(*<*)
theory Slides1
imports "~~/src/HOL/Library/LaTeXsugar"
begin
notation (latex output)
set ("_") and
Cons ("_::/_" [66,65] 65)
(*>*)
text_raw {*
%\renewcommand{\slidecaption}{Cambridge, 9 November 2010}
\renewcommand{\slidecaption}{Nijmegen, 25 August 2011}
%%\renewcommand{\ULthickness}{2pt}
\newcommand{\sout}[1]{\tikz[baseline=(X.base), inner sep=0pt, outer sep=0pt]
\node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}
\frametitle{%
\begin{tabular}{@ {}c@ {}}
\Large A Formalisation of the\\[-4mm]
\Large Myhill-Nerode Theorem based on\\[-4mm]
\Large Regular Expressions\\[-4mm]
\Large (Proof Pearl)\\[0mm]
\end{tabular}}
\begin{center}
\begin{tabular}{c@ {\hspace{15mm}}c}
\includegraphics[scale=0.034]{chunhan.jpg} &
\includegraphics[scale=0.034]{xingyuan.jpg}\\[-5mm]
\end{tabular}
\end{center}
\begin{center}
\small joint work with Chunhan Wu and Xingyuan Zhang from the PLA
University of Science and Technology in Nanjing
\end{center}
\begin{center}
\small Christian Urban\\
TU Munich
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{}
\begin{textblock}{12.9}(1.5,3.2)
\begin{block}{}
\begin{minipage}{12.4cm}\raggedright
\large I want to teach \alert{students} with\\
theorem provers (especially inductions).
\end{minipage}
\end{block}
\end{textblock}\pause
\mbox{}\\[35mm]\mbox{}
\begin{itemize}
\item \only<2>{\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}%
\only<3->{\sout{\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}}\medskip
\item<3-> formal language theory \\
\mbox{}\;\;@{text "\<Rightarrow>"} nice textbooks: Kozen, Hopcroft \& Ullman
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
\begin{center}
\huge\bf\textcolor{gray}{in Nuprl}
\end{center}
\begin{itemize}
\item Constable, Jackson, Naumov, Uribe\medskip
\item \alert{18 months} for automata theory, Hopcroft \& Ullman chapters 1--11 (including Myhill-Nerode)
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
\begin{center}
\huge\bf\textcolor{gray}{in Coq}
\end{center}
\begin{itemize}
\item Filli\^atre, Briais, Braibant and others
\item multi-year effort; a number of results in automata theory, e.g.\medskip
\begin{itemize}
\item Kleene's thm.~by Filli\^atre (\alert{``rather big''})
\item automata theory by Briais (5400 loc)
\item Braibant ATBR library, including Myhill-Nerode ($>\!\!\!>$2000 loc)
\item Mirkin's partial derivative automaton construction (10600 loc)
\end{itemize}
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
\mbox{}\\[-10mm]\mbox{}
\begin{center}
\huge\bf\textcolor{gray}{in HOL}
\end{center}
\begin{itemize}
\item automata @{text "\<Rightarrow>"} graphs, matrices, functions
\item<2-> combining automata/graphs
\onslide<2->{
\begin{center}
\begin{tabular}{ccc}
\begin{tikzpicture}[scale=1]
%\draw[step=2mm] (-1,-1) grid (1,1);
\draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
\draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
\node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\draw (-0.6,0.0) node {\small$A_1$};
\draw ( 0.6,0.0) node {\small$A_2$};
\end{tikzpicture}}
&
\onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}}
&
\onslide<3->{\begin{tikzpicture}[scale=1]
%\draw[step=2mm] (-1,-1) grid (1,1);
\draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
\draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
\node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
\draw (C) to [red, very thick, bend left=45] (B);
\draw (D) to [red, very thick, bend right=45] (B);
\draw (-0.6,0.0) node {\small$A_1$};
\draw ( 0.6,0.0) node {\small$A_2$};
\end{tikzpicture}}
\end{tabular}
\end{center}\medskip
\only<4-5>{
\begin{tabular}{@ {}l@ {}}
disjoint union:\\[2mm]
\smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}}
\end{tabular}}
\end{itemize}
\only<5>{
\begin{textblock}{13.9}(0.7,7.7)
\begin{block}{}
\medskip
\begin{minipage}{14cm}\raggedright
Problems with definition for regularity (Slind):\bigskip\\
\smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip
\end{minipage}
\end{block}
\end{textblock}}
\medskip
\only<6->{A solution:\;\;\smath{\text{nat}} \;@{text "\<Rightarrow>"}\; state nodes\medskip}
\only<7->{You have to \alert{\underline{rename}} states!}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
\mbox{}\\[-10mm]\mbox{}
\begin{center}
\huge\bf\textcolor{gray}{in HOL}
\end{center}
\begin{itemize}
\item Kozen's paper proof of Myhill-Nerode:\\
\hspace{2cm}requires absence of \alert{inaccessible states}
\end{itemize}\bigskip\bigskip
\begin{center}
\smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{}
\mbox{}\\[25mm]\mbox{}
\begin{textblock}{13.9}(0.7,1.2)
\begin{block}{}
\begin{minipage}{13.4cm}\raggedright
{\bf Definition:}\smallskip\\
A language \smath{A} is \alert{regular}, provided there exists a\\
\alert{regular expression} that matches all strings of \smath{A}.
\end{minipage}
\end{block}
\end{textblock}\pause
{\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause
Infrastructure for free. Do we lose anything?\pause
\begin{itemize}
\item pumping lemma\pause
\item closure under complementation\pause
\item \only<6>{regular expression matching}%
\only<7->{\sout{regular expression matching}}
\item<8-> most textbooks are about automata
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\LARGE The Myhill-Nerode Theorem}
\begin{itemize}
\item provides necessary and suf\!ficient conditions\\ for a language
being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\medskip
\item will help with closure properties of regular languages\bigskip\pause
\item key is the equivalence relation:\smallskip
\begin{center}
\smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
\end{center}
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\LARGE The Myhill-Nerode Theorem}
\begin{center}
\only<1>{%
\begin{tikzpicture}[scale=3]
\draw[very thick] (0.5,0.5) circle (.6cm);
\end{tikzpicture}}%
\only<2->{%
\begin{tikzpicture}[scale=3]
\draw[very thick] (0.5,0.5) circle (.6cm);
\clip[draw] (0.5,0.5) circle (.6cm);
\draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
\end{tikzpicture}}
\end{center}
\begin{itemize}
\item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
\end{itemize}
\begin{textblock}{5}(2.1,5.3)
\begin{tikzpicture}
\node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm]
{$U\!N\!IV$};
\draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}};
\end{tikzpicture}
\end{textblock}
\only<2->{%
\begin{textblock}{5}(9.4,7.2)
\begin{tikzpicture}
\node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
{@{text "\<lbrakk>x\<rbrakk>"}$_{\approx_{A}}$};
\draw (0.9,-1.1) node {\begin{tabular}{l}equivalence class\end{tabular}};
\end{tikzpicture}
\end{textblock}}
\only<3->{
\begin{textblock}{11.9}(1.7,3)
\begin{block}{}
\begin{minipage}{11.4cm}\raggedright
Two directions:\medskip\\
\begin{tabular}{@ {}ll}
1.)\;finite $\Rightarrow$ regular\\
\;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm]
2.)\;regular $\Rightarrow$ finite\\
\;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
\end{tabular}
\end{minipage}
\end{block}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\LARGE Initial and Final {\sout{\textcolor{gray}{States}}}}
\begin{textblock}{8}(10, 2)
\textcolor{black}{Equivalence Classes}
\end{textblock}
\begin{center}
\begin{tikzpicture}[scale=3]
\draw[very thick] (0.5,0.5) circle (.6cm);
\clip[draw] (0.5,0.5) circle (.6cm);
\draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
\only<2->{\draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);}
\only<3->{\draw[red, fill] (0.2, 0.2) rectangle (0.4, 0.4);
\draw[red, fill] (0.4, 0.8) rectangle (0.6, 1.0);
\draw[red, fill] (0.6, 0.0) rectangle (0.8, 0.2);
\draw[red, fill] (0.8, 0.4) rectangle (1.0, 0.6);}
\end{tikzpicture}
\end{center}
\begin{itemize}
\item \smath{\text{final}_A\,X \dn \{[\!|x|\!]_{\approx_{A}}\;|\;x \in A\}}
\smallskip
\item we can prove: \smath{A = \bigcup \{X.\;\text{final}_A\,X\}}
\end{itemize}
\only<2->{%
\begin{textblock}{5}(2.1,4.6)
\begin{tikzpicture}
\node at (0,0) [single arrow, fill=blue,text=white, minimum height=2cm]
{$[] \in X$};
\end{tikzpicture}
\end{textblock}}
\only<3->{%
\begin{textblock}{5}(10,7.4)
\begin{tikzpicture}
\node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
{a final};
\end{tikzpicture}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<-1>[c]
\frametitle{\begin{tabular}{@ {}l}\LARGE%
Transitions between Eq-Classes\end{tabular}}
\begin{center}
\begin{tikzpicture}[scale=3]
\draw[very thick] (0.5,0.5) circle (.6cm);
\clip[draw] (0.5,0.5) circle (.6cm);
\draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
\draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);
\draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6);
\draw[white] (0.1,0.7) node {$X$};
\draw[white] (0.9,0.5) node {$Y$};
\end{tikzpicture}
\end{center}
\begin{center}
\smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y}
\end{center}
\onslide<8>{
\begin{tabular}{c}
\begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
\tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
\node[state,initial] (q_0) {$R_1$};
\end{tikzpicture}
\end{tabular}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\LARGE Systems of Equations}
Inspired by a method of Brzozowski\;'64:\bigskip\bigskip
\begin{center}
\begin{tabular}{@ {\hspace{-20mm}}c}
\\[-13mm]
\begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
\tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
%\draw[help lines] (0,0) grid (3,2);
\node[state,initial] (p_0) {$R_1$};
\node[state,accepting] (p_1) [right of=q_0] {$R_2$};
\path[->] (p_0) edge [bend left] node {a} (p_1)
edge [loop above] node {b} ()
(p_1) edge [loop above] node {a} ()
edge [bend left] node {b} (p_0);
\end{tikzpicture}\\
\\[-13mm]
\end{tabular}
\end{center}
\begin{center}
\begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
& \smath{R_1} & \smath{\equiv} & \smath{R_1;b + R_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\
& \smath{R_2} & \smath{\equiv} & \smath{R_1;a + R_2;a}\medskip\\
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-2,4->[t]
\small
\begin{center}
\begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
\onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}}
& \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
\onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}}
& \onslide<1->{\smath{R_1; a + R_2; a}}\\
& & & \onslide<2->{by Arden}\\
\onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}}
& \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
\onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}}
& \only<2->{\smath{R_1; a\cdot a^\star}}\\
& & & \onslide<4->{by Arden}\\
\onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}}
& \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\
\onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}}
& \onslide<4->{\smath{R_1; a\cdot a^\star}}\\
& & & \onslide<5->{by substitution}\\
\onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}}
& \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
\onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}}
& \onslide<5->{\smath{R_1; a\cdot a^\star}}\\
& & & \onslide<6->{by Arden}\\
\onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}}
& \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
\onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}}
& \onslide<6->{\smath{R_1; a\cdot a^\star}}\\
& & & \onslide<7->{by substitution}\\
\onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}}
& \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
\onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}}
& \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star
\cdot a\cdot a^\star}}\\
\end{tabular}
\end{center}
\only<8->{
\begin{textblock}{6}(2.5,4)
\begin{block}{}
\begin{minipage}{8cm}\raggedright
\begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm]
\tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
%\draw[help lines] (0,0) grid (3,2);
\node[state,initial] (p_0) {$R_1$};
\node[state,accepting] (p_1) [right of=q_0] {$R_2$};
\path[->] (p_0) edge [bend left] node {a} (p_1)
edge [loop above] node {b} ()
(p_1) edge [loop above] node {a} ()
edge [bend left] node {b} (p_0);
\end{tikzpicture}
\end{minipage}
\end{block}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\LARGE Other Direction}
One has to prove
\begin{center}
\smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
\end{center}
by induction on \smath{r}. Not trivial, but after a bit
of thinking, one can find a \alert{refined} relation:\bigskip
\begin{center}
\mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c}
\begin{tikzpicture}[scale=1.1]
%Circle
\draw[thick] (0,0) circle (1.1);
\end{tikzpicture}
&
\begin{tikzpicture}[scale=1.1]
%Circle
\draw[thick] (0,0) circle (1.1);
%Main rays
\foreach \a in {0, 90,...,359}
\draw[very thick] (0, 0) -- (\a:1.1);
\foreach \a / \l in {45/1, 135/2, 225/3, 315/4}
\draw (\a: 0.65) node {\small$a_\l$};
\end{tikzpicture}
&
\begin{tikzpicture}[scale=1.1]
%Circle
\draw[red, thick] (0,0) circle (1.1);
%Main rays
\foreach \a in {0, 45,...,359}
\draw[red, very thick] (0, 0) -- (\a:1.1);
\foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2}
\draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}};
\end{tikzpicture}\\
\small\smath{U\!N\!IV} &
\small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} &
\small\smath{U\!N\!IV /\!/ \alert{R}}
\end{tabular}}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\LARGE What Have We Achieved?}
\begin{itemize}
\item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
\bigskip\pause
\item regular languages are closed under complementation; this is easy
\begin{center}
\smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}}
\end{center}\pause\bigskip
\item non-regularity (\smath{a^nb^n})
\begin{quote}
\begin{minipage}{8.8cm}
\begin{block}{}
\begin{minipage}{8.6cm}
If there exists a sufficiently large set \smath{B} (for example infinite),
such that
\begin{center}
\smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}.
\end{center}
then \smath{A} is not regular.
\end{minipage}
\end{block}
\end{minipage}\medskip\pause
\small(\smath{A \dn \bigcup_i a^i})
\end{quote}
\end{itemize}
\only<2>{
\begin{textblock}{10}(4,14)
\small
\smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
\end{textblock}
}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\LARGE Conclusion}
\begin{itemize}
\item We have never seen a proof of Myhill-Nerode based on
regular expressions.\smallskip\pause
\item great source of examples (inductions)\smallskip\pause
\item no need to fight the theorem prover:\\
\begin{itemize}
\item first direction (790 loc)\\
\item second direction (400 / 390 loc)\pause
\end{itemize}\smallskip
\item I have \alert{\bf not} yet used it for teaching of undergraduates.\pause
\end{itemize}
\only<5->{
\begin{textblock}{13.8}(1,4)
\begin{block}{}\mbox{}\hspace{3mm}
\begin{minipage}{11cm}\raggedright
\large
{\bf Bold Claim }\alert{(not proved!)}\medskip
{\bf 95\%} of regular language theory can be done without
automata\medskip\\\ldots this is much more tasteful. ;o)
\end{minipage}
\end{block}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\mbox{}\\[2cm]\textcolor{red}{Questions?}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
(*<*)
end
(*>*)