(* Title: HOL/Proofs/Extraction/Higman.thy+ −
Author: Stefan Berghofer, TU Muenchen+ −
Author: Monika Seisenberger, LMU Muenchen+ −
*)+ −
+ −
header {* Higman's lemma *}+ −
+ −
theory Higman2+ −
imports Main+ −
begin+ −
+ −
text {*+ −
Formalization by Stefan Berghofer and Monika Seisenberger,+ −
based on Coquand and Fridlender \cite{Coquand93}.+ −
*}+ −
+ −
datatype letter = A | B+ −
+ −
inductive emb :: "letter list \<Rightarrow> letter list \<Rightarrow> bool"+ −
where+ −
emb0 [Pure.intro]: "emb [] bs"+ −
| emb1 [Pure.intro]: "emb as bs \<Longrightarrow> emb as (b # bs)"+ −
| emb2 [Pure.intro]: "emb as bs \<Longrightarrow> emb (a # as) (a # bs)"+ −
+ −
inductive L :: "letter list \<Rightarrow> letter list list \<Rightarrow> bool"+ −
for v :: "letter list"+ −
where+ −
L0 [Pure.intro]: "emb w v \<Longrightarrow> L v (w # ws)"+ −
| L1 [Pure.intro]: "L v ws \<Longrightarrow> L v (w # ws)"+ −
+ −
inductive good :: "letter list list \<Rightarrow> bool"+ −
where+ −
good0 [Pure.intro]: "L w ws \<Longrightarrow> good (w # ws)"+ −
| good1 [Pure.intro]: "good ws \<Longrightarrow> good (w # ws)"+ −
+ −
inductive R :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"+ −
for a :: letter+ −
where+ −
R0 [Pure.intro]: "R a [] []"+ −
| R1 [Pure.intro]: "R a vs ws \<Longrightarrow> R a (w # vs) ((a # w) # ws)"+ −
+ −
inductive T :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"+ −
for a :: letter+ −
where+ −
T0 [Pure.intro]: "a \<noteq> b \<Longrightarrow> R b ws zs \<Longrightarrow> T a (w # zs) ((a # w) # zs)"+ −
| T1 [Pure.intro]: "T a ws zs \<Longrightarrow> T a (w # ws) ((a # w) # zs)"+ −
| T2 [Pure.intro]: "a \<noteq> b \<Longrightarrow> T a ws zs \<Longrightarrow> T a ws ((b # w) # zs)"+ −
+ −
inductive bar :: "letter list list \<Rightarrow> bool"+ −
where+ −
bar1 [Pure.intro]: "good ws \<Longrightarrow> bar ws"+ −
| bar2 [Pure.intro]: "(\<And>w. bar (w # ws)) \<Longrightarrow> bar ws"+ −
+ −
theorem prop1: "bar ([] # ws)" by iprover+ −
+ −
theorem lemma1: "L as ws \<Longrightarrow> L (a # as) ws"+ −
by (erule L.induct, iprover+)+ −
+ −
lemma lemma2': "R a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"+ −
apply (induct set: R)+ −
apply (erule L.cases)+ −
apply simp++ −
apply (erule L.cases)+ −
apply simp_all+ −
apply (rule L0)+ −
apply (erule emb2)+ −
apply (erule L1)+ −
done+ −
+ −
lemma lemma2: "R a vs ws \<Longrightarrow> good vs \<Longrightarrow> good ws"+ −
apply (induct set: R)+ −
apply iprover+ −
apply (erule good.cases)+ −
apply simp_all+ −
apply (rule good0)+ −
apply (erule lemma2')+ −
apply assumption+ −
apply (erule good1)+ −
done+ −
+ −
lemma lemma3': "T a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"+ −
apply (induct set: T)+ −
apply (erule L.cases)+ −
apply simp_all+ −
apply (rule L0)+ −
apply (erule emb2)+ −
apply (rule L1)+ −
apply (erule lemma1)+ −
apply (erule L.cases)+ −
apply simp_all+ −
apply iprover++ −
done+ −
+ −
lemma lemma3: "T a ws zs \<Longrightarrow> good ws \<Longrightarrow> good zs"+ −
apply (induct set: T)+ −
apply (erule good.cases)+ −
apply simp_all+ −
apply (rule good0)+ −
apply (erule lemma1)+ −
apply (erule good1)+ −
apply (erule good.cases)+ −
apply simp_all+ −
apply (rule good0)+ −
apply (erule lemma3')+ −
apply iprover++ −
done+ −
+ −
lemma lemma4: "R a ws zs \<Longrightarrow> ws \<noteq> [] \<Longrightarrow> T a ws zs"+ −
apply (induct set: R)+ −
apply iprover+ −
apply (case_tac vs)+ −
apply (erule R.cases)+ −
apply simp+ −
apply (case_tac a)+ −
apply (rule_tac b=B in T0)+ −
apply simp+ −
apply (rule R0)+ −
apply (rule_tac b=A in T0)+ −
apply simp+ −
apply (rule R0)+ −
apply simp+ −
apply (rule T1)+ −
apply simp+ −
done+ −
+ −
lemma letter_neq: "(a::letter) \<noteq> b \<Longrightarrow> c \<noteq> a \<Longrightarrow> c = b"+ −
apply (case_tac a)+ −
apply (case_tac b)+ −
apply (case_tac c, simp, simp)+ −
apply (case_tac c, simp, simp)+ −
apply (case_tac b)+ −
apply (case_tac c, simp, simp)+ −
apply (case_tac c, simp, simp)+ −
done+ −
+ −
lemma letter_eq_dec: "(a::letter) = b \<or> a \<noteq> b"+ −
apply (case_tac a)+ −
apply (case_tac b)+ −
apply simp+ −
apply simp+ −
apply (case_tac b)+ −
apply simp+ −
apply simp+ −
done+ −
+ −
theorem prop2:+ −
assumes ab: "a \<noteq> b" and bar: "bar xs"+ −
shows "\<And>ys zs. bar ys \<Longrightarrow> T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs" using bar+ −
proof induct+ −
fix xs zs assume "T a xs zs" and "good xs"+ −
hence "good zs" by (rule lemma3)+ −
then show "bar zs" by (rule bar1)+ −
next+ −
fix xs ys+ −
assume I: "\<And>w ys zs. bar ys \<Longrightarrow> T a (w # xs) zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"+ −
assume "bar ys"+ −
thus "\<And>zs. T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"+ −
proof induct+ −
fix ys zs assume "T b ys zs" and "good ys"+ −
then have "good zs" by (rule lemma3)+ −
then show "bar zs" by (rule bar1)+ −
next+ −
fix ys zs assume I': "\<And>w zs. T a xs zs \<Longrightarrow> T b (w # ys) zs \<Longrightarrow> bar zs"+ −
and ys: "\<And>w. bar (w # ys)" and Ta: "T a xs zs" and Tb: "T b ys zs"+ −
show "bar zs"+ −
proof (rule bar2)+ −
fix w+ −
show "bar (w # zs)"+ −
proof (cases w)+ −
case Nil+ −
thus ?thesis by simp (rule prop1)+ −
next+ −
case (Cons c cs)+ −
from letter_eq_dec show ?thesis+ −
proof+ −
assume ca: "c = a"+ −
from ab have "bar ((a # cs) # zs)" by (iprover intro: I ys Ta Tb)+ −
thus ?thesis by (simp add: Cons ca)+ −
next+ −
assume "c \<noteq> a"+ −
with ab have cb: "c = b" by (rule letter_neq)+ −
from ab have "bar ((b # cs) # zs)" by (iprover intro: I' Ta Tb)+ −
thus ?thesis by (simp add: Cons cb)+ −
qed+ −
qed+ −
qed+ −
qed+ −
qed+ −
+ −
theorem prop3:+ −
assumes bar: "bar xs"+ −
shows "\<And>zs. xs \<noteq> [] \<Longrightarrow> R a xs zs \<Longrightarrow> bar zs" using bar+ −
proof induct+ −
fix xs zs+ −
assume "R a xs zs" and "good xs"+ −
then have "good zs" by (rule lemma2)+ −
then show "bar zs" by (rule bar1)+ −
next+ −
fix xs zs+ −
assume I: "\<And>w zs. w # xs \<noteq> [] \<Longrightarrow> R a (w # xs) zs \<Longrightarrow> bar zs"+ −
and xsb: "\<And>w. bar (w # xs)" and xsn: "xs \<noteq> []" and R: "R a xs zs"+ −
show "bar zs"+ −
proof (rule bar2)+ −
fix w+ −
show "bar (w # zs)"+ −
proof (induct w)+ −
case Nil+ −
show ?case by (rule prop1)+ −
next+ −
case (Cons c cs)+ −
from letter_eq_dec show ?case+ −
proof+ −
assume "c = a"+ −
thus ?thesis by (iprover intro: I [simplified] R)+ −
next+ −
from R xsn have T: "T a xs zs" by (rule lemma4)+ −
assume "c \<noteq> a"+ −
thus ?thesis by (iprover intro: prop2 Cons xsb xsn R T)+ −
qed+ −
qed+ −
qed+ −
qed+ −
+ −
theorem higman: "bar []"+ −
proof (rule bar2)+ −
fix w+ −
show "bar [w]"+ −
proof (induct w)+ −
show "bar [[]]" by (rule prop1)+ −
next+ −
fix c cs assume "bar [cs]"+ −
thus "bar [c # cs]" by (rule prop3) (simp, iprover)+ −
qed+ −
qed+ −
+ −
notation+ −
emb ("_ \<preceq> _")+ −
+ −
+ −
+ −
lemma substring_refl:+ −
"x \<preceq> x"+ −
apply(induct x)+ −
apply(auto intro: emb.intros)+ −
done+ −
+ −
lemma substring_trans:+ −
assumes a: "x1 \<preceq> x2" and b: "x2 \<preceq> x3"+ −
shows "x1 \<preceq> x3"+ −
using a b+ −
apply(induct arbitrary: x3)+ −
apply(auto intro: emb.intros)+ −
apply(rotate_tac 2)+ −
apply(erule emb.cases)+ −
apply(simp_all)+ −
sorry + −
+ −
definition+ −
"SUBSEQ C \<equiv> {x. \<exists>y \<in> C. x \<preceq> y}"+ −
+ −
lemma+ −
"SUBSEQ (SUBSEQ C) = SUBSEQ C"+ −
unfolding SUBSEQ_def+ −
apply(auto)+ −
apply(erule emb.induct)+ −
apply(rule_tac x="xb" in bexI)+ −
apply(rule emb.intros)+ −
apply(simp)+ −
apply(erule bexE)+ −
apply(rule_tac x="y" in bexI)+ −
apply(auto)[2]+ −
apply(erule bexE)+ −
sorry+ −
+ −
lemma substring_closed:+ −
"x \<in> SUBSEQ C \<and> y \<preceq> x \<Longrightarrow> y \<in> SUBSEQ C"+ −
unfolding SUBSEQ_def+ −
apply(auto)+ −
apply(rule_tac x="xa" in bexI)+ −
apply(rule substring_trans)+ −
apply(auto)+ −
done+ −
+ −
lemma "SUBSEQ C \<subseteq> UNIV"+ −
unfolding SUBSEQ_def+ −
apply(auto)+ −
done+ −
+ −
+ −
+ −
ML {*+ −
@{term "UNIV - (C::string set)"}+ −
*}+ −
+ −
lemma+ −
assumes "finite S"+ −
shows "finite (UNIV - {y. \<forall>z \<in> S. \<not>(z \<preceq> y)})"+ −
oops+ −
+ −
+ −
+ −
lemma a: "\<forall>x \<in> SUBSEQ C. \<exists>y \<in> C. x \<preceq> y"+ −
unfolding SUBSEQ_def + −
apply(auto)+ −
done+ −
+ −
lemma b:+ −
shows "\<exists>S \<subseteq> SUBSEQ C. S \<noteq>{} \<and> (y \<in> C \<longleftrightarrow> (\<forall>z \<in> S. \<not>(z \<preceq> y)))"+ −
sorry+ −
+ −
lemma "False"+ −
using b a+ −
apply(blast)+ −
done+ −
+ −
definition+ −
"CLOSED C \<equiv> C = SUBSEQ C"+ −
+ −
+ −
+ −
+ −
+ −
+ −
primrec+ −
is_prefix :: "'a list \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool"+ −
where+ −
"is_prefix [] f = True"+ −
| "is_prefix (x # xs) f = (x = f (length xs) \<and> is_prefix xs f)"+ −
+ −
theorem L_idx:+ −
assumes L: "L w ws"+ −
shows "is_prefix ws f \<Longrightarrow> \<exists>i. emb (f i) w \<and> i < length ws" using L+ −
proof induct+ −
case (L0 v ws)+ −
hence "emb (f (length ws)) w" by simp+ −
moreover have "length ws < length (v # ws)" by simp+ −
ultimately show ?case by iprover+ −
next+ −
case (L1 ws v)+ −
then obtain i where emb: "emb (f i) w" and "i < length ws"+ −
by simp iprover+ −
hence "i < length (v # ws)" by simp+ −
with emb show ?case by iprover+ −
qed+ −
+ −
theorem good_idx:+ −
assumes good: "good ws"+ −
shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using good+ −
proof induct+ −
case (good0 w ws)+ −
hence "w = f (length ws)" and "is_prefix ws f" by simp_all+ −
with good0 show ?case by (iprover dest: L_idx)+ −
next+ −
case (good1 ws w)+ −
thus ?case by simp+ −
qed+ −
+ −
theorem bar_idx:+ −
assumes bar: "bar ws"+ −
shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using bar+ −
proof induct+ −
case (bar1 ws)+ −
thus ?case by (rule good_idx)+ −
next+ −
case (bar2 ws)+ −
hence "is_prefix (f (length ws) # ws) f" by simp+ −
thus ?case by (rule bar2)+ −
qed+ −
+ −
text {*+ −
Strong version: yields indices of words that can be embedded into each other.+ −
*}+ −
+ −
theorem higman_idx: "\<exists>(i::nat) j. emb (f i) (f j) \<and> i < j"+ −
proof (rule bar_idx)+ −
show "bar []" by (rule higman)+ −
show "is_prefix [] f" by simp+ −
qed+ −
+ −
definition+ −
myeq ("~~")+ −
where+ −
"~~ \<equiv> {(x, y). x \<preceq> y \<and> y \<preceq> x}"+ −
+ −
abbreviation+ −
myeq_applied ("_ ~~~ _")+ −
where+ −
"x ~~~ y \<equiv> (x, y) \<in> ~~"+ −
+ −
+ −
definition+ −
"minimal x Y \<equiv> (x \<in> Y \<and> (\<forall>y \<in> Y. y \<preceq> x \<longrightarrow> x \<preceq> y))"+ −
+ −
definition+ −
"downclosed Y \<equiv> (\<forall>x \<in> Y. \<forall>y. y \<preceq> x \<longrightarrow> y \<in> Y)" + −
+ −
+ −
lemma g:+ −
assumes "minimal x Y" "y ~~~ x" "downclosed Y"+ −
shows "minimal y Y"+ −
using assms+ −
apply(simp add: minimal_def)+ −
apply(rule conjI)+ −
apply(simp add: downclosed_def)+ −
apply(simp add: myeq_def)+ −
apply(auto)[1]+ −
apply(rule ballI)+ −
apply(rule impI)+ −
apply(simp add: downclosed_def)+ −
apply(simp add: myeq_def)+ −
apply(erule conjE)+ −
apply(rotate_tac 5)+ −
apply(drule_tac x="ya" in bspec)+ −
apply(auto)[1]+ −
apply(drule mp)+ −
apply(erule conjE)+ −
apply(rule substring_trans)+ −
apply(auto)[2]+ −
apply(rule substring_trans)+ −
apply(auto)[2]+ −
done+ −
+ −
thm Least_le+ −
+ −
lemma+ −
assumes a: "\<exists>(i::nat) j. (f i) \<preceq> (f j) \<and> i < j"+ −
and "downclosed Y"+ −
shows "\<exists>S. finite S \<and> (\<forall>x \<in> Y. \<exists>y \<in> S. \<not> (y \<preceq> x))"+ −
proof -+ −
def Ymin \<equiv> "{x. minimal x Y}"+ −
have "downclosed Ymin"+ −
unfolding Ymin_def downclosed_def+ −
apply(auto)+ −
apply(simp add: minimal_def)+ −
apply(rule conjI)+ −
using assms(2)+ −
apply(simp add: downclosed_def)+ −
apply(auto)[1]+ −
apply(rule ballI) + −
apply(rule impI)+ −
apply(erule conjE)+ −
apply(drule_tac x="ya" in bspec)+ −
apply(simp)+ −
apply(drule mp)+ −
apply(rule substring_trans)+ −
apply(auto)[2]+ −
apply(rule substring_trans)+ −
apply(auto)[2]+ −
done+ −
def Yeq \<equiv> "Ymin // ~~"+ −
def Ypick \<equiv> "(\<lambda>X. SOME x. x \<in> X) ` Yeq" + −
have "finite Ypick" sorry+ −
moreover+ −
thm LeastI_ex+ −
have "(\<forall>x \<in> Y. \<exists>y \<in> Ypick. (\<not> (y \<preceq> x)))"+ −
apply(rule ballI)+ −
apply(subgoal_tac "\<exists>y. y \<in> Ypick")+ −
apply(erule exE)+ −
apply(rule_tac x="y" in bexI)+ −
apply(subgoal_tac "y \<in> Ymin")+ −
apply(simp add: Ymin_def minimal_def)+ −
apply(subgoal_tac "~~ `` {y} \<in> Yeq")+ −
apply(simp add: Yeq_def quotient_def Image_def)+ −
apply(erule bexE)+ −
apply(simp add: Ymin_def)+ −
apply(subgoal_tac "y ~~~ xa")+ −
apply(drule g)+ −
apply(assumption)+ −
apply(rule assms(2))+ −
apply(simp add: minimal_def)+ −
apply(erule conjE)+ −
apply(drule_tac x="x" in bspec)+ −
apply(assumption)+ −
+ −
lemma+ −
assumes a: "\<exists>(i::nat) j. (f i) \<preceq> (f j) \<and> i < j"+ −
and b: "downclosed Y" + −
and c: "Y \<noteq> {}"+ −
shows "\<exists>S. finite S \<and> (Y = {y. (\<forall>z \<in> S. \<not>(z \<preceq> y))})"+ −
proof -+ −
def Ybar \<equiv> "- Y"+ −
def M \<equiv> "{x \<in> Ybar. minimal x Ybar}"+ −
def Cpre \<equiv> "M // ~~"+ −
def C \<equiv> "(\<lambda>X. SOME x. x \<in> X) ` Cpre"+ −
have "finite C" sorry+ −
moreover+ −
have "\<forall>x \<in> Y. \<exists>y \<in> C. y \<preceq> x" sorry+ −
then have "\<forall>x. (x \<in> Ybar) \<longleftrightarrow> (\<exists>z \<in> C. z \<preceq> x)"+ −
apply(auto simp add: Ybar_def)+ −
apply(rule allI)+ −
apply(rule iffI)+ −
prefer 2+ −
apply(erule bexE)+ −
apply(case_tac "x \<in> Y")+ −
prefer 2+ −
apply(simp add: Ybar_def)+ −
apply(subgoal_tac "z \<in> Y")+ −
apply(simp add: C_def)+ −
apply(simp add: Cpre_def)+ −
apply(simp add: M_def Ybar_def)+ −
apply(simp add: quotient_def)+ −
apply(simp add: myeq_def)+ −
apply(simp add: image_def)+ −
apply(rule_tac x="x" in exI)+ −
apply(simp)+ −
apply(rule conjI)+ −
apply(simp add: minimal_def)+ −
apply(rule ballI)+ −
apply(simp)+ −
apply(rule impI)+ −
prefer 3+ −
apply(simp add: Ybar_def)+ −
apply(rule notI)+ −
apply(simp add: C_def Cpre_def M_def Ybar_def quotient_def)+ −
+ −
prefer 2+ −
apply(rule someI2_ex)+ −
apply(rule_tac x="x" in exI) + −
apply(simp add: substring_refl)+ −
apply(auto)[1]+ −
using b+ −
apply -+ −
sorry+ −
ultimately+ −
have "\<exists>S. finite S \<and> (\<forall>y. y \<in> Y = (\<forall>z \<in> S. \<not>(z \<preceq> y)))"+ −
apply -+ −
apply(rule_tac x="C" in exI)+ −
apply(simp)+ −
apply(rule allI)+ −
apply(rule iffI) + −
apply(drule_tac x="y" in spec)+ −
apply(simp add: Ybar_def)+ −
apply(simp add: Ybar_def)+ −
apply(case_tac "y \<in> Y")+ −
apply(simp)+ −
apply(drule_tac x="y" in spec)+ −
apply(simp)+ −
done+ −
then show ?thesis+ −
by (auto)+ −
qed + −
+ −
+ −
thm higman_idx+ −
+ −
text {*+ −
Weak version: only yield sequence containing words+ −
that can be embedded into each other.+ −
*}+ −
+ −
theorem good_prefix_lemma:+ −
assumes bar: "bar ws"+ −
shows "is_prefix ws f \<Longrightarrow> \<exists>vs. is_prefix vs f \<and> good vs" using bar+ −
proof induct+ −
case bar1+ −
thus ?case by iprover+ −
next+ −
case (bar2 ws)+ −
from bar2.prems have "is_prefix (f (length ws) # ws) f" by simp+ −
thus ?case by (iprover intro: bar2)+ −
qed+ −
+ −
theorem good_prefix: "\<exists>vs. is_prefix vs f \<and> good vs"+ −
using higman+ −
by (rule good_prefix_lemma) simp++ −
+ −
subsection {* Extracting the program *}+ −
+ −
declare R.induct [ind_realizer]+ −
declare T.induct [ind_realizer]+ −
declare L.induct [ind_realizer]+ −
declare good.induct [ind_realizer]+ −
declare bar.induct [ind_realizer]+ −
+ −
extract higman_idx+ −
+ −
text {*+ −
Program extracted from the proof of @{text higman_idx}:+ −
@{thm [display] higman_idx_def [no_vars]}+ −
Corresponding correctness theorem:+ −
@{thm [display] higman_idx_correctness [no_vars]}+ −
Program extracted from the proof of @{text higman}:+ −
@{thm [display] higman_def [no_vars]}+ −
Program extracted from the proof of @{text prop1}:+ −
@{thm [display] prop1_def [no_vars]}+ −
Program extracted from the proof of @{text prop2}:+ −
@{thm [display] prop2_def [no_vars]}+ −
Program extracted from the proof of @{text prop3}:+ −
@{thm [display] prop3_def [no_vars]}+ −
*}+ −
+ −
+ −
subsection {* Some examples *}+ −
+ −
instantiation LT and TT :: default+ −
begin+ −
+ −
definition "default = L0 [] []"+ −
+ −
definition "default = T0 A [] [] [] R0"+ −
+ −
instance ..+ −
+ −
end+ −
+ −
function mk_word_aux :: "nat \<Rightarrow> Random.seed \<Rightarrow> letter list \<times> Random.seed" where+ −
"mk_word_aux k = exec {+ −
i \<leftarrow> Random.range 10;+ −
(if i > 7 \<and> k > 2 \<or> k > 1000 then Pair []+ −
else exec {+ −
let l = (if i mod 2 = 0 then A else B);+ −
ls \<leftarrow> mk_word_aux (Suc k);+ −
Pair (l # ls)+ −
})}"+ −
by pat_completeness auto+ −
termination by (relation "measure ((op -) 1001)") auto+ −
+ −
definition mk_word :: "Random.seed \<Rightarrow> letter list \<times> Random.seed" where+ −
"mk_word = mk_word_aux 0"+ −
+ −
primrec mk_word_s :: "nat \<Rightarrow> Random.seed \<Rightarrow> letter list \<times> Random.seed" where+ −
"mk_word_s 0 = mk_word"+ −
| "mk_word_s (Suc n) = exec {+ −
_ \<leftarrow> mk_word;+ −
mk_word_s n+ −
}"+ −
+ −
definition g1 :: "nat \<Rightarrow> letter list" where+ −
"g1 s = fst (mk_word_s s (20000, 1))"+ −
+ −
definition g2 :: "nat \<Rightarrow> letter list" where+ −
"g2 s = fst (mk_word_s s (50000, 1))"+ −
+ −
fun f1 :: "nat \<Rightarrow> letter list" where+ −
"f1 0 = [A, A]"+ −
| "f1 (Suc 0) = [B]"+ −
| "f1 (Suc (Suc 0)) = [A, B]"+ −
| "f1 _ = []"+ −
+ −
fun f2 :: "nat \<Rightarrow> letter list" where+ −
"f2 0 = [A, A]"+ −
| "f2 (Suc 0) = [B]"+ −
| "f2 (Suc (Suc 0)) = [B, A]"+ −
| "f2 _ = []"+ −
+ −
ML {*+ −
local+ −
val higman_idx = @{code higman_idx};+ −
val g1 = @{code g1};+ −
val g2 = @{code g2};+ −
val f1 = @{code f1};+ −
val f2 = @{code f2};+ −
in+ −
val (i1, j1) = higman_idx g1;+ −
val (v1, w1) = (g1 i1, g1 j1);+ −
val (i2, j2) = higman_idx g2;+ −
val (v2, w2) = (g2 i2, g2 j2);+ −
val (i3, j3) = higman_idx f1;+ −
val (v3, w3) = (f1 i3, f1 j3);+ −
val (i4, j4) = higman_idx f2;+ −
val (v4, w4) = (f2 i4, f2 j4);+ −
end;+ −
*}+ −
+ −
text {* The same story with the legacy SML code generator,+ −
this can be removed once the code generator is removed. *}+ −
+ −
code_module Higman+ −
contains+ −
higman = higman_idx+ −
+ −
ML {*+ −
local open Higman in+ −
+ −
val a = 16807.0;+ −
val m = 2147483647.0;+ −
+ −
fun nextRand seed =+ −
let val t = a*seed+ −
in t - m * real (Real.floor(t/m)) end;+ −
+ −
fun mk_word seed l =+ −
let+ −
val r = nextRand seed;+ −
val i = Real.round (r / m * 10.0);+ −
in if i > 7 andalso l > 2 then (r, []) else+ −
apsnd (cons (if i mod 2 = 0 then A else B)) (mk_word r (l+1))+ −
end;+ −
+ −
fun f s zero = mk_word s 0+ −
| f s (Suc n) = f (fst (mk_word s 0)) n;+ −
+ −
val g1 = snd o (f 20000.0);+ −
+ −
val g2 = snd o (f 50000.0);+ −
+ −
fun f1 zero = [A,A]+ −
| f1 (Suc zero) = [B]+ −
| f1 (Suc (Suc zero)) = [A,B]+ −
| f1 _ = [];+ −
+ −
fun f2 zero = [A,A]+ −
| f2 (Suc zero) = [B]+ −
| f2 (Suc (Suc zero)) = [B,A]+ −
| f2 _ = [];+ −
+ −
val (i1, j1) = higman g1;+ −
val (v1, w1) = (g1 i1, g1 j1);+ −
val (i2, j2) = higman g2;+ −
val (v2, w2) = (g2 i2, g2 j2);+ −
val (i3, j3) = higman f1;+ −
val (v3, w3) = (f1 i3, f1 j3);+ −
val (i4, j4) = higman f2;+ −
val (v4, w4) = (f2 i4, f2 j4);+ −
+ −
end;+ −
*}+ −
+ −
end+ −