(*<*)
theory Paper
imports "../Myhill" "LaTeXsugar"
begin
declare [[show_question_marks = false]]
consts
REL :: "(string \<times> string) \<Rightarrow> bool"
UPLUS :: "'a set \<Rightarrow> 'a set \<Rightarrow> (nat \<times> 'a) set"
abbreviation
"EClass x R \<equiv> R `` {x}"
notation (latex output)
str_eq_rel ("\<approx>\<^bsub>_\<^esub>") and
Seq (infixr "\<cdot>" 100) and
Star ("_\<^bsup>\<star>\<^esup>") and
pow ("_\<^bsup>_\<^esup>" [100, 100] 100) and
Suc ("_+1" [100] 100) and
quotient ("_ \<^raw:\ensuremath{\!\sslash\!}> _" [90, 90] 90) and
REL ("\<approx>") and
UPLUS ("_ \<^raw:\ensuremath{\uplus}> _" [90, 90] 90) and
L ("L '(_')" [0] 101) and
EClass ("\<lbrakk>_\<rbrakk>\<^bsub>_\<^esub>" [100, 100] 100) and
transition ("_ \<^raw:\ensuremath{\stackrel{\text{>_\<^raw:}}{\Longrightarrow}}> _" [100, 100, 100] 100)
(*>*)
section {* Introduction *}
text {*
Regular languages are an important and well-understood subject in Computer
Science, with many beautiful theorems and many useful algorithms. There is a
wide range of textbooks on this subject, many of which are aimed at students
and contain very detailed ``pencil-and-paper'' proofs
(e.g.~\cite{Kozen97}). It seems natural to exercise theorem provers by
formalising these theorems and by verifying formally the algorithms.
There is however a problem: the typical approach to regular languages is to
introduce finite automata and then define everything in terms of them. For
example, a regular language is normally defined as one whose strings are
recognised by a finite deterministic automaton. This approach has many
benefits. Among them is the fact that it is easy to convince oneself that
regular languages are closed under complementation: one just has to exchange
the accepting and non-accepting states in the corresponding automaton to
obtain an automaton for the complement language. The problem, however, lies with
formalising such reasoning in a HOL-based theorem prover, in our case
Isabelle/HOL. Automata are build up from states and transitions that
need to be represented as graphs or matrices, neither
of which can be defined as inductive datatype.\footnote{In some works
functions are used to represent state transitions, but also they are not
inductive datatypes.} This means we have to build our own reasoning
infrastructure for them, as neither Isabelle/HOL nor HOL4 nor HOLlight support
them with libraries.
Even worse, reasoning about graphs and matrices can be a real hassle in HOL-based
theorem provers. Consider for example the operation of sequencing
two automata, say $A_1$ and $A_2$, by connecting the
accepting states of $A_1$ to the initial state of $A_2$:
\begin{center}
\begin{tabular}{ccc}
\begin{tikzpicture}[scale=0.8]
%\draw[step=2mm] (-1,-1) grid (1,1);
\draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
\draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
\node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\draw (-0.6,0.0) node {\footnotesize$A_1$};
\draw ( 0.6,0.0) node {\footnotesize$A_2$};
\end{tikzpicture}
&
\raisebox{1.1mm}{\bf\Large$\;\;\;\Rightarrow\,\;\;$}
&
\begin{tikzpicture}[scale=0.8]
%\draw[step=2mm] (-1,-1) grid (1,1);
\draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
\draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
\node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\draw (C) to [very thick, bend left=45] (B);
\draw (D) to [very thick, bend right=45] (B);
\draw (-0.6,0.0) node {\footnotesize$A_1$};
\draw ( 0.6,0.0) node {\footnotesize$A_2$};
\end{tikzpicture}
\end{tabular}
\end{center}
\noindent
On ``paper'' we can define the corresponding graph in terms of the disjoint
union of the state nodes. Unfortunately in HOL, the definition for disjoint
union, namely
\begin{center}
@{term "UPLUS A\<^isub>1 A\<^isub>2 \<equiv> {(1, x) | x. x \<in> A\<^isub>1} \<union> {(2, y) | y. y \<in> A\<^isub>2}"}
\end{center}
\noindent
changes the type---the disjoint union is not a set, but a set of pairs.
Using this definition for disjoint unions means we do not have a single type for automata
and hence will not be able to state properties about \emph{all}
automata, since there is no type quantification available in HOL. An
alternative, which provides us with a single type for automata, is to give every
state node an identity, for example a natural
number, and then be careful to rename these identities apart whenever
connecting two automata. This results in clunky proofs
establishing that properties are invariant under renaming. Similarly,
connecting two automata represented as matrices results in very adhoc
constructions, which are not pleasant to reason about.
Because of these problems to do with representing automata, there seems
to be no substantial formalisation of automata theory and regular languages
carried out in a HOL-based theorem prover. We are only aware of the
large formalisation of automata theory in Nuprl \cite{Constable00} and
some smaller formalisations in Coq (for example \cite{Filliatre97}).
In this paper, we will not attempt to formalise automata theory, but take a completely
different approach to regular languages. Instead of defining a regular language as one
where there exists an automaton that recognises all strings of the language, we define
a regular language as:
\begin{definition}[A Regular Language]
A language @{text A} is regular, provided there is a regular expression that matches all
strings of @{text "A"}.
\end{definition}
\noindent
The reason is that regular expressions, unlike graphs and matrices, can
be easily defined as inductive datatype. Consequently a corresponding reasoning
infrastructure comes for free. This has recently been exploited in HOL4 with a formalisation
of regular expression matching based on derivatives \cite{OwensSlind08}. The purpose of this paper is to
show that a central result about regular languages---the Myhill-Nerode theorem---can
be recreated by only using regular expressions. This theorem gives necessary
and sufficient conditions for when a language is regular. As a corollary of this
theorem we can easily establish the usual closure properties, including
complementation, for regular languages.\smallskip
\noindent
{\bf Contributions:} To our knowledge, our proof of the Myhill-Nerode theorem is the
first that is based on regular expressions, only. We prove the part of this theorem
stating that a regular expression has only finitely many partitions using certain
tagging-functions. Again to our best knowledge, these tagging functions have
not been used before to establish the Myhill-Nerode theorem.
*}
section {* Preliminaries *}
text {*
Strings in Isabelle/HOL are lists of characters with the \emph{empty string}
being represented by the empty list, written @{term "[]"}. \emph{Languages}
are sets of strings. The language containing all strings is written in
Isabelle/HOL as @{term "UNIV::string set"}. The concatenation of two languages
is written @{term "A ;; B"} and a language raised to the power $n$ is written
@{term "A \<up> n"}. Their definitions are
\begin{center}
@{thm Seq_def[THEN eq_reflection, where A1="A" and B1="B"]}
\hspace{7mm}
@{thm pow.simps(1)[THEN eq_reflection, where A1="A"]}
\hspace{7mm}
@{thm pow.simps(2)[THEN eq_reflection, where A1="A" and n1="n"]}
\end{center}
\noindent
where @{text "@"} is the usual list-append operation. The Kleene-star of a language @{text A}
is defined as the union over all powers, namely @{thm Star_def}. In the paper
we will often make use of the following properties.
\begin{proposition}\label{langprops}\mbox{}\\
\begin{tabular}{@ {}ll@ {\hspace{10mm}}ll}
(i) & @{thm star_cases} & (ii) & @{thm[mode=IfThen] pow_length}\\
(iii) & @{thm seq_Union_left} &
\end{tabular}
\end{proposition}
\noindent
We omit the proofs of these properties, but invite the reader to consult
our formalisation.\footnote{Available at ???}
The notation for the quotient of a language @{text A} according to an
equivalence relation @{term REL} is @{term "A // REL"}. We will write
@{text "\<lbrakk>x\<rbrakk>\<^isub>\<approx>"} for the equivalence class defined
as @{text "{y | y \<approx> x}"}.
Central to our proof will be the solution of equational systems
involving regular expressions. For this we will use Arden's lemma \cite{}
which solves equations of the form @{term "X = A ;; X \<union> B"} provided
@{term "[] \<notin> A"}. However we will need the following ``reverse''
version of Arden's lemma.
\begin{lemma}[Reverse Arden's Lemma]\mbox{}\\
If @{thm (prem 1) ardens_revised} then
@{thm (lhs) ardens_revised} has the unique solution
@{thm (rhs) ardens_revised}.
\end{lemma}
\begin{proof}
For the right-to-left direction we assume @{thm (rhs) ardens_revised} and show
that @{thm (lhs) ardens_revised} holds. From Prop.~\ref{langprops}$(i)$
we have @{term "A\<star> = {[]} \<union> A ;; A\<star>"},
which is equal to @{term "A\<star> = {[]} \<union> A\<star> ;; A"}. Adding @{text B} to both
sides gives @{term "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"}, whose right-hand side
is equal to @{term "(B ;; A\<star>) ;; A \<union> B"}. This completes this direction.
For the other direction we assume @{thm (lhs) ardens_revised}. By a simple induction
on @{text n}, we can establish the property
\begin{center}
@{text "(*)"}\hspace{5mm} @{thm (concl) ardens_helper}
\end{center}
\noindent
Using this property we can show that @{term "B ;; (A \<up> n) \<subseteq> X"} holds for
all @{text n}. From this we can infer @{term "B ;; A\<star> \<subseteq> X"} using the definition
of @{text "\<star>"}.
For the inclusion in the other direction we assume a string @{text s}
with length @{text k} is element in @{text X}. Since @{thm (prem 1) ardens_revised}
we know by Prop.~\ref{langprops}$(ii)$ that
@{term "s \<notin> X ;; (A \<up> Suc k)"} since its length is only @{text k}
(the strings in @{term "X ;; (A \<up> Suc k)"} are all longer).
From @{text "(*)"} it follows then that
@{term s} must be element in @{term "(\<Union>m\<in>{0..k}. B ;; (A \<up> m))"}. This in turn
implies that @{term s} is in @{term "(\<Union>n. B ;; (A \<up> n))"}. Using Prop.~\ref{langprops}$(iii)$
this is equal to @{term "B ;; A\<star>"}, as we needed to show.\qed
\end{proof}
\noindent
Regular expressions are defined as the following inductive datatype
\begin{center}
@{text r} @{text "::="}
@{term NULL}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
@{term EMPTY}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
@{term "CHAR c"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
@{term "SEQ r r"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
@{term "ALT r r"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
@{term "STAR r"}
\end{center}
\noindent
The language matched by a regular expression is defined as usual:
\begin{center}
\begin{tabular}{c@ {\hspace{10mm}}c}
\begin{tabular}{rcl}
@{thm (lhs) L_rexp.simps(1)} & @{text "\<equiv>"} & @{thm (rhs) L_rexp.simps(1)}\\
@{thm (lhs) L_rexp.simps(2)} & @{text "\<equiv>"} & @{thm (rhs) L_rexp.simps(2)}\\
@{thm (lhs) L_rexp.simps(3)[where c="c"]} & @{text "\<equiv>"} & @{thm (rhs) L_rexp.simps(3)[where c="c"]}\\
\end{tabular}
&
\begin{tabular}{rcl}
@{thm (lhs) L_rexp.simps(4)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]} & @{text "\<equiv>"} &
@{thm (rhs) L_rexp.simps(4)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}\\
@{thm (lhs) L_rexp.simps(5)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]} & @{text "\<equiv>"} &
@{thm (rhs) L_rexp.simps(5)[where ?r1.0="r\<^isub>1" and ?r2.0="r\<^isub>2"]}\\
@{thm (lhs) L_rexp.simps(6)[where r="r"]} & @{text "\<equiv>"} &
@{thm (rhs) L_rexp.simps(6)[where r="r"]}\\
\end{tabular}
\end{tabular}
\end{center}
*}
section {* Finite Partitions Imply Regularity of a Language *}
text {*
\begin{definition}[Myhill-Nerode Relation]\mbox{}\\
@{thm str_eq_rel_def[simplified]}
\end{definition}
\noindent
It is easy to see that @{term "\<approx>A"} is an equivalence relation, which partitions
the set of all string, @{text "UNIV"}, into a set of equivalence classed. We define
the set @{term "finals A"} as those equivalence classes that contain strings of
@{text A}, namely
\begin{equation}
@{thm finals_def}
\end{equation}
\noindent
It is easy to show that @{thm lang_is_union_of_finals} holds. We can also define
a notion of \emph{transition} between equivalence classes as
\begin{equation}
@{thm transition_def}
\end{equation}
\noindent
which means if we add the character @{text c} to all strings in the equivalence
class @{text Y} HERE
\begin{theorem}
Given a language @{text A}.
@{thm[mode=IfThen] hard_direction}
\end{theorem}
*}
section {* Regular Expressions Generate Finitely Many Partitions *}
text {*
\begin{theorem}
Given @{text "r"} is a regular expressions, then @{thm rexp_imp_finite}.
\end{theorem}
\begin{proof}
By induction on the structure of @{text r}. The cases for @{const NULL}, @{const EMPTY}
and @{const CHAR} are straightforward, because we can easily establish
\begin{center}
\begin{tabular}{l}
@{thm quot_null_eq}\\
@{thm quot_empty_subset}\\
@{thm quot_char_subset}
\end{tabular}
\end{center}
\end{proof}
*}
section {* Conclusion and Related Work *}
(*<*)
end
(*>*)