Attic/Prefix_subtract.thy
author wu
Mon, 13 Aug 2012 12:11:50 +0000
changeset 365 3ee61a961127
parent 182 560712a29a36
child 372 2c56b20032a7
permissions -rw-r--r--
(none)

theory Prefix_subtract
  imports Main "~~/src/HOL/Library/List_Prefix"
begin


section {* A small theory of prefix subtraction *}

text {*
  The notion of @{text "prefix_subtract"} makes 
  the second direction of the Myhill-Nerode theorem 
  more readable.
*}

instantiation list :: (type) minus
begin

fun minus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" 
where
  "minus_list []     xs     = []" 
| "minus_list (x#xs) []     = x#xs" 
| "minus_list (x#xs) (y#ys) = (if x = y then minus_list xs ys else (x#xs))"

instance by default

end

lemma [simp]: "x - [] = x"
by (induct x) (auto)

lemma [simp]: "(x @ y) - x = y"
by (induct x) (auto)

lemma [simp]: "x - x = []"
by (induct x) (auto)

lemma [simp]: "x = z @ y \<Longrightarrow> x - z = y "
by (induct x) (auto)

lemma diff_prefix:
  "\<lbrakk>c \<le> a - b; b \<le> a\<rbrakk> \<Longrightarrow> b @ c \<le> a"
by (auto elim: prefixE)

lemma diff_diff_append: 
  "\<lbrakk>c < a - b; b < a\<rbrakk> \<Longrightarrow> (a - b) - c = a - (b @ c)"
apply (clarsimp simp:strict_prefix_def)
by (drule diff_prefix, auto elim:prefixE)

lemma append_eq_cases:
  assumes a: "x @ y = m @ n"
  shows "x \<le> m \<or> m \<le> x"
unfolding prefix_def using a
by (auto simp add: append_eq_append_conv2)

lemma append_eq_dest:
  assumes a: "x @ y = m @ n" 
  shows "(x \<le> m \<and> (m - x) @ n = y) \<or> (m \<le> x \<and> (x - m) @ y = n)"
using append_eq_cases[OF a] a
by (auto elim: prefixE)

end