(*<*)
theory Paper
imports "../Myhill" "LaTeXsugar"
begin
declare [[show_question_marks = false]]
notation (latex output)
str_eq_rel ("\<approx>\<^bsub>_\<^esub>") and
Seq (infixr "\<cdot>" 100) and
Star ("_\<^bsup>\<star>\<^esup>") and
pow ("_\<^bsup>_\<^esup>" [100, 100] 100) and
Suc ("_+1" [100] 100)
(*>*)
section {* Introduction *}
text {*
*}
section {* Preliminaries *}
text {*
A central technique in our proof is the solution of equational systems
involving regular expressions. For this we will use the following ``reverse''
version of Arden's lemma.
\begin{lemma}[Reverse Arden's Lemma]\mbox{}\\
If @{thm (prem 1) ardens_revised} then
@{thm (lhs) ardens_revised} has the unique solution
@{thm (rhs) ardens_revised}.
\end{lemma}
\begin{proof}
For right-to-left direction we assume @{thm (rhs) ardens_revised} and show
@{thm (lhs) ardens_revised}. From Lemma ??? we have @{term "A\<star> = {[]} \<union> A ;; A\<star>"},
which is equal to @{term "A\<star> = {[]} \<union> A\<star> ;; A"}. Adding @{text B} to both
sides gives @{term "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"}, whose right-hand side
is @{term "B \<union> (B ;; A\<star>) ;; A"}. This completes this direction.
For the other direction we assume @{thm (lhs) ardens_revised}. By a simple induction
on @{text n}, we can show the property
\begin{center}
@{text "(*)"}\hspace{5mm} @{thm (concl) ardens_helper}
\end{center}
\noindent
Using this property we can show that @{term "B ;; (A \<up> n) \<subseteq> X"} holds for
all @{text n}. From this we can infer @{term "B ;; A\<star> \<subseteq> X"} using Lemma ???.
The inclusion in the other direction we establishing by assuming a string @{text s}
with length @{text k} is element in @{text X}. Since @{thm (prem 1) ardens_revised}
we know that @{term "s \<notin> X ;; (A \<up> Suc k)"} as its length is only @{text k}.
From @{text "(*)"} it follows that
@{term s} must be element in @{term "(\<Union>m\<in>{0..k}. B ;; (A \<up> m))"}. This in turn
implies that @{term s} is in @{term "(\<Union>n. B ;; (A \<up> n))"}. Using Lemma ??? this
is equal to @{term "B ;; A\<star>"}, as we needed to show.\qed
\end{proof}
*}
section {* Regular expressions have finitely many partitions *}
text {*
\begin{lemma}
Given @{text "r"} is a regular expressions, then @{thm rexp_imp_finite}.
\end{lemma}
\begin{proof}
By induction on the structure of @{text r}. The cases for @{const NULL}, @{const EMPTY}
and @{const CHAR} are straightforward, because we can easily establish
\begin{center}
\begin{tabular}{l}
@{thm quot_null_eq}\\
@{thm quot_empty_subset}\\
@{thm quot_char_subset}
\end{tabular}
\end{center}
\end{proof}
*}
(*<*)
end
(*>*)