrightarrow>
(\<exists> stp. (\<lambda> (s', l', r'). s' = start_of ly (Suc as) \<and>
dec_inv_2 ly n e (as, am) (s', l', r') ires)
(t_steps (start_of ly as+1, l, r) (ci ly (start_of ly as)
(Dec n e), start_of ly as - Suc 0) stp))"
apply(insert halt_lemma2[of abc_dec_2_LE
"\<lambda> ((s, l, r), ss, n', ires'). s = start_of ly (Suc as)"
"(\<lambda> stp. (t_steps (start_of ly as + 1, l, r)
(ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp,
start_of ly as, n, ires))"
"(\<lambda> ((s, l, r), ss, n, ires'). dec_inv_2 ly n e (as, am) (s, l, r) ires')"])
apply(insert wf_dec_2_le, simp)
apply(insert dec_inv_stop2_pre[of as aprog n e am l r],
simp add: t_steps.simps)
apply(erule_tac exE)
apply(rule_tac x = na in exI)
apply(case_tac "(t_steps (Suc (start_of (layout_of aprog) as), l, r)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) na)",
case_tac b, auto)
done
lemma dec_inv_stop_cond1:
"\<lbrakk>ly = layout_of aprog;
dec_inv_1 ly n e (as, lm) (s, (l, r)) ires; s = start_of ly e;
abc_fetch as aprog = Some (Dec n e); abc_lm_v lm n = 0\<rbrakk>
\<Longrightarrow> crsp_l ly (e, abc_lm_s lm n 0) (s, l, r) ires"
apply(simp add: dec_inv_1.simps split: if_splits)
apply(auto simp: crsp_l.simps inv_stop.simps )
done
lemma dec_inv_stop_cond2:
"\<lbrakk>ly = layout_of aprog; s = start_of ly (Suc as);
dec_inv_2 ly n e (as, lm) (s, (l, r)) ires;
abc_fetch as aprog = Some (Dec n e);
abc_lm_v lm n > 0\<rbrakk>
\<Longrightarrow> crsp_l ly (Suc as,
abc_lm_s lm n (abc_lm_v lm n - Suc 0)) (s, l, r) ires"
apply(simp add: dec_inv_2.simps split: if_splits)
apply(auto simp: crsp_l.simps inv_stop.simps )
done
lemma [simp]: "(case Bk\<^bsup>rn\<^esup> of [] \<Rightarrow> Bk |
Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc) = Bk"
apply(case_tac rn, auto)
done
lemma [simp]: "t_steps tc (p,off) (m + n) =
t_steps (t_steps tc (p, off) m) (p, off) n"
apply(induct m arbitrary: n)
apply(simp add: t_steps.simps)
proof -
fix m n
assume h1: "\<And>n. t_steps tc (p, off) (m + n) =
t_steps (t_steps tc (p, off) m) (p, off) n"
hence h2: "t_steps tc (p, off) (Suc m + n) =
t_steps tc (p, off) (m + Suc n)"
by simp
from h1 and this show
"t_steps tc (p, off) (Suc m + n) =
t_steps (t_steps tc (p, off) (Suc m)) (p, off) n"
proof(simp only: h2, simp add: t_steps.simps)
have h3: "(t_step (t_steps tc (p, off) m) (p, off)) =
(t_steps (t_step tc (p, off)) (p, off) m)"
apply(simp add: t_steps.simps[THEN sym] t_steps_ind[THEN sym])
done
from h3 show
"t_steps (t_step (t_steps tc (p, off) m) (p, off)) (p, off) n = t_steps (t_steps (t_step tc (p, off)) (p, off) m) (p, off) n"
by simp
qed
qed
lemma [simp]: " abc_fetch as aprog = Some (Dec n e) \<Longrightarrow>
Suc (start_of (layout_of aprog) as) \<noteq>
start_of (layout_of aprog) e"
apply(case_tac "e = as", simp)
apply(case_tac "e < as")
apply(drule_tac a = e and b = as and ly = "layout_of aprog"
in start_of_le, simp)
apply(drule_tac start_of_ge, auto)
done
lemma [simp]: "inv_locate_b (as, []) (0, Oc # Bk # Bk # ires, Bk\<^bsup>rn - Suc 0\<^esup>) ires"
apply(auto simp: inv_locate_b.simps in_middle.simps)
apply(rule_tac x = "[]" in exI, rule_tac x = "Suc 0" in exI,
rule_tac x = 0 in exI, simp)
apply(rule_tac x = "Suc 0" in exI, rule_tac x = 0 in exI, auto)
apply(case_tac rn, simp, case_tac nat, auto)
done
lemma [simp]:
"inv_locate_n_b (as, []) (0, Oc # Bk # Bk # ires, Bk\<^bsup>rn - Suc 0\<^esup>) ires"
apply(auto simp: inv_locate_n_b.simps in_middle.simps)
apply(case_tac rn, simp, case_tac nat, auto)
done
lemma [simp]:
"abc_fetch as aprog = Some (Dec n e) \<Longrightarrow>
dec_inv_1 (layout_of aprog) n e (as, [])
(Suc (start_of (layout_of aprog) as), Oc # Bk # Bk # ires, Bk\<^bsup>rn - Suc 0\<^esup>) ires
\<and>
dec_inv_2 (layout_of aprog) n e (as, [])
(Suc (start_of (layout_of aprog) as), Oc # Bk # Bk # ires, Bk\<^bsup>rn - Suc 0\<^esup>) ires"
apply(simp add: dec_inv_1.simps dec_inv_2.simps)
apply(case_tac n, auto)
done
lemma [simp]:
"\<lbrakk>am \<noteq> []; <am> = Oc # r';
abc_fetch as aprog = Some (Dec n e)\<rbrakk>
\<Longrightarrow> inv_locate_b (as, am) (0, Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>) ires"
apply(auto simp: inv_locate_b.simps in_middle.simps)
apply(rule_tac x = "tl am" in exI, rule_tac x = 0 in exI,
rule_tac x = "hd am" in exI, simp)
apply(rule_tac x = "Suc 0" in exI)
apply(rule_tac x = "hd am" in exI, simp)
apply(case_tac am, simp, case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac rn, auto)
done
lemma [simp]:
"\<lbrakk><am> = Oc # r'; abc_fetch as aprog = Some (Dec n e)\<rbrakk> \<Longrightarrow>
inv_locate_n_b (as, am) (0, Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>) ires"
apply(auto simp: inv_locate_n_b.simps)
apply(rule_tac x = "tl am" in exI, rule_tac x = "hd am" in exI, auto)
apply(case_tac [!] am, auto simp: tape_of_nl_abv tape_of_nat_list.simps )
apply(case_tac [!]list, auto simp: tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac rn, simp, simp)
apply(erule_tac x = nat in allE, simp)
done
lemma [simp]:
"\<lbrakk>am \<noteq> [];
<am> = Oc # r';
abc_fetch as aprog = Some (Dec n e)\<rbrakk> \<Longrightarrow>
dec_inv_1 (layout_of aprog) n e (as, am)
(Suc (start_of (layout_of aprog) as),
Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>) ires \<and>
dec_inv_2 (layout_of aprog) n e (as, am)
(Suc (start_of (layout_of aprog) as),
Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>) ires"
apply(simp add: dec_inv_1.simps dec_inv_2.simps)
apply(case_tac n, auto)
done
lemma [simp]: "am \<noteq> [] \<Longrightarrow> \<exists>r'. <am::nat list> = Oc # r'"
apply(case_tac am, simp, case_tac list)
apply(auto simp: tape_of_nl_abv tape_of_nat_list.simps )
done
lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow>
(fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Dec n e)) (Suc 0) Bk)
= (W1, start_of (layout_of aprog) as)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append Suc_pre tdec_b_def)
thm findnth_nth
apply(insert findnth_nth[of 0 n 0], simp)
apply(simp add: findnth.simps)
done
lemma [simp]:
"start_of (layout_of aprog) as > 0
\<Longrightarrow> (t_step (start_of (layout_of aprog) as, Bk # Bk # ires, Bk\<^bsup>rn\<^esup>)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0))
= (start_of (layout_of aprog) as, Bk # Bk # ires, Oc # Bk\<^bsup>rn- Suc 0\<^esup>)"
apply(simp add: t_step.simps)
apply(case_tac "start_of (layout_of aprog) as",
auto simp: new_tape.simps)
apply(case_tac rn, auto)
done
lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow>
(fetch (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e)) (Suc 0) Oc)
= (R, Suc (start_of (layout_of aprog) as))"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps tshift.simps nth_append
Suc_pre tdec_b_def)
apply(insert findnth_nth[of 0 n "Suc 0"], simp)
apply(simp add: findnth.simps)
done
lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow>
(t_step (start_of (layout_of aprog) as, Bk # Bk # ires, Oc # Bk\<^bsup>rn - Suc 0\<^esup>)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0)) =
(Suc (start_of (layout_of aprog) as), Oc # Bk # Bk # ires, Bk\<^bsup>rn-Suc 0\<^esup>)"
apply(simp add: t_step.simps)
apply(case_tac "start_of (layout_of aprog) as",
auto simp: new_tape.simps)
done
lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow>
t_step (start_of (layout_of aprog) as, Bk # Bk # ires, Oc # r' @ Bk\<^bsup>rn\<^esup>)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) =
(Suc (start_of (layout_of aprog) as), Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>)"
apply(simp add: t_step.simps)
apply(case_tac "start_of (layout_of aprog) as",
auto simp: new_tape.simps)
done
lemma crsp_next_state:
"\<lbrakk>crsp_l (layout_of aprog) (as, am) tc ires;
abc_fetch as aprog = Some (Dec n e)\<rbrakk>
\<Longrightarrow> \<exists> stp' > 0. (\<lambda> (s, l, r).
(s = Suc (start_of (layout_of aprog) as)
\<and> (dec_inv_1 (layout_of aprog) n e (as, am) (s, l, r) ires)
\<and> (dec_inv_2 (layout_of aprog) n e (as, am) (s, l, r)) ires))
(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp')"
apply(subgoal_tac "start_of (layout_of aprog) as > 0")
apply(case_tac tc, case_tac b, auto simp: crsp_l.simps)
apply(case_tac "am = []", simp)
apply(rule_tac x = "Suc (Suc 0)" in exI, simp add: t_steps.simps)
proof-
fix rn
assume h1: "am \<noteq> []" "abc_fetch as aprog = Some (Dec n e)"
"start_of (layout_of aprog) as > 0"
hence h2: "\<exists> r'. <am> = Oc # r'"
by simp
from h1 and h2 show
"\<exists>stp'>0. case t_steps (start_of (layout_of aprog) as, Bk # Bk # ires, <am> @ Bk\<^bsup>rn\<^esup>)
(ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) stp' of
(s, ab) \<Rightarrow> s = Suc (start_of (layout_of aprog) as) \<and>
dec_inv_1 (layout_of aprog) n e (as, am) (s, ab) ires \<and>
dec_inv_2 (layout_of aprog) n e (as, am) (s, ab) ires"
proof(erule_tac exE, simp, rule_tac x = "Suc 0" in exI,
simp add: t_steps.simps)
qed
next
assume "abc_fetch as aprog = Some (Dec n e)"
thus "0 < start_of (layout_of aprog) as"
apply(insert startof_not0[of "layout_of aprog" as], simp)
done
qed
lemma dec_crsp_ex1:
"\<lbrakk>crsp_l (layout_of aprog) (as, am) tc ires;
abc_fetch as aprog = Some (Dec n e);
abc_lm_v am n = 0\<rbrakk>
\<Longrightarrow> \<exists>stp > 0. crsp_l (layout_of aprog) (e, abc_lm_s am n 0)
(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp) ires"
proof -
assume h1: "crsp_l (layout_of aprog) (as, am) tc ires"
"abc_fetch as aprog = Some (Dec n e)" "abc_lm_v am n = 0"
hence h2: "\<exists> stp' > 0. (\<lambda> (s, l, r).
(s = Suc (start_of (layout_of aprog) as) \<and>
(dec_inv_1 (layout_of aprog) n e (as, am) (s, l, r)) ires))
(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp')"
apply(insert crsp_next_state[of aprog as am tc ires n e], auto)
done
from h1 and h2 show
"\<exists>stp > 0. crsp_l (layout_of aprog) (e, abc_lm_s am n 0)
(t_steps tc (ci (layout_of aprog) (start_of
(layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) stp) ires"
proof(erule_tac exE, case_tac "(t_steps tc (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Dec n e), start_of
(layout_of aprog) as - Suc 0) stp')", simp)
fix stp' a b c
assume h3: "stp' > 0 \<and> a = Suc (start_of (layout_of aprog) as) \<and>
dec_inv_1 (layout_of aprog) n e (as, am) (a, b, c) ires"
"abc_fetch as aprog = Some (Dec n e)" "abc_lm_v am n = 0"
"t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp'
= (Suc (start_of (layout_of aprog) as), b, c)"
thus "\<exists>stp > 0. crsp_l (layout_of aprog) (e, abc_lm_s am n 0)
(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp) ires"
proof(erule_tac conjE, simp)
assume "dec_inv_1 (layout_of aprog) n e (as, am)
(Suc (start_of (layout_of aprog) as), b, c) ires"
"abc_fetch as aprog = Some (Dec n e)"
"abc_lm_v am n = 0"
" t_steps tc (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) stp'
= (Suc (start_of (layout_of aprog) as), b, c)"
hence h4: "\<exists>stp. (\<lambda>(s', l', r'). s' =
start_of (layout_of aprog) e \<and>
dec_inv_1 (layout_of aprog) n e (as, am) (s', l', r') ires)
(t_steps (start_of (layout_of aprog) as + 1, b, c)
(ci (layout_of aprog)
(start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) stp)"
apply(rule_tac dec_inv_stop1, auto)
done
from h3 and h4 show ?thesis
apply(erule_tac exE)
apply(rule_tac x = "stp' + stp" in exI, simp)
apply(case_tac "(t_steps (Suc (start_of (layout_of aprog) as),
b, c) (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) stp)",
simp)
apply(rule_tac dec_inv_stop_cond1, auto)
done
qed
qed
qed
lemma dec_crsp_ex2:
"\<lbrakk>crsp_l (layout_of aprog) (as, am) tc ires;
abc_fetch as aprog = Some (Dec n e);
0 < abc_lm_v am n\<rbrakk>
\<Longrightarrow> \<exists>stp > 0. crsp_l (layout_of aprog)
(Suc as, abc_lm_s am n (abc_lm_v am n - Suc 0))
(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp) ires"
proof -
assume h1:
"crsp_l (layout_of aprog) (as, am) tc ires"
"abc_fetch as aprog = Some (Dec n e)"
"abc_lm_v am n > 0"
hence h2:
"\<exists> stp' > 0. (\<lambda> (s, l, r). (s = Suc (start_of (layout_of aprog) as)
\<and> (dec_inv_2 (layout_of aprog) n e (as, am) (s, l, r)) ires))
(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp')"
apply(insert crsp_next_state[of aprog as am tc ires n e], auto)
done
from h1 and h2 show
"\<exists>stp >0. crsp_l (layout_of aprog)
(Suc as, abc_lm_s am n (abc_lm_v am n - Suc 0))
(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp) ires"
proof(erule_tac exE,
case_tac
"(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp')", simp)
fix stp' a b c
assume h3: "0 < stp' \<and> a = Suc (start_of (layout_of aprog) as) \<and>
dec_inv_2 (layout_of aprog) n e (as, am) (a, b, c) ires"
"abc_fetch as aprog = Some (Dec n e)"
"abc_lm_v am n > 0"
"t_steps tc (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Dec n e),
start_of (layout_of aprog) as - Suc 0) stp'
= (Suc (start_of (layout_of aprog) as), b, c)"
thus "?thesis"
proof(erule_tac conjE, simp)
assume
"dec_inv_2 (layout_of aprog) n e (as, am)
(Suc (start_of (layout_of aprog) as), b, c) ires"
"abc_fetch as aprog = Some (Dec n e)" "abc_lm_v am n > 0"
"t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp'
= (Suc (start_of (layout_of aprog) as), b, c)"
hence h4:
"\<exists>stp. (\<lambda>(s', l', r'). s' = start_of (layout_of aprog) (Suc as) \<and>
dec_inv_2 (layout_of aprog) n e (as, am) (s', l', r') ires)
(t_steps (start_of (layout_of aprog) as + 1, b, c)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp)"
apply(rule_tac dec_stop2, auto)
done
from h3 and h4 show ?thesis
apply(erule_tac exE)
apply(rule_tac x = "stp' + stp" in exI, simp)
apply(case_tac
"(t_steps (Suc (start_of (layout_of aprog) as), b, c)
(ci (layout_of aprog) (start_of (layout_of aprog) as)
(Dec n e), start_of (layout_of aprog) as - Suc 0) stp)"
,simp)
apply(rule_tac dec_inv_stop_cond2, auto)
done
qed
qed
qed
lemma dec_crsp_ex_pre:
"\<lbrakk>ly = layout_of aprog; crsp_l ly (as, am) tc ires;
abc_fetch as aprog = Some (Dec n e)\<rbrakk>
\<Longrightarrow> \<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Dec n e)))
(t_steps tc (ci (layout_of aprog) (start_of ly as) (Dec n e),
start_of ly as - Suc 0) stp) ires"
apply(auto simp: abc_step_l.simps intro: dec_crsp_ex2 dec_crsp_ex1)
done
lemma dec_crsp_ex:
assumes layout: -- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"} *}
"ly = layout_of aprog"
and dec: -- {* There is an @{text "Dec n e"} instruction at postion @{text "as"} of @{text "aprog"} *}
"abc_fetch as aprog = Some (Dec n e)"
and correspond:
-- {* Abacus configuration @{text "(as, am)"} is in correspondence with TM
configuration @{text "tc"}
*}
"crsp_l ly (as, am) tc ires"
shows
"\<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Dec n e)))
(t_steps tc (ci (layout_of aprog) (start_of ly as) (Dec n e),
start_of ly as - Suc 0) stp) ires"
proof -
from dec_crsp_ex_pre layout dec correspond show ?thesis by blast
qed
(*
subsection {* Compilation of @{text "Goto n"}*}
*)
lemma goto_fetch:
"fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Goto n)) (Suc 0) b
= (Nop, start_of (layout_of aprog) n)"
apply(auto simp: ci.simps fetch.simps nth_of.simps
split: block.splits)
done
text {*
Correctness of complied @{text "Goto n"}
*}
lemma goto_crsp_ex_pre:
"\<lbrakk>ly = layout_of aprog;
crsp_l ly (as, am) tc ires;
abc_fetch as aprog = Some (Goto n)\<rbrakk>
\<Longrightarrow> \<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Goto n)))
(t_steps tc (ci (layout_of aprog) (start_of ly as) (Goto n),
start_of ly as - Suc 0) stp) ires"
apply(rule_tac x = 1 in exI)
apply(simp add: abc_step_l.simps t_steps.simps t_step.simps)
apply(case_tac tc, simp)
apply(subgoal_tac "a = start_of (layout_of aprog) as", auto)
apply(subgoal_tac "start_of (layout_of aprog) as > 0", simp)
apply(auto simp: goto_fetch new_tape.simps crsp_l.simps)
apply(rule startof_not0)
done
lemma goto_crsp_ex:
assumes layout: "ly = layout_of aprog"
and goto: "abc_fetch as aprog = Some (Goto n)"
and correspondence: "crsp_l ly (as, am) tc ires"
shows "\<exists>stp>0. crsp_l ly (abc_step_l (as, am) (Some (Goto n)))
(t_steps tc (ci (layout_of aprog) (start_of ly as) (Goto n),
start_of ly as - Suc 0) stp) ires"
proof -
from goto_crsp_ex_pre and layout goto correspondence show "?thesis" by blast
qed
subsection {*
The correctness of the compiler
*}
declare abc_step_l.simps[simp del]
lemma tm_crsp_ex:
"\<lbrakk>ly = layout_of aprog;
crsp_l ly (as, am) tc ires;
as < length aprog;
abc_fetch as aprog = Some ins\<rbrakk>
\<Longrightarrow> \<exists> n > 0. crsp_l ly (abc_step_l (as,am) (Some ins))
(t_steps tc (ci (layout_of aprog) (start_of ly as)
(ins), (start_of ly as) - (Suc 0)) n) ires"
apply(case_tac "ins", simp)
apply(auto intro: inc_crsp_ex_pre dec_crsp_ex goto_crsp_ex)
done
lemma start_of_pre:
"n < length aprog \<Longrightarrow> start_of (layout_of aprog) n
= start_of (layout_of (butlast aprog)) n"
apply(induct n, simp add: start_of.simps, simp)
apply(simp add: layout_of.simps start_of.simps)
apply(subgoal_tac "n < length aprog - Suc 0", simp)
apply(subgoal_tac "(aprog ! n) = (butlast aprog ! n)", simp)
proof -
fix n
assume h1: "Suc n < length aprog"
thus "aprog ! n = butlast aprog ! n"
apply(case_tac "length aprog", simp, simp)
apply(insert nth_append[of "butlast aprog" "[last aprog]" n])
apply(subgoal_tac "(butlast aprog @ [last aprog]) = aprog")
apply(simp split: if_splits)
apply(rule append_butlast_last_id, case_tac aprog, simp, simp)
done
next
fix n
assume "Suc n < length aprog"
thus "n < length aprog - Suc 0"
apply(case_tac aprog, simp, simp)
done
qed
lemma zip_eq: "xs = ys \<Longrightarrow> zip xs zs = zip ys zs"
by simp
lemma tpairs_of_append_iff: "length aprog = Suc n \<Longrightarrow>
tpairs_of aprog = tpairs_of (butlast aprog) @
[(start_of (layout_of aprog) n, aprog ! n)]"
apply(simp add: tpairs_of.simps)
apply(insert zip_append[of "map (start_of (layout_of aprog)) [0..<n]"
"butlast aprog" "[start_of (layout_of aprog) n]" "[last aprog]"])
apply(simp del: zip_append)
apply(subgoal_tac "(butlast aprog @ [last aprog]) = aprog", auto)
apply(rule_tac zip_eq, auto)
apply(rule_tac start_of_pre, simp)
apply(insert last_conv_nth[of aprog], case_tac aprog, simp, simp)
apply(rule append_butlast_last_id, case_tac aprog, simp, simp)
done
lemma [simp]: "list_all (\<lambda>(n, tm). abacus.t_ncorrect (ci layout n tm))
(zip (map (start_of layout) [0..<length aprog]) aprog)"
proof(induct "length aprog" arbitrary: aprog, simp)
fix x aprog
assume ind: "\<And>aprog. x = length aprog \<Longrightarrow>
list_all (\<lambda>(n, tm). abacus.t_ncorrect (ci layout n tm))
(zip (map (start_of layout) [0..<length aprog]) aprog)"
and h: "Suc x = length (aprog::abc_inst list)"
have g1: "list_all (\<lambda>(n, tm). abacus.t_ncorrect (ci layout n tm))
(zip (map (start_of layout) [0..<length (butlast aprog)])
(butlast aprog))"
using h
apply(rule_tac ind, auto)
done
have g2: "(map (start_of layout) [0..<length aprog]) =
map (start_of layout) ([0..<length aprog - 1]
@ [length aprog - 1])"
using h
apply(case_tac aprog, simp, simp)
done
have "\<exists> xs a. aprog = xs @ [a]"
using h
apply(rule_tac x = "butlast aprog" in exI,
rule_tac x = "last aprog" in exI)
apply(case_tac "aprog = []", simp, simp)
done
from this obtain xs where "\<exists> a. aprog = xs @ [a]" ..
from this obtain a where g3: "aprog = xs @ [a]" ..
from g1 and g2 and g3 show "list_all (\<lambda>(n, tm).
abacus.t_ncorrect (ci layout n tm))
(zip (map (start_of layout) [0..<length aprog]) aprog)"
apply(simp)
apply(auto simp: t_ncorrect.simps ci.simps tshift.simps
tinc_b_def tdec_b_def split: abc_inst.splits)
apply arith+
done
qed
lemma [intro]: "abc2t_correct aprog"
apply(simp add: abc2t_correct.simps tpairs_of.simps
split: abc_inst.splits)
done
lemma as_out: "\<lbrakk>ly = layout_of aprog; tprog = tm_of aprog;
crsp_l ly (as, am) tc ires; length aprog \<le> as\<rbrakk>
\<Longrightarrow> abc_step_l (as, am) (abc_fetch as aprog) = (as, am)"
apply(simp add: abc_fetch.simps abc_step_l.simps)
done
lemma tm_merge_ex:
"\<lbrakk>crsp_l (layout_of aprog) (as, am) tc ires;
as < length aprog;
abc_fetch as aprog = Some a;
abc2t_correct aprog;
crsp_l (layout_of aprog) (abc_step_l (as, am) (Some a))
(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as)
a, start_of (layout_of aprog) as - Suc 0) n) ires;
n > 0\<rbrakk>
\<Longrightarrow> \<exists>stp > 0. crsp_l (layout_of aprog) (abc_step_l (as, am)
(Some a)) (t_steps tc (tm_of aprog, 0) stp) ires"
apply(case_tac "(t_steps tc (ci (layout_of aprog)
(start_of (layout_of aprog) as) a,
start_of (layout_of aprog) as - Suc 0) n)", simp)
apply(case_tac "(abc_step_l (as, am) (Some a))", simp)
proof -
fix aa b c aaa ba
assume h:
"crsp_l (layout_of aprog) (as, am) tc ires"
"as < length aprog"
"abc_fetch as aprog = Some a"
"crsp_l (layout_of aprog) (aaa, ba) (aa, b, c) ires"
"abc2t_correct aprog"
"n>0"
"t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) a,
start_of (layout_of aprog) as - Suc 0) n = (aa, b, c)"
"abc_step_l (as, am) (Some a) = (aaa, ba)"
hence "aa = start_of (layout_of aprog) aaa"
apply(simp add: crsp_l.simps)
done
from this and h show
"\<exists>stp > 0. crsp_l (layout_of aprog) (aaa, ba)
(t_steps tc (tm_of aprog, 0) stp) ires"
apply(insert tms_out_ex[of "layout_of aprog" aprog
"tm_of aprog" as am tc ires a n aa b c aaa ba], auto)
done
qed
lemma crsp_inside:
"\<lbrakk>ly = layout_of aprog;
tprog = tm_of aprog;
crsp_l ly (as, am) tc ires;
as < length aprog\<rbrakk> \<Longrightarrow>
(\<exists> stp > 0. crsp_l ly (abc_step_l (as,am) (abc_fetch as aprog))
(t_steps tc (tprog, 0) stp) ires)"
apply(case_tac "abc_fetch as aprog", simp add: abc_fetch.simps)
proof -
fix a
assume "ly = layout_of aprog"
"tprog = tm_of aprog"
"crsp_l ly (as, am) tc ires"
"as < length aprog"
"abc_fetch as aprog = Some a"
thus "\<exists>stp > 0. crsp_l ly (abc_step_l (as, am)
(abc_fetch as aprog)) (t_steps tc (tprog, 0) stp) ires"
proof(insert tm_crsp_ex[of ly aprog as am tc ires a],
auto intro: tm_merge_ex)
qed
qed
lemma crsp_outside:
"\<lbrakk>ly = layout_of aprog; tprog = tm_of aprog;
crsp_l ly (as, am) tc ires; as \<ge> length aprog\<rbrakk>
\<Longrightarrow> (\<exists> stp. crsp_l ly (abc_step_l (as,am) (abc_fetch as aprog))
(t_steps tc (tprog, 0) stp) ires)"
apply(subgoal_tac "abc_step_l (as, am) (abc_fetch as aprog)
= (as, am)", simp)
apply(rule_tac x = 0 in exI, simp add: t_steps.simps)
apply(rule as_out, simp+)
done
text {*
Single-step correntess of the compiler.
*}
lemma astep_crsp_pre:
"\<lbrakk>ly = layout_of aprog;
tprog = tm_of aprog;
crsp_l ly (as, am) tc ires\<rbrakk>
\<Longrightarrow> (\<exists> stp. crsp_l ly (abc_step_l (as,am)
(abc_fetch as aprog)) (t_steps tc (tprog, 0) stp) ires)"
apply(case_tac "as < length aprog")
apply(drule_tac crsp_inside, auto)
apply(rule_tac crsp_outside, simp+)
done
text {*
Single-step correntess of the compiler.
*}
lemma astep_crsp_pre1:
"\<lbrakk>ly = layout_of aprog;
tprog = tm_of aprog;
crsp_l ly (as, am) tc ires\<rbrakk>
\<Longrightarrow> (\<exists> stp. crsp_l ly (abc_step_l (as,am)
(abc_fetch as aprog)) (t_steps tc (tprog, 0) stp) ires)"
apply(case_tac "as < length aprog")
apply(drule_tac crsp_inside, auto)
apply(rule_tac crsp_outside, simp+)
done
lemma astep_crsp:
assumes layout:
-- {* There is a Abacus program @{text "aprog"} with layout @{text "ly"} *}
"ly = layout_of aprog"
and compiled:
-- {* @{text "tprog"} is the TM compiled from @{text "aprog"} *}
"tprog = tm_of aprog"
and corresponds:
-- {* Abacus configuration @{text "(as, am)"} is in correspondence with TM configuration
@{text "tc"} *}
"crsp_l ly (as, am) tc ires"
-- {* One step execution of @{text "aprog"} can be simulated by multi-step execution
of @{text "tprog"} *}
shows "(\<exists> stp. crsp_l ly (abc_step_l (as,am)
(abc_fetch as aprog)) (t_steps tc (tprog, 0) stp) ires)"
proof -
from astep_crsp_pre1 [OF layout compiled corresponds] show ?thesis .
qed
lemma steps_crsp_pre:
"\<lbrakk>ly = layout_of aprog; tprog = tm_of aprog;
crsp_l ly ac tc ires; ac' = abc_steps_l ac aprog n\<rbrakk> \<Longrightarrow>
(\<exists> n'. crsp_l ly ac' (t_steps tc (tprog, 0) n') ires)"
apply(induct n arbitrary: ac' ac tc, simp add: abc_steps_l.simps)
apply(rule_tac x = 0 in exI)
apply(case_tac ac, simp add: abc_steps_l.simps t_steps.simps)
apply(case_tac ac, simp add: abc_steps_l.simps)
apply(subgoal_tac
"(\<exists> stp. crsp_l ly (abc_step_l (a, b)
(abc_fetch a aprog)) (t_steps tc (tprog, 0) stp) ires)")
apply(erule exE)
apply(subgoal_tac
"\<exists>n'. crsp_l (layout_of aprog)
(abc_steps_l (abc_step_l (a, b) (abc_fetch a aprog)) aprog n)
(t_steps ((t_steps tc (tprog, 0) stp)) (tm_of aprog, 0) n') ires")
apply(erule exE)
apply(subgoal_tac
"t_steps (t_steps tc (tprog, 0) stp) (tm_of aprog, 0) n' =
t_steps tc (tprog, 0) (stp + n')")
apply(rule_tac x = "stp + n'" in exI, simp)
apply(auto intro: astep_crsp simp: t_step_add)
done
text {*
Multi-step correctess of the compiler.
*}
lemma steps_crsp:
assumes layout:
-- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"} *}
"ly = layout_of aprog"
and compiled:
-- {* @{text "tprog"} is the TM compiled from @{text "aprog"} *}
"tprog = tm_of aprog"
and correspond:
-- {* Abacus configuration @{text "ac"} is in correspondence with TM configuration @{text "tc"} *}
"crsp_l ly ac tc ires"
and execution:
-- {* @{text "ac'"} is the configuration obtained from @{text "n"}-step execution
of @{text "aprog"} starting from configuration @{text "ac"} *}
"ac' = abc_steps_l ac aprog n"
-- {* There exists steps @{text "n'"} steps, after these steps of execution,
the Turing configuration such obtained is in correspondence with @{text "ac'"} *}
shows "(\<exists> n'. crsp_l ly ac' (t_steps tc (tprog, 0) n') ires)"
proof -
from steps_crsp_pre [OF layout compiled correspond execution] show ?thesis .
qed
subsection {* The Mop-up machine *}
fun mop_bef :: "nat \<Rightarrow> tprog"
where
"mop_bef 0 = []" |
"mop_bef (Suc n) = mop_bef n @
[(R, 2*n + 3), (W0, 2*n + 2), (R, 2*n + 1), (W1, 2*n + 2)]"
definition mp_up :: "tprog"
where
"mp_up \<equiv> [(R, 2), (R, 1), (L, 5), (W0, 3), (R, 4), (W0, 3),
(R, 2), (W0, 3), (L, 5), (L, 6), (R, 0), (L, 6)]"
fun tMp :: "nat \<Rightarrow> nat \<Rightarrow> tprog"
where
"tMp n off = tshift (mop_bef n @ tshift mp_up (2*n)) off"
declare mp_up_def[simp del] tMp.simps[simp del] mop_bef.simps[simp del]
(**********Begin: equiv among aba and turing***********)
lemma tm_append_step:
"\<lbrakk>t_ncorrect tp1; t_step tc (tp1, 0) = (s, l, r); s \<noteq> 0\<rbrakk>
\<Longrightarrow> t_step tc (tp1 @ tp2, 0) = (s, l, r)"
apply(simp add: t_step.simps)
apply(case_tac tc, simp)
apply(case_tac
"(fetch tp1 a (case c of [] \<Rightarrow> Bk |
Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))", simp)
apply(case_tac a, simp add: fetch.simps)
apply(simp add: fetch.simps)
apply(case_tac c, simp)
apply(case_tac [!] "ab::block")
apply(auto simp: nth_of.simps nth_append t_ncorrect.simps
split: if_splits)
done
lemma state0_ind: "t_steps (0, l, r) (tp, 0) stp = (0, l, r)"
apply(induct stp, simp add: t_steps.simps)
apply(simp add: t_steps.simps t_step.simps fetch.simps new_tape.simps)
done
lemma tm_append_steps:
"\<lbrakk>t_ncorrect tp1; t_steps tc (tp1, 0) stp = (s, l ,r); s \<noteq> 0\<rbrakk>
\<Longrightarrow> t_steps tc (tp1 @ tp2, 0) stp = (s, l, r)"
apply(induct stp arbitrary: tc s l r)
apply(case_tac tc, simp)
apply(simp add: t_steps.simps)
proof -
fix stp tc s l r
assume h1: "\<And>tc s l r. \<lbrakk>t_ncorrect tp1; t_steps tc (tp1, 0) stp =
(s, l, r); s \<noteq> 0\<rbrakk> \<Longrightarrow> t_steps tc (tp1 @ tp2, 0) stp = (s, l, r)"
and h2: "t_steps tc (tp1, 0) (Suc stp) = (s, l, r)" "s \<noteq> 0"
"t_ncorrect tp1"
thus "t_steps tc (tp1 @ tp2, 0) (Suc stp) = (s, l, r)"
apply(simp add: t_steps.simps)
apply(case_tac "(t_step tc (tp1, 0))", simp)
proof-
fix a b c
assume g1: "\<And>tc s l r. \<lbrakk>t_steps tc (tp1, 0) stp = (s, l, r);
0 < s\<rbrakk> \<Longrightarrow> t_steps tc (tp1 @ tp2, 0) stp = (s, l, r)"
and g2: "t_step tc (tp1, 0) = (a, b, c)"
"t_steps (a, b, c) (tp1, 0) stp = (s, l, r)"
"0 < s"
"t_ncorrect tp1"
hence g3: "a > 0"
apply(case_tac "a::nat", auto simp: t_steps.simps)
apply(simp add: state0_ind)
done
from g1 and g2 and this have g4:
"(t_step tc (tp1 @ tp2, 0)) = (a, b, c)"
apply(rule_tac tm_append_step, simp, simp, simp)
done
from g1 and g2 and g3 and g4 show
"t_steps (t_step tc (tp1 @ tp2, 0)) (tp1 @ tp2, 0) stp
= (s, l, r)"
apply(simp)
done
qed
qed
lemma shift_fetch:
"\<lbrakk>n < length tp;
(tp:: (taction \<times> nat) list) ! n = (aa, ba);
ba \<noteq> 0\<rbrakk>
\<Longrightarrow> (tshift tp (length tp div 2)) ! n =
(aa , ba + length tp div 2)"
apply(simp add: tshift.simps)
done
lemma tshift_length_equal: "length (tshift tp q) = length tp"
apply(auto simp: tshift.simps)
done
thm nth_of.simps
lemma [simp]: "t_ncorrect tp \<Longrightarrow> 2 * (length tp div 2) = length tp"
apply(auto simp: t_ncorrect.simps)
done
lemma tm_append_step_equal':
"\<lbrakk>t_ncorrect tp; t_ncorrect tp'; off = length tp div 2\<rbrakk> \<Longrightarrow>
(\<lambda> (s, l, r). ((\<lambda> (s', l', r').
(s'\<noteq> 0 \<longrightarrow> (s = s' + off \<and> l = l' \<and> r = r')))
(t_step (a, b, c) (tp', 0))))
(t_step (a + off, b, c) (tp @ tshift tp' off, 0))"
apply(simp add: t_step.simps)
apply(case_tac a, simp add: fetch.simps)
apply(case_tac
"(fetch tp' a (case c of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))",
simp)
apply(case_tac
"(fetch (tp @ tshift tp' (length tp div 2))
(Suc (nat + length tp div 2))
(case c of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))",
simp)
apply(case_tac "(new_tape aa (b, c))",
case_tac "(new_tape aaa (b, c))", simp,
rule impI, simp add: fetch.simps split: block.splits option.splits)
apply (auto simp: nth_of.simps t_ncorrect.simps
nth_append tshift_length_equal tshift.simps split: if_splits)
done
lemma tm_append_step_equal:
"\<lbrakk>t_ncorrect tp; t_ncorrect tp'; off = length tp div 2;
t_step (a, b, c) (tp', 0) = (aa, ab, bb); aa \<noteq> 0\<rbrakk>
\<Longrightarrow> t_step (a + length tp div 2, b, c)
(tp @ tshift tp' (length tp div 2), 0)
= (aa + length tp div 2, ab, bb)"
apply(insert tm_append_step_equal'[of tp tp' off a b c], simp)
apply(case_tac "(t_step (a + length tp div 2, b, c)
(tp @ tshift tp' (length tp div 2), 0))", simp)
done
lemma tm_append_steps_equal:
"\<lbrakk>t_ncorrect tp; t_ncorrect tp'; off = length tp div 2\<rbrakk> \<Longrightarrow>
(\<lambda> (s, l, r). ((\<lambda> (s', l', r'). ((s'\<noteq> 0 \<longrightarrow> s = s' + off \<and> l = l'
\<and> r = r'))) (t_steps (a, b, c) (tp', 0) stp)))
(t_steps (a + off, b, c) (tp @ tshift tp' off, 0) stp)"
apply(induct stp arbitrary : a b c, simp add: t_steps.simps)
apply(simp add: t_steps.simps)
apply(case_tac "(t_step (a, b, c) (tp', 0))", simp)
apply(case_tac "aa = 0", simp add: state0_ind)
apply(subgoal_tac "(t_step (a + length tp div 2, b, c)
(tp @ tshift tp' (length tp div 2), 0))
= (aa + length tp div 2, ba, ca)", simp)
apply(rule tm_append_step_equal, auto)
done
(*********Begin: mop_up***************)
type_synonym mopup_type = "t_conf \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> bool"
fun mopup_stop :: "mopup_type"
where
"mopup_stop (s, l, r) lm n ires=
(\<exists> ln rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires \<and> r = <abc_lm_v lm n> @ Bk\<^bsup>rn\<^esup>)"
fun mopup_bef_erase_a :: "mopup_type"
where
"mopup_bef_erase_a (s, l, r) lm n ires=
(\<exists> ln m rn. l = Bk \<^bsup>ln\<^esup> @ Bk # Bk # ires \<and>
r = Oc\<^bsup>m \<^esup>@ Bk # <(drop ((s + 1) div 2) lm)> @ Bk\<^bsup>rn\<^esup>)"
fun mopup_bef_erase_b :: "mopup_type"
where
"mopup_bef_erase_b (s, l, r) lm n ires =
(\<exists> ln m rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires \<and> r = Bk # Oc\<^bsup>m\<^esup> @ Bk #
<(drop (s div 2) lm)> @ Bk\<^bsup>rn\<^esup>)"
fun mopup_jump_over1 :: "mopup_type"
where
"mopup_jump_over1 (s, l, r) lm n ires =
(\<exists> ln m1 m2 rn. m1 + m2 = Suc (abc_lm_v lm n) \<and>
l = Oc\<^bsup>m1\<^esup> @ Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires \<and>
(r = Oc\<^bsup>m2\<^esup> @ Bk # <(drop (Suc n) lm)> @ Bk\<^bsup>rn \<^esup>\<or>
(r = Oc\<^bsup>m2\<^esup> \<and> (drop (Suc n) lm) = [])))"
fun mopup_aft_erase_a :: "mopup_type"
where
"mopup_aft_erase_a (s, l, r) lm n ires =
(\<exists> lnl lnr rn (ml::nat list) m.
m = Suc (abc_lm_v lm n) \<and> l = Bk\<^bsup>lnr \<^esup>@ Oc\<^bsup>m \<^esup>@ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and>
(r = <ml> @ Bk\<^bsup>rn\<^esup>))"
fun mopup_aft_erase_b :: "mopup_type"
where
"mopup_aft_erase_b (s, l, r) lm n ires=
(\<exists> lnl lnr rn (ml::nat list) m.
m = Suc (abc_lm_v lm n) \<and>
l = Bk\<^bsup>lnr \<^esup>@ Oc\<^bsup>m \<^esup>@ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and>
(r = Bk # <ml> @ Bk\<^bsup>rn \<^esup>\<or>
r = Bk # Bk # <ml> @ Bk\<^bsup>rn\<^esup>))"
fun mopup_aft_erase_c :: "mopup_type"
where
"mopup_aft_erase_c (s, l, r) lm n ires =
(\<exists> lnl lnr rn (ml::nat list) m.
m = Suc (abc_lm_v lm n) \<and>
l = Bk\<^bsup>lnr \<^esup>@ Oc\<^bsup>m \<^esup>@ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and>
(r = <ml> @ Bk\<^bsup>rn \<^esup>\<or> r = Bk # <ml> @ Bk\<^bsup>rn\<^esup>))"
fun mopup_left_moving :: "mopup_type"
where
"mopup_left_moving (s, l, r) lm n ires =
(\<exists> lnl lnr rn m.
m = Suc (abc_lm_v lm n) \<and>
((l = Bk\<^bsup>lnr \<^esup>@ Oc\<^bsup>m \<^esup>@ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and> r = Bk\<^bsup>rn\<^esup>) \<or>
(l = Oc\<^bsup>m - 1\<^esup> @ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and> r = Oc # Bk\<^bsup>rn\<^esup>)))"
fun mopup_jump_over2 :: "mopup_type"
where
"mopup_jump_over2 (s, l, r) lm n ires =
(\<exists> ln rn m1 m2.
m1 + m2 = Suc (abc_lm_v lm n)
\<and> r \<noteq> []
\<and> (hd r = Oc \<longrightarrow> (l = Oc\<^bsup>m1\<^esup> @ Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires \<and> r = Oc\<^bsup>m2\<^esup> @ Bk\<^bsup>rn\<^esup>))
\<and> (hd r = Bk \<longrightarrow> (l = Bk\<^bsup>ln\<^esup> @ Bk # ires \<and> r = Bk # Oc\<^bsup>m1 + m2\<^esup> @ Bk\<^bsup>rn\<^esup>)))"
fun mopup_inv :: "mopup_type"
where
"mopup_inv (s, l, r) lm n ires =
(if s = 0 then mopup_stop (s, l, r) lm n ires
else if s \<le> 2*n then
if s mod 2 = 1 then mopup_bef_erase_a (s, l, r) lm n ires
else mopup_bef_erase_b (s, l, r) lm n ires
else if s = 2*n + 1 then
mopup_jump_over1 (s, l, r) lm n ires
else if s = 2*n + 2 then mopup_aft_erase_a (s, l, r) lm n ires
else if s = 2*n + 3 then mopup_aft_erase_b (s, l, r) lm n ires
else if s = 2*n + 4 then mopup_aft_erase_c (s, l, r) lm n ires
else if s = 2*n + 5 then mopup_left_moving (s, l, r) lm n ires
else if s = 2*n + 6 then mopup_jump_over2 (s, l, r) lm n ires
else False)"
declare
mopup_jump_over2.simps[simp del] mopup_left_moving.simps[simp del]
mopup_aft_erase_c.simps[simp del] mopup_aft_erase_b.simps[simp del]
mopup_aft_erase_a.simps[simp del] mopup_jump_over1.simps[simp del]
mopup_bef_erase_a.simps[simp del] mopup_bef_erase_b.simps[simp del]
mopup_stop.simps[simp del]
lemma mopup_fetch_0[simp]:
"(fetch (mop_bef n @ tshift mp_up (2 * n)) 0 b) = (Nop, 0)"
by(simp add: fetch.simps)
lemma mop_bef_length[simp]: "length (mop_bef n) = 4 * n"
apply(induct n, simp add: mop_bef.simps, simp add: mop_bef.simps)
done
thm findnth_nth
lemma mop_bef_nth:
"\<lbrakk>q < n; x < 4\<rbrakk> \<Longrightarrow> mop_bef n ! (4 * q + x) =
mop_bef (Suc q) ! ((4 * q) + x)"
apply(induct n, simp)
apply(case_tac "q < n", simp add: mop_bef.simps, auto)
apply(simp add: nth_append)
apply(subgoal_tac "q = n", simp)
apply(arith)
done
lemma fetch_bef_erase_a_o[simp]:
"\<lbrakk>0 < s; s \<le> 2 * n; s mod 2 = Suc 0\<rbrakk>
\<Longrightarrow> (fetch (mop_bef n @ tshift mp_up (2 * n)) s Oc) = (W0, s + 1)"
apply(subgoal_tac "\<exists> q. s = 2*q + 1", auto)
apply(subgoal_tac "length (mop_bef n) = 4*n")
apply(auto simp: fetch.simps nth_of.simps nth_append)
apply(subgoal_tac "mop_bef n ! (4 * q + 1) =
mop_bef (Suc q) ! ((4 * q) + 1)",
simp add: mop_bef.simps nth_append)
apply(rule mop_bef_nth, auto)
done
lemma fetch_bef_erase_a_b[simp]:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = Suc 0\<rbrakk>
\<Longrightarrow> (fetch (mop_bef n @ tshift mp_up (2 * n)) s Bk) = (R, s + 2)"
apply(subgoal_tac "\<exists> q. s = 2*q + 1", auto)
apply(subgoal_tac "length (mop_bef n) = 4*n")
apply(auto simp: fetch.simps nth_of.simps nth_append)
apply(subgoal_tac "mop_bef n ! (4 * q + 0) =
mop_bef (Suc q) ! ((4 * q + 0))",
simp add: mop_bef.simps nth_append)
apply(rule mop_bef_nth, auto)
done
lemma fetch_bef_erase_b_b:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = 0\<rbrakk> \<Longrightarrow>
(fetch (mop_bef n @ tshift mp_up (2 * n)) s Bk) = (R, s - 1)"
apply(subgoal_tac "\<exists> q. s = 2 * q", auto)
apply(case_tac qa, simp, simp)
apply(auto simp: fetch.simps nth_of.simps nth_append)
apply(subgoal_tac "mop_bef n ! (4 * nat + 2) =
mop_bef (Suc nat) ! ((4 * nat) + 2)",
simp add: mop_bef.simps nth_append)
apply(rule mop_bef_nth, auto)
done
lemma fetch_jump_over1_o:
"fetch (mop_bef n @ tshift mp_up (2 * n)) (Suc (2 * n)) Oc
= (R, Suc (2 * n))"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(auto simp: fetch.simps nth_of.simps mp_up_def nth_append
tshift.simps)
done
lemma fetch_jump_over1_b:
"fetch (mop_bef n @ tshift mp_up (2 * n)) (Suc (2 * n)) Bk
= (R, Suc (Suc (2 * n)))"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(auto simp: fetch.simps nth_of.simps mp_up_def
nth_append tshift.simps)
done
lemma fetch_aft_erase_a_o:
"fetch (mop_bef n @ tshift mp_up (2 * n)) (Suc (Suc (2 * n))) Oc
= (W0, Suc (2 * n + 2))"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(auto simp: fetch.simps nth_of.simps mp_up_def
nth_append tshift.simps)
done
lemma fetch_aft_erase_a_b:
"fetch (mop_bef n @ tshift mp_up (2 * n)) (Suc (Suc (2 * n))) Bk
= (L, Suc (2 * n + 4))"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(auto simp: fetch.simps nth_of.simps mp_up_def
nth_append tshift.simps)
done
lemma fetch_aft_erase_b_b:
"fetch (mop_bef n @ tshift mp_up (2 * n)) (2*n + 3) Bk
= (R, Suc (2 * n + 3))"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(subgoal_tac "2*n + 3 = Suc (2*n + 2)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps)
done
lemma fetch_aft_erase_c_o:
"fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 4) Oc
= (W0, Suc (2 * n + 2))"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps)
done
lemma fetch_aft_erase_c_b:
"fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 4) Bk
= (R, Suc (2 * n + 1))"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps)
done
lemma fetch_left_moving_o:
"(fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 5) Oc)
= (L, 2*n + 6)"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(subgoal_tac "2*n + 5 = Suc (2*n + 4)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps)
done
lemma fetch_left_moving_b:
"(fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 5) Bk)
= (L, 2*n + 5)"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(subgoal_tac "2*n + 5 = Suc (2*n + 4)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps)
done
lemma fetch_jump_over2_b:
"(fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 6) Bk)
= (R, 0)"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps)
done
lemma fetch_jump_over2_o:
"(fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 6) Oc)
= (L, 2*n + 6)"
apply(subgoal_tac "length (mop_bef n) = 4 * n")
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps)
done
lemmas mopupfetchs =
fetch_bef_erase_a_o fetch_bef_erase_a_b fetch_bef_erase_b_b
fetch_jump_over1_o fetch_jump_over1_b fetch_aft_erase_a_o
fetch_aft_erase_a_b fetch_aft_erase_b_b fetch_aft_erase_c_o
fetch_aft_erase_c_b fetch_left_moving_o fetch_left_moving_b
fetch_jump_over2_b fetch_jump_over2_o
lemma [simp]:
"\<lbrakk>n < length lm; 0 < s; s mod 2 = Suc 0;
mopup_bef_erase_a (s, l, Oc # xs) lm n ires;
Suc s \<le> 2 * n\<rbrakk> \<Longrightarrow>
mopup_bef_erase_b (Suc s, l, Bk # xs) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps mopup_bef_erase_b.simps )
apply(rule_tac x = "m - 1" in exI, rule_tac x = rn in exI)
apply(case_tac m, simp, simp)
done
lemma mopup_false1:
"\<lbrakk>0 < s; s \<le> 2 * n; s mod 2 = Suc 0; \<not> Suc s \<le> 2 * n\<rbrakk>
\<Longrightarrow> RR"
apply(arith)
done
lemma [simp]:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = Suc 0;
mopup_bef_erase_a (s, l, Oc # xs) lm n ires; r = Oc # xs\<rbrakk>
\<Longrightarrow> (Suc s \<le> 2 * n \<longrightarrow> mopup_bef_erase_b (Suc s, l, Bk # xs) lm n ires) \<and>
(\<not> Suc s \<le> 2 * n \<longrightarrow> mopup_jump_over1 (Suc s, l, Bk # xs) lm n ires) "
apply(auto elim: mopup_false1)
done
lemma drop_abc_lm_v_simp[simp]:
"n < length lm \<Longrightarrow> drop n lm = abc_lm_v lm n # drop (Suc n) lm"
apply(auto simp: abc_lm_v.simps)
apply(drule drop_Suc_conv_tl, simp)
done
lemma [simp]: "(\<exists>rna. Bk\<^bsup>rn\<^esup> = Bk # Bk\<^bsup>rna\<^esup>) \<or> Bk\<^bsup>rn\<^esup> = []"
apply(case_tac rn, simp, auto)
done
lemma [simp]: "\<exists>lna. Bk # Bk\<^bsup>ln\<^esup> = Bk\<^bsup>lna\<^esup>"
apply(rule_tac x = "Suc ln" in exI, auto)
done
lemma mopup_bef_erase_a_2_jump_over[simp]:
"\<lbrakk>n < length lm; 0 < s; s mod 2 = Suc 0;
mopup_bef_erase_a (s, l, Bk # xs) lm n ires; Suc s = 2 * n\<rbrakk>
\<Longrightarrow> mopup_jump_over1 (Suc (2 * n), Bk # l, xs) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps mopup_jump_over1.simps)
apply(case_tac m, simp)
apply(rule_tac x = "Suc ln" in exI, rule_tac x = 0 in exI,
simp add: tape_of_nl_abv)
apply(case_tac "drop (Suc n) lm", auto simp: tape_of_nat_list.simps )
done
lemma Suc_Suc_div: "\<lbrakk>0 < s; s mod 2 = Suc 0; Suc (Suc s) \<le> 2 * n\<rbrakk>
\<Longrightarrow> (Suc (Suc (s div 2))) \<le> n"
apply(arith)
done
lemma mopup_bef_erase_a_2_a[simp]:
"\<lbrakk>n < length lm; 0 < s; s mod 2 = Suc 0;
mopup_bef_erase_a (s, l, Bk # xs) lm n ires;
Suc (Suc s) \<le> 2 * n\<rbrakk> \<Longrightarrow>
mopup_bef_erase_a (Suc (Suc s), Bk # l, xs) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps )
apply(subgoal_tac "drop (Suc (Suc (s div 2))) lm \<noteq> []")
apply(case_tac m, simp)
apply(rule_tac x = "Suc (abc_lm_v lm (Suc (s div 2)))" in exI,
rule_tac x = rn in exI, simp, simp)
apply(subgoal_tac "(Suc (Suc (s div 2))) \<le> n", simp,
rule_tac Suc_Suc_div, auto)
done
lemma mopup_false2:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n;
s mod 2 = Suc 0; Suc s \<noteq> 2 * n;
\<not> Suc (Suc s) \<le> 2 * n\<rbrakk> \<Longrightarrow> RR"
apply(arith)
done
lemma [simp]:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n;
s mod 2 = Suc 0;
mopup_bef_erase_a (s, l, Bk # xs) lm n ires;
r = Bk # xs\<rbrakk>
\<Longrightarrow> (Suc s = 2 * n \<longrightarrow>
mopup_jump_over1 (Suc (2 * n), Bk # l, xs) lm n ires) \<and>
(Suc s \<noteq> 2 * n \<longrightarrow>
(Suc (Suc s) \<le> 2 * n \<longrightarrow>
mopup_bef_erase_a (Suc (Suc s), Bk # l, xs) lm n ires) \<and>
(\<not> Suc (Suc s) \<le> 2 * n \<longrightarrow>
mopup_aft_erase_a (Suc (Suc s), Bk # l, xs) lm n ires))"
apply(auto elim: mopup_false2)
done
lemma [simp]: "mopup_bef_erase_a (s, l, []) lm n ires \<Longrightarrow>
mopup_bef_erase_a (s, l, [Bk]) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = Suc 0;
mopup_bef_erase_a (s, l, []) lm n ires; r = []\<rbrakk>
\<Longrightarrow> (Suc s = 2 * n \<longrightarrow>
mopup_jump_over1 (Suc (2 * n), Bk # l, []) lm n ires) \<and>
(Suc s \<noteq> 2 * n \<longrightarrow>
(Suc (Suc s) \<le> 2 * n \<longrightarrow>
mopup_bef_erase_a (Suc (Suc s), Bk # l, []) lm n ires) \<and>
(\<not> Suc (Suc s) \<le> 2 * n \<longrightarrow>
mopup_aft_erase_a (Suc (Suc s), Bk # l, []) lm n ires))"
apply(auto)
done
lemma "mopup_bef_erase_b (s, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_bef_erase_b.simps)
done
lemma [simp]: "mopup_bef_erase_b (s, l, Oc # xs) lm n ires = False"
apply(auto simp: mopup_bef_erase_b.simps )
done
lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow>
(s - Suc 0) mod 2 = Suc 0"
apply(arith)
done
lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow>
s - Suc 0 \<le> 2 * n"
apply(simp)
done
lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow> \<not> s \<le> Suc 0"
apply(arith)
done
lemma [simp]: "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n;
s mod 2 \<noteq> Suc 0;
mopup_bef_erase_b (s, l, Bk # xs) lm n ires; r = Bk # xs\<rbrakk>
\<Longrightarrow> mopup_bef_erase_a (s - Suc 0, Bk # l, xs) lm n ires"
apply(auto simp: mopup_bef_erase_b.simps mopup_bef_erase_a.simps)
done
lemma [simp]: "\<lbrakk>mopup_bef_erase_b (s, l, []) lm n ires\<rbrakk> \<Longrightarrow>
mopup_bef_erase_a (s - Suc 0, Bk # l, []) lm n ires"
apply(auto simp: mopup_bef_erase_b.simps mopup_bef_erase_a.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm;
mopup_jump_over1 (Suc (2 * n), l, Oc # xs) lm n ires;
r = Oc # xs\<rbrakk>
\<Longrightarrow> mopup_jump_over1 (Suc (2 * n), Oc # l, xs) lm n ires"
apply(auto simp: mopup_jump_over1.simps)
apply(rule_tac x = ln in exI, rule_tac x = "Suc m1" in exI,
rule_tac x = "m2 - 1" in exI)
apply(case_tac "m2", simp, simp, rule_tac x = rn in exI, simp)
apply(rule_tac x = ln in exI, rule_tac x = "Suc m1" in exI,
rule_tac x = "m2 - 1" in exI)
apply(case_tac m2, simp, simp)
done
lemma mopup_jump_over1_2_aft_erase_a[simp]:
"\<lbrakk>n < length lm; mopup_jump_over1 (Suc (2 * n), l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, xs) lm n ires"
apply(simp only: mopup_jump_over1.simps mopup_aft_erase_a.simps)
apply(erule_tac exE)+
apply(rule_tac x = ln in exI, rule_tac x = "Suc 0" in exI)
apply(case_tac m2, simp)
apply(rule_tac x = rn in exI, rule_tac x = "drop (Suc n) lm" in exI,
simp)
apply(simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_jump_over1 (Suc (2 * n), l, []) lm n ires\<rbrakk> \<Longrightarrow>
mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, []) lm n ires"
apply(rule mopup_jump_over1_2_aft_erase_a, simp)
apply(auto simp: mopup_jump_over1.simps)
apply(rule_tac x = ln in exI, rule_tac x = m1 in exI,
rule_tac x = m2 in exI, simp add: )
apply(rule_tac x = 0 in exI, auto)
done
lemma [simp]:
"\<lbrakk>n < length lm;
mopup_aft_erase_a (Suc (Suc (2 * n)), l, Oc # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_b (Suc (Suc (Suc (2 * n))), l, Bk # xs) lm n ires"
apply(auto simp: mopup_aft_erase_a.simps mopup_aft_erase_b.simps )
apply(case_tac ml, simp, case_tac rn, simp, simp)
apply(case_tac list, auto simp: tape_of_nl_abv
tape_of_nat_list.simps )
apply(case_tac a, simp, rule_tac x = rn in exI,
rule_tac x = "[]" in exI,
simp add: tape_of_nat_list.simps, simp)
apply(rule_tac x = rn in exI, rule_tac x = "[nat]" in exI,
simp add: tape_of_nat_list.simps )
apply(case_tac a, simp, rule_tac x = rn in exI,
rule_tac x = "aa # lista" in exI, simp, simp)
apply(rule_tac x = rn in exI, rule_tac x = "nat # aa # lista" in exI,
simp add: tape_of_nat_list.simps )
done
lemma [simp]:
"mopup_aft_erase_a (Suc (Suc (2 * n)), l, Bk # xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_aft_erase_a.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm;
mopup_aft_erase_a (Suc (Suc (2 * n)), l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_left_moving (5 + 2 * n, tl l, hd l # Bk # xs) lm n ires"
apply(simp only: mopup_aft_erase_a.simps mopup_left_moving.simps)
apply(erule exE)+
apply(case_tac lnr, simp)
apply(rule_tac x = lnl in exI, simp, rule_tac x = rn in exI, simp)
apply(subgoal_tac "ml = []", simp)
apply(rule_tac xs = xs and rn = rn in BkCons_nil, simp, auto)
apply(subgoal_tac "ml = []", auto)
apply(rule_tac xs = xs and rn = rn in BkCons_nil, simp)
done
lemma [simp]:
"mopup_aft_erase_a (Suc (Suc (2 * n)), l, []) lm n ires \<Longrightarrow> l \<noteq> []"
apply(simp only: mopup_aft_erase_a.simps)
apply(erule exE)+
apply(auto)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_a (Suc (Suc (2 * n)), l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_left_moving (5 + 2 * n, tl l, [hd l]) lm n ires"
apply(simp only: mopup_aft_erase_a.simps mopup_left_moving.simps)
apply(erule exE)+
apply(subgoal_tac "ml = [] \<and> rn = 0", erule conjE, erule conjE, simp)
apply(case_tac lnr, simp, rule_tac x = lnl in exI, simp,
rule_tac x = 0 in exI, simp)
apply(rule_tac x = lnl in exI, rule_tac x = nat in exI,
rule_tac x = "Suc 0" in exI, simp)
apply(case_tac ml, simp, case_tac rn, simp, simp)
apply(case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps)
done
lemma [simp]: "mopup_aft_erase_b (2 * n + 3, l, Oc # xs) lm n ires = False"
apply(auto simp: mopup_aft_erase_b.simps )
done
lemma [simp]:
"\<lbrakk>n < length lm;
mopup_aft_erase_c (2 * n + 4, l, Oc # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_b (Suc (Suc (Suc (2 * n))), l, Bk # xs) lm n ires"
apply(auto simp: mopup_aft_erase_c.simps mopup_aft_erase_b.simps )
apply(case_tac ml, simp, case_tac rn, simp, simp, simp)
apply(case_tac list, auto simp: tape_of_nl_abv
tape_of_nat_list.simps tape_of_nat_abv )
apply(case_tac a, rule_tac x = rn in exI,
rule_tac x = "[]" in exI, simp add: tape_of_nat_list.simps)
apply(rule_tac x = rn in exI, rule_tac x = "[nat]" in exI,
simp add: tape_of_nat_list.simps )
apply(case_tac a, simp, rule_tac x = rn in exI,
rule_tac x = "aa # lista" in exI, simp)
apply(rule_tac x = rn in exI, rule_tac x = "nat # aa # lista" in exI,
simp add: tape_of_nat_list.simps )
done
lemma mopup_aft_erase_c_aft_erase_a[simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_c (2 * n + 4, l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, xs) lm n ires"
apply(simp only: mopup_aft_erase_c.simps mopup_aft_erase_a.simps )
apply(erule_tac exE)+
apply(erule conjE, erule conjE, erule disjE)
apply(subgoal_tac "ml = []", simp, case_tac rn,
simp, simp, rule conjI)
apply(rule_tac x = lnl in exI, rule_tac x = "Suc lnr" in exI, simp)
apply(rule_tac x = nat in exI, rule_tac x = "[]" in exI, simp)
apply(rule_tac xs = xs and rn = rn in BkCons_nil, simp, simp,
rule conjI)
apply(rule_tac x = lnl in exI, rule_tac x = "Suc lnr" in exI, simp)
apply(rule_tac x = rn in exI, rule_tac x = "ml" in exI, simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_c (2 * n + 4, l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, []) lm n ires"
apply(rule mopup_aft_erase_c_aft_erase_a, simp)
apply(simp only: mopup_aft_erase_c.simps)
apply(erule exE)+
apply(rule_tac x = lnl in exI, rule_tac x = lnr in exI, simp add: )
apply(rule_tac x = 0 in exI, rule_tac x = "[]" in exI, simp)
done
lemma mopup_aft_erase_b_2_aft_erase_c[simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_b (2 * n + 3, l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_c (4 + 2 * n, Bk # l, xs) lm n ires"
apply(auto simp: mopup_aft_erase_b.simps mopup_aft_erase_c.simps)
apply(rule_tac x = "lnl" in exI, rule_tac x = "Suc lnr" in exI, simp)
apply(rule_tac x = "lnl" in exI, rule_tac x = "Suc lnr" in exI, simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_b (2 * n + 3, l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_c (4 + 2 * n, Bk # l, []) lm n ires"
apply(rule_tac mopup_aft_erase_b_2_aft_erase_c, simp)
apply(simp add: mopup_aft_erase_b.simps)
done
lemma [simp]:
"mopup_left_moving (2 * n + 5, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_left_moving.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, Oc # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_jump_over2 (2 * n + 6, tl l, hd l # Oc # xs) lm n ires"
apply(simp only: mopup_left_moving.simps mopup_jump_over2.simps)
apply(erule_tac exE)+
apply(erule conjE, erule disjE, erule conjE)
apply(case_tac rn, simp, simp add: )
apply(case_tac "hd l", simp add: )
apply(case_tac "abc_lm_v lm n", simp)
apply(rule_tac x = "lnl" in exI, rule_tac x = rn in exI,
rule_tac x = "Suc 0" in exI, rule_tac x = 0 in exI)
apply(case_tac lnl, simp, simp, simp add: exp_ind[THEN sym], simp)
apply(case_tac "abc_lm_v lm n", simp)
apply(case_tac lnl, simp, simp)
apply(rule_tac x = lnl in exI, rule_tac x = rn in exI)
apply(rule_tac x = nat in exI, rule_tac x = "Suc (Suc 0)" in exI, simp)
done
lemma [simp]: "mopup_left_moving (2 * n + 5, l, xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_left_moving.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_left_moving (2 * n + 5, tl l, hd l # Bk # xs) lm n ires"
apply(simp only: mopup_left_moving.simps)
apply(erule exE)+
apply(case_tac lnr, simp)
apply(rule_tac x = lnl in exI, rule_tac x = 0 in exI,
rule_tac x = rn in exI, simp, simp)
apply(rule_tac x = lnl in exI, rule_tac x = nat in exI, simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_left_moving (2 * n + 5, tl l, [hd l]) lm n ires"
apply(simp only: mopup_left_moving.simps)
apply(erule exE)+
apply(case_tac lnr, simp)
apply(rule_tac x = lnl in exI, rule_tac x = 0 in exI,
rule_tac x = 0 in exI, simp, auto)
done
lemma [simp]:
"mopup_jump_over2 (2 * n + 6, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_jump_over2.simps )
done
lemma [intro]: "\<exists>lna. Bk # Bk\<^bsup>ln\<^esup> = Bk\<^bsup>lna\<^esup> @ [Bk]"
apply(simp only: exp_ind[THEN sym], auto)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_jump_over2 (2 * n + 6, l, Oc # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_jump_over2 (2 * n + 6, tl l, hd l # Oc # xs) lm n ires"
apply(simp only: mopup_jump_over2.simps)
apply(erule_tac exE)+
apply(simp add: , erule conjE, erule_tac conjE)
apply(case_tac m1, simp)
apply(rule_tac x = ln in exI, rule_tac x = rn in exI,
rule_tac x = 0 in exI, simp)
apply(case_tac ln, simp, simp, simp only: exp_ind[THEN sym], simp)
apply(rule_tac x = ln in exI, rule_tac x = rn in exI,
rule_tac x = nat in exI, rule_tac x = "Suc m2" in exI, simp)
done
lemma [simp]: "\<exists>rna. Oc # Oc\<^bsup>a\<^esup> @ Bk\<^bsup>rn\<^esup> = <a> @ Bk\<^bsup>rna\<^esup>"
apply(case_tac a, auto simp: tape_of_nat_abv )
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_jump_over2 (2 * n + 6, l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_stop (0, Bk # l, xs) lm n ires"
apply(auto simp: mopup_jump_over2.simps mopup_stop.simps)
done
lemma [simp]: "mopup_jump_over2 (2 * n + 6, l, []) lm n ires = False"
apply(simp only: mopup_jump_over2.simps, simp)
done
lemma mopup_inv_step:
"\<lbrakk>n < length lm; mopup_inv (s, l, r) lm n ires\<rbrakk>
\<Longrightarrow> mopup_inv (t_step (s, l, r)
((mop_bef n @ tshift mp_up (2 * n)), 0)) lm n ires"
apply(auto split:if_splits simp add:t_step.simps,
tactic {* ALLGOALS (resolve_tac [@{thm "fetch_intro"}]) *})
apply(simp_all add: mopupfetchs new_tape.simps)
done
declare mopup_inv.simps[simp del]
lemma mopup_inv_steps:
"\<lbrakk>n < length lm; mopup_inv (s, l, r) lm n ires\<rbrakk> \<Longrightarrow>
mopup_inv (t_steps (s, l, r)
((mop_bef n @ tshift mp_up (2 * n)), 0) stp) lm n ires"
apply(induct stp, simp add: t_steps.simps)
apply(simp add: t_steps_ind)
apply(case_tac "(t_steps (s, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stp)", simp)
apply(rule_tac mopup_inv_step, simp, simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; Suc 0 \<le> n\<rbrakk> \<Longrightarrow>
mopup_bef_erase_a (Suc 0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps abc_lm_v.simps)
apply(case_tac lm, simp, case_tac list, simp, simp)
apply(rule_tac x = "Suc a" in exI, rule_tac x = rn in exI, simp)
done
lemma [simp]:
"lm \<noteq> [] \<Longrightarrow> mopup_jump_over1 (Suc 0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) lm 0 ires"
apply(auto simp: mopup_jump_over1.simps)
apply(rule_tac x = ln in exI, rule_tac x = 0 in exI, simp add: )
apply(case_tac lm, simp, simp add: abc_lm_v.simps)
apply(case_tac rn, simp)
apply(case_tac list, rule_tac disjI2,
simp add: tape_of_nl_abv tape_of_nat_list.simps)
apply(rule_tac disjI1,
simp add: tape_of_nl_abv tape_of_nat_list.simps )
apply(rule_tac disjI1, case_tac list,
simp add: tape_of_nl_abv tape_of_nat_list.simps,
rule_tac x = nat in exI, simp)
apply(simp add: tape_of_nl_abv tape_of_nat_list.simps )
done
lemma mopup_init:
"\<lbrakk>n < length lm; crsp_l ly (as, lm) (ac, l, r) ires\<rbrakk> \<Longrightarrow>
mopup_inv (Suc 0, l, r) lm n ires"
apply(auto simp: crsp_l.simps mopup_inv.simps)
apply(case_tac n, simp, auto simp: mopup_bef_erase_a.simps )
apply(rule_tac x = "Suc (hd lm)" in exI, rule_tac x = rn in exI, simp)
apply(case_tac lm, simp, case_tac list, simp, case_tac lista, simp add: abc_lm_v.simps)
apply(simp add: tape_of_nl_abv tape_of_nat_list.simps abc_lm_v.simps)
apply(simp add: mopup_jump_over1.simps)
apply(rule_tac x = 0 in exI, rule_tac x = 0 in exI, auto)
apply(case_tac [!] n, simp_all)
apply(case_tac [!] lm, simp, case_tac list, simp)
apply(case_tac rn, simp add: tape_of_nl_abv tape_of_nat_list.simps abc_lm_v.simps)
apply(erule_tac x = nat in allE, simp add: tape_of_nl_abv tape_of_nat_list.simps abc_lm_v.simps)
apply(simp add: abc_lm_v.simps, auto)
apply(case_tac list, simp_all add: tape_of_nl_abv tape_of_nat_list.simps abc_lm_v.simps)
apply(erule_tac x = rn in allE, simp_all)
done
fun abc_mopup_stage1 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_mopup_stage1 (s, l, r) n =
(if s > 0 \<and> s \<le> 2*n then 6
else if s = 2*n + 1 then 4
else if s \<ge> 2*n + 2 \<and> s \<le> 2*n + 4 then 3
else if s = 2*n + 5 then 2
else if s = 2*n + 6 then 1
else 0)"
fun abc_mopup_stage2 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_mopup_stage2 (s, l, r) n =
(if s > 0 \<and> s \<le> 2*n then length r
else if s = 2*n + 1 then length r
else if s = 2*n + 5 then length l
else if s = 2*n + 6 then length l
else if s \<ge> 2*n + 2 \<and> s \<le> 2*n + 4 then length r
else 0)"
fun abc_mopup_stage3 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_mopup_stage3 (s, l, r) n =
(if s > 0 \<and> s \<le> 2*n then
if hd r = Bk then 0
else 1
else if s = 2*n + 2 then 1
else if s = 2*n + 3 then 0
else if s = 2*n + 4 then 2
else 0)"
fun abc_mopup_measure :: "(t_conf \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat)"
where
"abc_mopup_measure (c, n) =
(abc_mopup_stage1 c n, abc_mopup_stage2 c n,
abc_mopup_stage3 c n)"
definition abc_mopup_LE ::
"(((nat \<times> block list \<times> block list) \<times> nat) \<times>
((nat \<times> block list \<times> block list) \<times> nat)) set"
where
"abc_mopup_LE \<equiv> (inv_image lex_triple abc_mopup_measure)"
lemma wf_abc_mopup_le[intro]: "wf abc_mopup_LE"
by(auto intro:wf_inv_image wf_lex_triple simp:abc_mopup_LE_def)
lemma [simp]: "mopup_bef_erase_a (a, aa, []) lm n ires = False"
apply(auto simp: mopup_bef_erase_a.simps)
done
lemma [simp]: "mopup_bef_erase_b (a, aa, []) lm n ires = False"
apply(auto simp: mopup_bef_erase_b.simps)
done
lemma [simp]: "mopup_aft_erase_b (2 * n + 3, aa, []) lm n ires = False"
apply(auto simp: mopup_aft_erase_b.simps)
done
lemma mopup_halt_pre:
"\<lbrakk>n < length lm; mopup_inv (Suc 0, l, r) lm n ires; wf abc_mopup_LE\<rbrakk>
\<Longrightarrow> \<forall>na. \<not> (\<lambda>(s, l, r) n. s = 0) (t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) na) n \<longrightarrow>
((t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0)
(Suc na), n),
t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0)
na, n) \<in> abc_mopup_LE"
apply(rule allI, rule impI, simp add: t_steps_ind)
apply(subgoal_tac "mopup_inv (t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) na) lm n ires")
apply(case_tac "(t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) na)", simp)
proof -
fix na a b c
assume "n < length lm" "mopup_inv (a, b, c) lm n ires" "0 < a"
thus "((t_step (a, b, c) (mop_bef n @ tshift mp_up (2 * n), 0), n),
(a, b, c), n) \<in> abc_mopup_LE"
apply(auto split:if_splits simp add:t_step.simps mopup_inv.simps,
tactic {* ALLGOALS (resolve_tac [@{thm "fetch_intro"}]) *})
apply(simp_all add: mopupfetchs new_tape.simps abc_mopup_LE_def
lex_triple_def lex_pair_def )
done
next
fix na
assume "n < length lm" "mopup_inv (Suc 0, l, r) lm n ires"
thus "mopup_inv (t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) na) lm n ires"
apply(rule mopup_inv_steps)
done
qed
lemma mopup_halt: "\<lbrakk>n < length lm; crsp_l ly (as, lm) (s, l, r) ires\<rbrakk> \<Longrightarrow>
\<exists> stp. (\<lambda> (s, l, r). s = 0) (t_steps (Suc 0, l, r)
((mop_bef n @ tshift mp_up (2 * n)), 0) stp)"
apply(subgoal_tac "mopup_inv (Suc 0, l, r) lm n ires")
apply(insert wf_abc_mopup_le)
apply(insert halt_lemma[of abc_mopup_LE
"\<lambda> ((s, l, r), n). s = 0"
"\<lambda> stp. (t_steps (Suc 0, l, r) ((mop_bef n @ tshift mp_up (2 * n))
, 0) stp, n)"], auto)
apply(insert mopup_halt_pre[of n lm l r], simp, erule exE)
apply(rule_tac x = na in exI, case_tac "(t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) na)", simp)
apply(rule_tac mopup_init, auto)
done
(***End: mopup stop****)
lemma mopup_halt_conf_pre:
"\<lbrakk>n < length lm; crsp_l ly (as, lm) (s, l, r) ires\<rbrakk>
\<Longrightarrow> \<exists> na. (\<lambda> (s', l', r'). s' = 0 \<and> mopup_stop (s', l', r') lm n ires)
(t_steps (Suc 0, l, r)
((mop_bef n @ tshift mp_up (2 * n)), 0) na)"
apply(subgoal_tac "\<exists> stp. (\<lambda> (s, l, r). s = 0)
(t_steps (Suc 0, l, r) ((mop_bef n @ tshift mp_up (2 * n)), 0) stp)",
erule exE)
apply(rule_tac x = stp in exI,
case_tac "(t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stp)", simp)
apply(subgoal_tac " mopup_inv (Suc 0, l, r) lm n ires")
apply(subgoal_tac "mopup_inv (t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stp) lm n ires", simp)
apply(simp only: mopup_inv.simps)
apply(rule_tac mopup_inv_steps, simp, simp)
apply(rule_tac mopup_init, simp, simp)
apply(rule_tac mopup_halt, simp, simp)
done
lemma mopup_halt_conf:
assumes len: "n < length lm"
and correspond: "crsp_l ly (as, lm) (s, l, r) ires"
shows
"\<exists> na. (\<lambda> (s', l', r'). ((\<exists>ln rn. s' = 0 \<and> l' = Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires
\<and> r' = Oc\<^bsup>Suc (abc_lm_v lm n)\<^esup> @ Bk\<^bsup>rn\<^esup>)))
(t_steps (Suc 0, l, r)
((mop_bef n @ tshift mp_up (2 * n)), 0) na)"
using len correspond mopup_halt_conf_pre[of n lm ly as s l r ires]
apply(simp add: mopup_stop.simps tape_of_nat_abv tape_of_nat_list.simps)
done
subsection {* Final results about Abacus machine *}
lemma mopup_halt_bef: "\<lbrakk>n < length lm; crsp_l ly (as, lm) (s, l, r) ires\<rbrakk>
\<Longrightarrow> \<exists>stp. (\<lambda>(s, l, r). s \<noteq> 0 \<and> ((\<lambda> (s', l', r'). s' = 0)
(t_step (s, l, r) (mop_bef n @ tshift mp_up (2 * n), 0))))
(t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0) stp)"
apply(insert mopup_halt[of n lm ly as s l r ires], simp, erule_tac exE)
proof -
fix stp
assume "n < length lm"
"crsp_l ly (as, lm) (s, l, r) ires"
"(\<lambda>(s, l, r). s = 0)
(t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stp)"
thus "\<exists>stp. (\<lambda>(s, ab). 0 < s \<and> (\<lambda>(s', l', r'). s' = 0)
(t_step (s, ab) (mop_bef n @ tshift mp_up (2 * n), 0)))
(t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0) stp)"
proof(induct stp, simp add: t_steps.simps, simp)
fix stpa
assume h1:
"(\<lambda>(s, l, r). s = 0) (t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stpa) \<Longrightarrow>
\<exists>stp. (\<lambda>(s, ab). 0 < s \<and> (\<lambda>(s', l', r'). s' = 0)
(t_step (s, ab) (mop_bef n @ tshift mp_up (2 * n), 0)))
(t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stp)"
and h2:
"(\<lambda>(s, l, r). s = 0) (t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) (Suc stpa))"
"n < length lm"
"crsp_l ly (as, lm) (s, l, r) ires"
thus "\<exists>stp. (\<lambda>(s, ab). 0 < s \<and> (\<lambda>(s', l', r'). s' = 0)
(t_step (s, ab) (mop_bef n @ tshift mp_up (2 * n), 0))) (
t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stp)"
apply(case_tac "(\<lambda>(s, l, r). s = 0) (t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stpa)",
simp)
apply(rule_tac x = "stpa" in exI)
apply(case_tac "(t_steps (Suc 0, l, r)
(mop_bef n @ tshift mp_up (2 * n), 0) stpa)",
simp add: t_steps_ind)
done
qed
qed
lemma tshift_nth_state0: "\<lbrakk>n < length tp; tp ! n = (a, 0)\<rbrakk>
\<Longrightarrow> tshift tp off ! n = (a, 0)"
apply(induct n, case_tac tp, simp)
apply(auto simp: tshift.simps)
done
lemma shift_length: "length (tshift tp n) = length tp"
apply(auto simp: tshift.simps)
done
lemma even_Suc_le: "\<lbrakk>y mod 2 = 0; 2 * x < y\<rbrakk> \<Longrightarrow> Suc (2 * x) < y"
by arith
lemma [simp]: "(4::nat) * n mod 2 = 0"
by arith
lemma tm_append_fetch_equal:
"\<lbrakk>t_ncorrect (tm_of aprog); s'> 0;
fetch (mop_bef n @ tshift mp_up (2 * n)) s' b = (a, 0)\<rbrakk>
\<Longrightarrow> fetch (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n))
(length (tm_of aprog) div 2)) (s' + length (tm_of aprog) div 2) b
= (a, 0)"
apply(case_tac s', simp)
apply(auto simp: fetch.simps nth_of.simps t_ncorrect.simps shift_length nth_append
tshift.simps split: list.splits block.splits split: if_splits)
done
lemma [simp]:
"\<lbrakk>t_ncorrect (tm_of aprog);
t_step (s', l', r') (mop_bef n @ tshift mp_up (2 * n), 0) =
(0, l'', r''); s' > 0\<rbrakk>
\<Longrightarrow> t_step (s' + length (tm_of aprog) div 2, l', r')
(tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n))
(length (tm_of aprog) div 2), 0) = (0, l'', r'')"
apply(simp add: t_step.simps)
apply(subgoal_tac
"(fetch (mop_bef n @ tshift mp_up (2 * n)) s'
(case r' of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))
= (fetch (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n))
(length (tm_of aprog) div 2)) (s' + length (tm_of aprog) div 2)
(case r' of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))", simp)
apply(case_tac "(fetch (mop_bef n @ tshift mp_up (2 * n)) s'
(case r' of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))", simp)
apply(drule_tac tm_append_fetch_equal, auto)
done
lemma [intro]:
"start_of (layout_of aprog) (length aprog) - Suc 0 =
length (tm_of aprog) div 2"
apply(subgoal_tac "abc2t_correct aprog")
apply(insert pre_lheq[of "concat (take (length aprog)
(tms_of aprog))" "length aprog" aprog], simp add: tm_of.simps)
by auto
lemma tm_append_stop_step:
"\<lbrakk>t_ncorrect (tm_of aprog);
t_ncorrect (mop_bef n @ tshift mp_up (2 * n)); n < length lm;
(t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0) stp) =
(s', l', r');
s' \<noteq> 0;
t_step (s', l', r') (mop_bef n @ tshift mp_up (2 * n), 0)
= (0, l'', r'')\<rbrakk>
\<Longrightarrow>
(t_steps ((start_of (layout_of aprog) (length aprog), l, r))
(tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n))
(start_of (layout_of aprog) (length aprog) - Suc 0), 0) (Suc stp))
= (0, l'', r'')"
apply(insert tm_append_steps_equal[of "tm_of aprog"
"(mop_bef n @ tshift mp_up (2 * n))"
"(start_of (layout_of aprog) (length aprog) - Suc 0)"
"Suc 0" l r stp], simp)
apply(subgoal_tac "(start_of (layout_of aprog) (length aprog) - Suc 0)
= (length (tm_of aprog) div 2)", simp add: t_steps_ind)
apply(case_tac
"(t_steps (start_of (layout_of aprog) (length aprog), l, r)
(tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n))
(length (tm_of aprog) div 2), 0) stp)", simp)
apply(subgoal_tac "start_of (layout_of aprog) (length aprog) > 0",
case_tac "start_of (layout_of aprog) (length aprog)",
simp, simp)
apply(rule startof_not0, auto)
done
lemma start_of_out_range:
"as \<ge> length aprog \<Longrightarrow>
start_of (layout_of aprog) as =
start_of (layout_of aprog) (length aprog)"
apply(induct as, simp)
apply(case_tac "length aprog = Suc as", simp)
apply(simp add: start_of.simps)
done
lemma [intro]: "t_ncorrect (tm_of aprog)"
apply(simp add: tm_of.simps)
apply(insert tms_mod2[of "length aprog" aprog],
simp add: t_ncorrect.simps)
done
lemma abacus_turing_eq_halt_case_pre:
"\<lbrakk>ly = layout_of aprog;
tprog = tm_of aprog;
crsp_l ly ac tc ires;
n < length am;
abc_steps_l ac aprog stp = (as, am);
mop_ss = start_of ly (length aprog);
as \<ge> length aprog\<rbrakk>
\<Longrightarrow> \<exists> stp. (\<lambda> (s, l, r). s = 0 \<and> mopup_inv (0, l, r) am n ires)
(t_steps tc (tprog @ (tMp n (mop_ss - 1)), 0) stp)"
apply(insert steps_crsp[of ly aprog tprog ac tc ires "(as, am)" stp], auto)
apply(case_tac "(t_steps tc (tm_of aprog, 0) n')",
simp add: tMp.simps)
apply(subgoal_tac "t_ncorrect (mop_bef n @ tshift mp_up (2 * n))")
proof -
fix n' a b c
assume h1:
"crsp_l (layout_of aprog) ac tc ires"
"abc_steps_l ac aprog stp = (as, am)"
"length aprog \<le> as"
"crsp_l (layout_of aprog) (as, am) (a, b, c) ires"
"t_steps tc (tm_of aprog, 0) n' = (a, b, c)"
"n < length am"
"t_ncorrect (mop_bef n @ tshift mp_up (2 * n))"
hence h2:
"t_steps tc (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n))
(start_of (layout_of aprog) (length aprog) - Suc 0), 0) n'
= (a, b, c)"
apply(rule_tac tm_append_steps, simp)
apply(simp add: crsp_l.simps, auto)
apply(simp add: crsp_l.simps)
apply(rule startof_not0)
done
from h1 have h3:
"\<exists>stp. (\<lambda>(s, l, r). s \<noteq> 0 \<and> ((\<lambda> (s', l', r'). s' = 0)
(t_step (s, l, r) (mop_bef n @ tshift mp_up (2 * n), 0))))
(t_steps (Suc 0, b, c)
(mop_bef n @ tshift mp_up (2 * n), 0) stp)"
apply(rule_tac mopup_halt_bef, auto)
done
from h1 and h2 and h3 show
"\<exists>stp. case t_steps tc (tm_of aprog @ abacus.tshift (mop_bef n @ abacus.tshift mp_up (2 * n))
(start_of (layout_of aprog) (length aprog) - Suc 0), 0) stp of (s, ab)
\<Rightarrow> s = 0 \<and> mopup_inv (0, ab) am n ires"
proof(erule_tac exE,
case_tac "(t_steps (Suc 0, b, c)
(mop_bef n @ tshift mp_up (2 * n), 0) stpa)", simp,
case_tac "(t_step (aa, ba, ca)
(mop_bef n @ tshift mp_up (2 * n), 0))", simp)
fix stpa aa ba ca aaa baa caa
assume g1: "0 < aa \<and> aaa = 0"
"t_steps (Suc 0, b, c)
(mop_bef n @ tshift mp_up (2 * n), 0) stpa = (aa, ba,ca)"
"t_step (aa, ba, ca) (mop_bef n @ tshift mp_up (2 * n), 0)
= (0, baa, caa)"
from h1 and this have g2:
"t_steps (start_of (layout_of aprog) (length aprog), b, c)
(tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n))
(start_of (layout_of aprog) (length aprog) - Suc 0), 0)
(Suc stpa) = (0, baa, caa)"
apply(rule_tac tm_append_stop_step, auto)
done
from h1 and h2 and g1 and this show "?thesis"
apply(rule_tac x = "n' + Suc stpa" in exI)
apply(simp add: t_steps_ind del: t_steps.simps)
apply(subgoal_tac "a = start_of (layout_of aprog)
(length aprog)", simp)
apply(insert mopup_inv_steps[of n am "Suc 0" b c ires "Suc stpa"],
simp add: t_steps_ind)
apply(subgoal_tac "mopup_inv (Suc 0, b, c) am n ires", simp)
apply(rule_tac mopup_init, simp, simp)
apply(simp add: crsp_l.simps)
apply(erule_tac start_of_out_range)
done
qed
next
show " t_ncorrect (mop_bef n @ tshift mp_up (2 * n))"
apply(auto simp: t_ncorrect.simps tshift.simps mp_up_def)
done
qed
text {*
One of the main theorems about Abacus compilation.
*}
lemma abacus_turing_eq_halt_case:
assumes layout:
-- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"}: *}
"ly = layout_of aprog"
and complied:
-- {* The TM compiled from @{text "aprog"} is @{text "tprog"}: *}
"tprog = tm_of aprog"
and correspond:
-- {* TM configuration @{text "tc"} and Abacus configuration @{text "ac"}
are in correspondence: *}
"crsp_l ly ac tc ires"
and halt_state:
-- {* @{text "as"} is a program label outside the range of @{text "aprog"}. So
if Abacus is in such a state, it is in halt state: *}
"as \<ge> length aprog"
and abc_exec:
-- {* Supposing after @{text "stp"} step of execution, Abacus program @{text "aprog"}
reaches such a halt state: *}
"abc_steps_l ac aprog stp = (as, am)"
and rs_len:
-- {* @{text "n"} is a memory address in the range of Abacus memory @{text "am"}: *}
"n < length am"
and mopup_start:
-- {* The startling label for mopup mahines, according to the layout and Abacus program
should be @{text "mop_ss"}: *}
"mop_ss = start_of ly (length aprog)"
shows
-- {*
After @{text "stp"} steps of execution of the TM composed of @{text "tprog"} and the mopup
TM @{text "(tMp n (mop_ss - 1))"} will halt and gives rise to a configuration which
only hold the content of memory cell @{text "n"}:
*}
"\<exists> stp. (\<lambda> (s, l, r). \<exists> ln rn. s = 0 \<and> l = Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires
\<and> r = Oc\<^bsup>Suc (abc_lm_v am n)\<^esup> @ Bk\<^bsup>rn\<^esup>)
(t_steps tc (tprog @ (tMp n (mop_ss - 1)), 0) stp)"
proof -
from layout complied correspond halt_state abc_exec rs_len mopup_start
and abacus_turing_eq_halt_case_pre [of ly aprog tprog ac tc ires n am stp as mop_ss]
show "?thesis"
apply(simp add: mopup_inv.simps mopup_stop.simps tape_of_nat_abv)
done
qed
lemma abc_unhalt_case_zero:
"\<lbrakk>crsp_l (layout_of aprog) ac tc ires;
n < length am;
\<forall>stp. (\<lambda>(as, am). as < length aprog) (abc_steps_l ac aprog stp)\<rbrakk>
\<Longrightarrow> \<exists>astp bstp. 0 \<le> bstp \<and>
crsp_l (layout_of aprog) (abc_steps_l ac aprog astp)
(t_steps tc (tm_of aprog, 0) bstp) ires"
apply(rule_tac x = "Suc 0" in exI)
apply(case_tac " abc_steps_l ac aprog (Suc 0)", simp)
proof -
fix a b
assume "crsp_l (layout_of aprog) ac tc ires"
"abc_steps_l ac aprog (Suc 0) = (a, b)"
thus "\<exists>bstp. crsp_l (layout_of aprog) (a, b)
(t_steps tc (tm_of aprog, 0) bstp) ires"
apply(insert steps_crsp[of "layout_of aprog" aprog
"tm_of aprog" ac tc ires "(a, b)" "Suc 0"], auto)
done
qed
declare abc_steps_l.simps[simp del]
lemma abc_steps_ind:
"let (as, am) = abc_steps_l ac aprog stp in
abc_steps_l ac aprog (Suc stp) =
abc_step_l (as, am) (abc_fetch as aprog) "
proof(simp)
show "(\<lambda>(as, am). abc_steps_l ac aprog (Suc stp) =
abc_step_l (as, am) (abc_fetch as aprog))
(abc_steps_l ac aprog stp)"
proof(induct stp arbitrary: ac)
fix ac
show "(\<lambda>(as, am). abc_steps_l ac aprog (Suc 0) =
abc_step_l (as, am) (abc_fetch as aprog))
(abc_steps_l ac aprog 0)"
apply(case_tac "ac:: nat \<times> nat list",
simp add: abc_steps_l.simps)
apply(case_tac "(abc_step_l (a, b) (abc_fetch a aprog))",
simp add: abc_steps_l.simps)
done
next
fix stp ac
assume h1:
"(\<And>ac. (\<lambda>(as, am). abc_steps_l ac aprog (Suc stp) =
abc_step_l (as, am) (abc_fetch as aprog))
(abc_steps_l ac aprog stp))"
thus
"(\<lambda>(as, am). abc_steps_l ac aprog (Suc (Suc stp)) =
abc_step_l (as, am) (abc_fetch as aprog))
(abc_steps_l ac aprog (Suc stp))"
apply(case_tac "ac::nat \<times> nat list", simp)
apply(subgoal_tac
"abc_steps_l (a, b) aprog (Suc (Suc stp)) =
abc_steps_l (abc_step_l (a, b) (abc_fetch a aprog))
aprog (Suc stp)", simp)
apply(case_tac "(abc_step_l (a, b) (abc_fetch a aprog))", simp)
proof -
fix a b aa ba
assume h2: "abc_step_l (a, b) (abc_fetch a aprog) = (aa, ba)"
from h1 and h2 show
"(\<lambda>(as, am). abc_steps_l (aa, ba) aprog (Suc stp) =
abc_step_l (as, am) (abc_fetch as aprog))
(abc_steps_l (a, b) aprog (Suc stp))"
apply(insert h1[of "(aa, ba)"])
apply(simp add: abc_steps_l.simps)
apply(insert h2, simp)
done
next
fix a b
show
"abc_steps_l (a, b) aprog (Suc (Suc stp)) =
abc_steps_l (abc_step_l (a, b) (abc_fetch a aprog))
aprog (Suc stp)"
apply(simp only: abc_steps_l.simps)
done
qed
qed
qed
lemma abc_unhalt_case_induct:
"\<lbrakk>crsp_l (layout_of aprog) ac tc ires;
n < length am;
\<forall>stp. (\<lambda>(as, am). as < length aprog) (abc_steps_l ac aprog stp);
stp \<le> bstp;
crsp_l (layout_of aprog) (abc_steps_l ac aprog astp)
(t_steps tc (tm_of aprog, 0) bstp) ires\<rbrakk>
\<Longrightarrow> \<exists>astp bstp. Suc stp \<le> bstp \<and> crsp_l (layout_of aprog)
(abc_steps_l ac aprog astp) (t_steps tc (tm_of aprog, 0) bstp) ires"
apply(rule_tac x = "Suc astp" in exI)
apply(case_tac "abc_steps_l ac aprog astp")
proof -
fix a b
assume
"\<forall>stp. (\<lambda>(as, am). as < length aprog)
(abc_steps_l ac aprog stp)"
"stp \<le> bstp"
"crsp_l (layout_of aprog) (abc_steps_l ac aprog astp)
(t_steps tc (tm_of aprog, 0) bstp) ires"
"abc_steps_l ac aprog astp = (a, b)"
thus
"\<exists>bstp\<ge>Suc stp. crsp_l (layout_of aprog)
(abc_steps_l ac aprog (Suc astp))
(t_steps tc (tm_of aprog, 0) bstp) ires"
apply(insert crsp_inside[of "layout_of aprog" aprog
"tm_of aprog" a b "(t_steps tc (tm_of aprog, 0) bstp)" "ires"], auto)
apply(erule_tac x = astp in allE, auto)
apply(rule_tac x = "bstp + stpa" in exI, simp)
apply(insert abc_steps_ind[of ac aprog "astp"], simp)
done
qed
lemma abc_unhalt_case:
"\<lbrakk>crsp_l (layout_of aprog) ac tc ires;
\<forall>stp. (\<lambda>(as, am). as < length aprog) (abc_steps_l ac aprog stp)\<rbrakk>
\<Longrightarrow> (\<exists> astp bstp. bstp \<ge> stp \<and>
crsp_l (layout_of aprog) (abc_steps_l ac aprog astp)
(t_steps tc (tm_of aprog, 0) bstp) ires)"
apply(induct stp)
apply(rule_tac abc_unhalt_case_zero, auto)
apply(rule_tac abc_unhalt_case_induct, auto)
done
lemma abacus_turing_eq_unhalt_case_pre:
"\<lbrakk>ly = layout_of aprog;
tprog = tm_of aprog;
crsp_l ly ac tc ires;
\<forall> stp. ((\<lambda> (as, am). as < length aprog)
(abc_steps_l ac aprog stp));
mop_ss = start_of ly (length aprog)\<rbrakk>
\<Longrightarrow> (\<not> (\<exists> stp. (\<lambda> (s, l, r). s = 0)
(t_steps tc (tprog @ (tMp n (mop_ss - 1)), 0) stp)))"
apply(auto)
proof -
fix stp a b
assume h1:
"crsp_l (layout_of aprog) ac tc ires"
"\<forall>stp. (\<lambda>(as, am). as < length aprog) (abc_steps_l ac aprog stp)"
"t_steps tc (tm_of aprog @ tMp n (start_of (layout_of aprog)
(length aprog) - Suc 0), 0) stp = (0, a, b)"
thus "False"
proof(insert abc_unhalt_case[of aprog ac tc ires stp], auto,
case_tac "(abc_steps_l ac aprog astp)",
case_tac "(t_steps tc (tm_of aprog, 0) bstp)", simp)
fix astp bstp aa ba aaa baa c
assume h2:
"abc_steps_l ac aprog astp = (aa, ba)" "stp \<le> bstp"
"t_steps tc (tm_of aprog, 0) bstp = (aaa, baa, c)"
"crsp_l (layout_of aprog) (aa, ba) (aaa, baa, c) ires"
hence h3:
"t_steps tc (tm_of aprog @ tMp n
(start_of (layout_of aprog) (length aprog) - Suc 0), 0) bstp
= (aaa, baa, c)"
apply(intro tm_append_steps, auto)
apply(simp add: crsp_l.simps, rule startof_not0)
done
from h2 have h4: "\<exists> diff. bstp = stp + diff"
apply(rule_tac x = "bstp - stp" in exI, simp)
done
from h4 and h3 and h2 and h1 show "?thesis"
apply(auto)
apply(simp add: state0_ind crsp_l.simps)
apply(subgoal_tac "start_of (layout_of aprog) aa > 0", simp)
apply(rule startof_not0)
done
qed
qed
lemma abacus_turing_eq_unhalt_case:
assumes layout:
-- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"}: *}
"ly = layout_of aprog"
and compiled:
-- {* The TM compiled from @{text "aprog"} is @{text "tprog"}: *}
"tprog = tm_of aprog"
and correspond:
-- {*
TM configuration @{text "tc"} and Abacus configuration @{text "ac"}
are in correspondence:
*}
"crsp_l ly ac tc ires"
and abc_unhalt:
-- {*
If, no matter how many steps the Abacus program @{text "aprog"} executes, it
may never reach a halt state.
*}
"\<forall> stp. ((\<lambda> (as, am). as < length aprog)
(abc_steps_l ac aprog stp))"
and mopup_start: "mop_ss = start_of ly (length aprog)"
shows
-- {*
The the TM composed of TM @{text "tprog"} and the moupup TM may never reach a halt state as well.
*}
"\<not> (\<exists> stp. (\<lambda> (s, l, r). s = 0)
(t_steps tc (tprog @ (tMp n (mop_ss - 1)), 0) stp))"
using layout compiled correspond abc_unhalt mopup_start
apply(rule_tac abacus_turing_eq_unhalt_case_pre, auto)
done
definition abc_list_crsp:: "nat list \<Rightarrow> nat list \<Rightarrow> bool"
where
"abc_list_crsp xs ys = (\<exists> n. xs = ys @ 0\<^bsup>n\<^esup> \<or> ys = xs @ 0\<^bsup>n\<^esup>)"
lemma [intro]: "abc_list_crsp (lm @ 0\<^bsup>m\<^esup>) lm"
apply(auto simp: abc_list_crsp_def)
done
lemma abc_list_crsp_lm_v:
"abc_list_crsp lma lmb \<Longrightarrow> abc_lm_v lma n = abc_lm_v lmb n"
apply(auto simp: abc_list_crsp_def abc_lm_v.simps
nth_append exponent_def)
done
lemma rep_app_cons_iff:
"k < n \<Longrightarrow> replicate n a[k:=b] =
replicate k a @ b # replicate (n - k - 1) a"
apply(induct n arbitrary: k, simp)
apply(simp split:nat.splits)
done
lemma abc_list_crsp_lm_s:
"abc_list_crsp lma lmb \<Longrightarrow>
abc_list_crsp (abc_lm_s lma m n) (abc_lm_s lmb m n)"
apply(auto simp: abc_list_crsp_def abc_lm_v.simps abc_lm_s.simps)
apply(simp_all add: list_update_append, auto simp: exponent_def)
proof -
fix na
assume h: "m < length lmb + na" " \<not> m < length lmb"
hence "m - length lmb < na" by simp
hence "replicate na 0[(m- length lmb):= n] =
replicate (m - length lmb) 0 @ n #
replicate (na - (m - length lmb) - 1) 0"
apply(erule_tac rep_app_cons_iff)
done
thus "\<exists>nb. replicate na 0[m - length lmb := n] =
replicate (m - length lmb) 0 @ n # replicate nb 0 \<or>
replicate (m - length lmb) 0 @ [n] =
replicate na 0[m - length lmb := n] @ replicate nb 0"
apply(auto)
done
next
fix na
assume h: "\<not> m < length lmb + na"
show
"\<exists>nb. replicate na 0 @ replicate (m - (length lmb + na)) 0 @ [n] =
replicate (m - length lmb) 0 @ n # replicate nb 0 \<or>
replicate (m - length lmb) 0 @ [n] =
replicate na 0 @
replicate (m - (length lmb + na)) 0 @ n # replicate nb 0"
apply(rule_tac x = 0 in exI, simp, auto)
using h
apply(simp add: replicate_add[THEN sym])
done
next
fix na
assume h: "\<not> m < length lma" "m < length lma + na"
hence "m - length lma < na" by simp
hence
"replicate na 0[(m- length lma):= n] = replicate (m - length lma)
0 @ n # replicate (na - (m - length lma) - 1) 0"
apply(erule_tac rep_app_cons_iff)
done
thus "\<exists>nb. replicate (m - length lma) 0 @ [n] =
replicate na 0[m - length lma := n] @ replicate nb 0
\<or> replicate na 0[m - length lma := n] =
replicate (m - length lma) 0 @ n # replicate nb 0"
apply(auto)
done
next
fix na
assume "\<not> m < length lma + na"
thus " \<exists>nb. replicate (m - length lma) 0 @ [n] =
replicate na 0 @
replicate (m - (length lma + na)) 0 @ n # replicate nb 0
\<or> replicate na 0 @
replicate (m - (length lma + na)) 0 @ [n] =
replicate (m - length lma) 0 @ n # replicate nb 0"
apply(rule_tac x = 0 in exI, simp, auto)
apply(simp add: replicate_add[THEN sym])
done
qed
lemma abc_list_crsp_step:
"\<lbrakk>abc_list_crsp lma lmb; abc_step_l (aa, lma) i = (a, lma');
abc_step_l (aa, lmb) i = (a', lmb')\<rbrakk>
\<Longrightarrow> a' = a \<and> abc_list_crsp lma' lmb'"
apply(case_tac i, auto simp: abc_step_l.simps
abc_list_crsp_lm_s abc_list_crsp_lm_v Let_def
split: abc_inst.splits if_splits)
done
lemma abc_steps_red:
"abc_steps_l ac aprog stp = (as, am) \<Longrightarrow>
abc_steps_l ac aprog (Suc stp) =
abc_step_l (as, am) (abc_fetch as aprog)"
using abc_steps_ind[of ac aprog stp]
apply(simp)
done
lemma abc_list_crsp_steps:
"\<lbrakk>abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog stp = (a, lm'); aprog \<noteq> []\<rbrakk>
\<Longrightarrow> \<exists> lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and>
abc_list_crsp lm' lma"
apply(induct stp arbitrary: a lm', simp add: abc_steps_l.simps, auto)
apply(case_tac "abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog stp",
simp add: abc_steps_ind)
proof -
fix stp a lm' aa b
assume ind:
"\<And>a lm'. aa = a \<and> b = lm' \<Longrightarrow>
\<exists>lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and>
abc_list_crsp lm' lma"
and h: "abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog (Suc stp) = (a, lm')"
"abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog stp = (aa, b)"
"aprog \<noteq> []"
hence g1: "abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog (Suc stp)
= abc_step_l (aa, b) (abc_fetch aa aprog)"
apply(rule_tac abc_steps_red, simp)
done
have "\<exists>lma. abc_steps_l (0, lm) aprog stp = (aa, lma) \<and>
abc_list_crsp b lma"
apply(rule_tac ind, simp)
done
from this obtain lma where g2:
"abc_steps_l (0, lm) aprog stp = (aa, lma) \<and>
abc_list_crsp b lma" ..
hence g3: "abc_steps_l (0, lm) aprog (Suc stp)
= abc_step_l (aa, lma) (abc_fetch aa aprog)"
apply(rule_tac abc_steps_red, simp)
done
show "\<exists>lma. abc_steps_l (0, lm) aprog (Suc stp) = (a, lma) \<and>
abc_list_crsp lm' lma"
using g1 g2 g3 h
apply(auto)
apply(case_tac "abc_step_l (aa, b) (abc_fetch aa aprog)",
case_tac "abc_step_l (aa, lma) (abc_fetch aa aprog)", simp)
apply(rule_tac abc_list_crsp_step, auto)
done
qed
lemma [simp]: "(case ca of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc) =
(case ca of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)"
by(case_tac ca, simp_all, case_tac a, simp, simp)
lemma steps_eq: "length t mod 2 = 0 \<Longrightarrow>
t_steps c (t, 0) stp = steps c t stp"
apply(induct stp)
apply(simp add: steps.simps t_steps.simps)
apply(simp add:tstep_red t_steps_ind)
apply(case_tac "steps c t stp", simp)
apply(auto simp: t_step.simps tstep.simps)
done
lemma crsp_l_start: "crsp_l ly (0, lm) (Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) ires"
apply(simp add: crsp_l.simps, auto simp: start_of.simps)
done
lemma t_ncorrect_app: "\<lbrakk>t_ncorrect t1; t_ncorrect t2\<rbrakk> \<Longrightarrow>
t_ncorrect (t1 @ t2)"
apply(simp add: t_ncorrect.simps, auto)
done
lemma [simp]:
"(length (tm_of aprog) +
length (tMp n (start_of ly (length aprog) - Suc 0))) mod 2 = 0"
apply(subgoal_tac
"t_ncorrect (tm_of aprog @ tMp n
(start_of ly (length aprog) - Suc 0))")
apply(simp add: t_ncorrect.simps)
apply(rule_tac t_ncorrect_app,
auto simp: tMp.simps t_ncorrect.simps tshift.simps mp_up_def)
apply(subgoal_tac
"t_ncorrect (tm_of aprog)", simp add: t_ncorrect.simps)
apply(auto)
done
lemma [simp]: "takeWhile (\<lambda>a. a = Oc)
(replicate rs Oc @ replicate rn Bk) = replicate rs Oc"
apply(induct rs, auto)
apply(induct rn, auto)
done
lemma abacus_turing_eq_halt':
"\<lbrakk>ly = layout_of aprog;
tprog = tm_of aprog;
n < length am;
abc_steps_l (0, lm) aprog stp = (as, am);
mop_ss = start_of ly (length aprog);
as \<ge> length aprog\<rbrakk>
\<Longrightarrow> \<exists> stp m l. steps (Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>)
(tprog @ (tMp n (mop_ss - 1))) stp
= (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (abc_lm_v am n)\<^esup> @ Bk\<^bsup>l\<^esup>)"
apply(drule_tac tc = "(Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>)" in
abacus_turing_eq_halt_case, auto intro: crsp_l_start)
apply(subgoal_tac
"length (tm_of aprog @ tMp n
(start_of ly (length aprog) - Suc 0)) mod 2 = 0")
apply(simp add: steps_eq)
apply(rule_tac x = stpa in exI,
simp add: exponent_def, auto)
done
lemma list_length: "xs = ys \<Longrightarrow> length xs = length ys"
by simp
lemma [elim]: "tinres (Bk\<^bsup>m\<^esup>) b \<Longrightarrow> \<exists>m. b = Bk\<^bsup>m\<^esup>"
apply(auto simp: tinres_def)
apply(rule_tac x = "m-n" in exI,
auto simp: exponent_def replicate_add[THEN sym])
apply(case_tac "m < n", auto)
apply(drule_tac list_length, auto)
apply(subgoal_tac "\<exists> d. m = d + n", auto simp: replicate_add)
apply(rule_tac x = "m - n" in exI, simp)
done
lemma [intro]: "tinres [Bk] (Bk\<^bsup>k\<^esup>) "
apply(auto simp: tinres_def exponent_def)
apply(case_tac k, auto)
apply(rule_tac x = "Suc 0" in exI, simp)
done
lemma abacus_turing_eq_halt_pre:
"\<lbrakk>ly = layout_of aprog;
tprog = tm_of aprog;
n < length am;
abc_steps_l (0, lm) aprog stp = (as, am);
mop_ss = start_of ly (length aprog);
as \<ge> length aprog\<rbrakk>
\<Longrightarrow> \<exists> stp m l. steps (Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>)
(tprog @ (tMp n (mop_ss - 1))) stp
= (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (abc_lm_v am n)\<^esup> @ Bk\<^bsup>l\<^esup>)"
using abacus_turing_eq_halt'
apply(simp)
done
text {*
Main theorem for the case when the original Abacus program does halt.
*}
lemma abacus_turing_eq_halt:
assumes layout:
"ly = layout_of aprog"
-- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"}: *}
and compiled: "tprog = tm_of aprog"
-- {* The TM compiled from @{text "aprog"} is @{text "tprog"}: *}
and halt_state:
-- {* @{text "as"} is a program label outside the range of @{text "aprog"}. So
if Abacus is in such a state, it is in halt state: *}
"as \<ge> length aprog"
and abc_exec:
-- {* Supposing after @{text "stp"} step of execution, Abacus program @{text "aprog"}
reaches such a halt state: *}
"abc_steps_l (0, lm) aprog stp = (as, am)"
and rs_locate:
-- {* @{text "n"} is a memory address in the range of Abacus memory @{text "am"}: *}
"n < length am"
and mopup_start:
-- {* The startling label for mopup mahines, according to the layout and Abacus program
should be @{text "mop_ss"}: *}
"mop_ss = start_of ly (length aprog)"
shows
-- {*
After @{text "stp"} steps of execution of the TM composed of @{text "tprog"} and the mopup
TM @{text "(tMp n (mop_ss - 1))"} will halt and gives rise to a configuration which
only hold the content of memory cell @{text "n"}:
*}
"\<exists> stp m l. steps (Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) (tprog @ (tMp n (mop_ss - 1))) stp
= (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (abc_lm_v am n)\<^esup> @ Bk\<^bsup>l\<^esup>)"
using layout compiled halt_state abc_exec rs_locate mopup_start
by(rule_tac abacus_turing_eq_halt_pre, auto)
lemma abacus_turing_eq_uhalt':
"\<lbrakk>ly = layout_of aprog;
tprog = tm_of aprog;
\<forall> stp. ((\<lambda> (as, am). as < length aprog)
(abc_steps_l (0, lm) aprog stp));
mop_ss = start_of ly (length aprog)\<rbrakk>
\<Longrightarrow> (\<not> (\<exists> stp. isS0 (steps (Suc 0, [Bk, Bk], <lm>)
(tprog @ (tMp n (mop_ss - 1))) stp)))"
apply(drule_tac tc = "(Suc 0, [Bk, Bk], <lm>)" and n = n and ires = "[]" in
abacus_turing_eq_unhalt_case, auto intro: crsp_l_start)
apply(simp add: crsp_l.simps start_of.simps)
apply(erule_tac x = stp in allE, erule_tac x = stp in allE)
apply(subgoal_tac
"length (tm_of aprog @ tMp n
(start_of ly (length aprog) - Suc 0)) mod 2 = 0")
apply(simp add: steps_eq, auto simp: isS0_def)
done
text {*
Main theorem for the case when the original Abacus program does not halt.
*}
lemma abacus_turing_eq_uhalt:
assumes layout:
-- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"}: *}
"ly = layout_of aprog"
and compiled:
-- {* The TM compiled from @{text "aprog"} is @{text "tprog"}: *}
"tprog = tm_of aprog"
and abc_unhalt:
-- {*
If, no matter how many steps the Abacus program @{text "aprog"} executes, it
may never reach a halt state.
*}
"\<forall> stp. ((\<lambda> (as, am). as < length aprog)
(abc_steps_l (0, lm) aprog stp))"
and mop_start: "mop_ss = start_of ly (length aprog)"
shows
-- {*
The the TM composed of TM @{text "tprog"} and the moupup TM may never reach a halt state as well.
*}
"\<not> (\<exists> stp. isS0 (steps (Suc 0, [Bk, Bk], <lm>)
(tprog @ (tMp n (mop_ss - 1))) stp))"
using abacus_turing_eq_uhalt'
layout compiled abc_unhalt mop_start
by(auto)
end