theory Derivatives+ −
imports Regular_Exp+ −
begin+ −
+ −
section {* Leftquotients, Derivatives and Partial Derivatives *}+ −
+ −
text{* This theory is based on work by Brozowski \cite{Brzozowski64} and Antimirov \cite{Antimirov95}. *}+ −
+ −
subsection {* Left-Quotients of languages *}+ −
+ −
definition Deriv :: "'a \<Rightarrow> 'a lang \<Rightarrow> 'a lang"+ −
where "Deriv x A = { xs. x#xs \<in> A }"+ −
+ −
definition Derivs :: "'a list \<Rightarrow> 'a lang \<Rightarrow> 'a lang"+ −
where "Derivs xs A = { ys. xs @ ys \<in> A }"+ −
+ −
abbreviation + −
Derivss :: "'a list \<Rightarrow> 'a lang set \<Rightarrow> 'a lang"+ −
where+ −
"Derivss s As \<equiv> \<Union> (Derivs s) ` As"+ −
+ −
+ −
lemma Deriv_empty[simp]: "Deriv a {} = {}"+ −
and Deriv_epsilon[simp]: "Deriv a {[]} = {}"+ −
and Deriv_char[simp]: "Deriv a {[b]} = (if a = b then {[]} else {})"+ −
and Deriv_union[simp]: "Deriv a (A \<union> B) = Deriv a A \<union> Deriv a B"+ −
by (auto simp: Deriv_def)+ −
+ −
lemma Deriv_conc_subset:+ −
"Deriv a A @@ B \<subseteq> Deriv a (A @@ B)" (is "?L \<subseteq> ?R")+ −
proof + −
fix w assume "w \<in> ?L"+ −
then obtain u v where "w = u @ v" "a # u \<in> A" "v \<in> B"+ −
by (auto simp: Deriv_def)+ −
then have "a # w \<in> A @@ B"+ −
by (auto intro: concI[of "a # u", simplified])+ −
thus "w \<in> ?R" by (auto simp: Deriv_def)+ −
qed+ −
+ −
lemma Der_conc [simp]:+ −
shows "Deriv c (A @@ B) = (Deriv c A) @@ B \<union> (if [] \<in> A then Deriv c B else {})"+ −
unfolding Deriv_def conc_def+ −
by (auto simp add: Cons_eq_append_conv)+ −
+ −
lemma Deriv_star [simp]:+ −
shows "Deriv c (star A) = (Deriv c A) @@ star A"+ −
proof -+ −
have incl: "[] \<in> A \<Longrightarrow> Deriv c (star A) \<subseteq> (Deriv c A) @@ star A"+ −
unfolding Deriv_def conc_def + −
apply(auto simp add: Cons_eq_append_conv)+ −
apply(drule star_decom)+ −
apply(auto simp add: Cons_eq_append_conv)+ −
done+ −
+ −
have "Deriv c (star A) = Deriv c (A @@ star A \<union> {[]})"+ −
by (simp only: star_unfold_left[symmetric])+ −
also have "... = Deriv c (A @@ star A)"+ −
by (simp only: Deriv_union) (simp)+ −
also have "... = (Deriv c A) @@ (star A) \<union> (if [] \<in> A then Deriv c (star A) else {})"+ −
by simp+ −
also have "... = (Deriv c A) @@ star A"+ −
using incl by auto+ −
finally show "Deriv c (star A) = (Deriv c A) @@ star A" . + −
qed+ −
+ −
lemma Derivs_simps [simp]:+ −
shows "Derivs [] A = A"+ −
and "Derivs (c # s) A = Derivs s (Deriv c A)"+ −
and "Derivs (s1 @ s2) A = Derivs s2 (Derivs s1 A)"+ −
unfolding Derivs_def Deriv_def by auto+ −
+ −
(*+ −
lemma Deriv_insert_eps[simp]: + −
"Deriv a (insert [] A) = Deriv a A"+ −
by (auto simp: Deriv_def)+ −
*)+ −
+ −
+ −
+ −
subsection {* Brozowsky's derivatives of regular expressions *}+ −
+ −
fun+ −
nullable :: "'a rexp \<Rightarrow> bool"+ −
where+ −
"nullable (Zero) = False"+ −
| "nullable (One) = True"+ −
| "nullable (Atom c) = False"+ −
| "nullable (Plus r1 r2) = (nullable r1 \<or> nullable r2)"+ −
| "nullable (Times r1 r2) = (nullable r1 \<and> nullable r2)"+ −
| "nullable (Star r) = True"+ −
+ −
fun+ −
deriv :: "'a \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp"+ −
where+ −
"deriv c (Zero) = Zero"+ −
| "deriv c (One) = Zero"+ −
| "deriv c (Atom c') = (if c = c' then One else Zero)"+ −
| "deriv c (Plus r1 r2) = Plus (deriv c r1) (deriv c r2)"+ −
| "deriv c (Times r1 r2) = + −
(if nullable r1 then Plus (Times (deriv c r1) r2) (deriv c r2) else Times (deriv c r1) r2)"+ −
| "deriv c (Star r) = Times (deriv c r) (Star r)"+ −
+ −
fun + −
derivs :: "'a list \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp"+ −
where+ −
"derivs [] r = r"+ −
| "derivs (c # s) r = derivs s (deriv c r)"+ −
+ −
+ −
lemma nullable_iff:+ −
shows "nullable r \<longleftrightarrow> [] \<in> lang r"+ −
by (induct r) (auto simp add: conc_def split: if_splits)+ −
+ −
lemma Deriv_deriv:+ −
shows "Deriv c (lang r) = lang (deriv c r)"+ −
by (induct r) (simp_all add: nullable_iff)+ −
+ −
lemma Derivs_derivs:+ −
shows "Derivs s (lang r) = lang (derivs s r)"+ −
by (induct s arbitrary: r) (simp_all add: Deriv_deriv)+ −
+ −
+ −
subsection {* Antimirov's partial derivivatives *}+ −
+ −
abbreviation+ −
"Timess rs r \<equiv> {Times r' r | r'. r' \<in> rs}"+ −
+ −
fun+ −
pderiv :: "'a \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp set"+ −
where+ −
"pderiv c Zero = {}"+ −
| "pderiv c One = {}"+ −
| "pderiv c (Atom c') = (if c = c' then {One} else {})"+ −
| "pderiv c (Plus r1 r2) = (pderiv c r1) \<union> (pderiv c r2)"+ −
| "pderiv c (Times r1 r2) = + −
(if nullable r1 then Timess (pderiv c r1) r2 \<union> pderiv c r2 else Timess (pderiv c r1) r2)"+ −
| "pderiv c (Star r) = Timess (pderiv c r) (Star r)"+ −
+ −
fun+ −
pderivs :: "'a list \<Rightarrow> 'a rexp \<Rightarrow> ('a rexp) set"+ −
where+ −
"pderivs [] r = {r}"+ −
| "pderivs (c # s) r = \<Union> (pderivs s) ` (pderiv c r)"+ −
+ −
abbreviation+ −
pderiv_set :: "'a \<Rightarrow> 'a rexp set \<Rightarrow> 'a rexp set"+ −
where+ −
"pderiv_set c rs \<equiv> \<Union> pderiv c ` rs"+ −
+ −
abbreviation+ −
pderivs_set :: "'a list \<Rightarrow> 'a rexp set \<Rightarrow> 'a rexp set"+ −
where+ −
"pderivs_set s rs \<equiv> \<Union> (pderivs s) ` rs"+ −
+ −
lemma pderivs_append:+ −
"pderivs (s1 @ s2) r = \<Union> (pderivs s2) ` (pderivs s1 r)"+ −
by (induct s1 arbitrary: r) (simp_all)+ −
+ −
lemma pderivs_snoc:+ −
shows "pderivs (s @ [c]) r = pderiv_set c (pderivs s r)"+ −
by (simp add: pderivs_append)+ −
+ −
lemma pderivs_simps [simp]:+ −
shows "pderivs s Zero = (if s = [] then {Zero} else {})"+ −
and "pderivs s One = (if s = [] then {One} else {})"+ −
and "pderivs s (Plus r1 r2) = (if s = [] then {Plus r1 r2} else (pderivs s r1) \<union> (pderivs s r2))"+ −
by (induct s) (simp_all)+ −
+ −
lemma pderivs_Atom:+ −
shows "pderivs s (Atom c) \<subseteq> {Atom c, One}"+ −
by (induct s) (simp_all)+ −
+ −
subsection {* Relating left-quotients and partial derivivatives *}+ −
+ −
lemma Deriv_pderiv:+ −
shows "Deriv c (lang r) = \<Union> lang ` (pderiv c r)"+ −
by (induct r) (auto simp add: nullable_iff conc_UNION_distrib)+ −
+ −
lemma Derivs_pderivs:+ −
shows "Derivs s (lang r) = \<Union> lang ` (pderivs s r)"+ −
proof (induct s arbitrary: r)+ −
case (Cons c s)+ −
have ih: "\<And>r. Derivs s (lang r) = \<Union> lang ` (pderivs s r)" by fact+ −
have "Derivs (c # s) (lang r) = Derivs s (Deriv c (lang r))" by simp+ −
also have "\<dots> = Derivs s (\<Union> lang ` (pderiv c r))" by (simp add: Deriv_pderiv)+ −
also have "\<dots> = Derivss s (lang ` (pderiv c r))"+ −
by (auto simp add: Derivs_def)+ −
also have "\<dots> = \<Union> lang ` (pderivs_set s (pderiv c r))"+ −
using ih by auto+ −
also have "\<dots> = \<Union> lang ` (pderivs (c # s) r)" by simp+ −
finally show "Derivs (c # s) (lang r) = \<Union> lang ` pderivs (c # s) r" .+ −
qed (simp add: Derivs_def)+ −
+ −
subsection {* Relating derivivatives and partial derivivatives *}+ −
+ −
lemma deriv_pderiv:+ −
shows "(\<Union> lang ` (pderiv c r)) = lang (deriv c r)"+ −
unfolding Deriv_deriv[symmetric] Deriv_pderiv by simp+ −
+ −
lemma derivs_pderivs:+ −
shows "(\<Union> lang ` (pderivs s r)) = lang (derivs s r)"+ −
unfolding Derivs_derivs[symmetric] Derivs_pderivs by simp+ −
+ −
+ −
subsection {* Finiteness property of partial derivivatives *}+ −
+ −
definition+ −
pderivs_lang :: "'a lang \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp set"+ −
where+ −
"pderivs_lang A r \<equiv> \<Union>x \<in> A. pderivs x r"+ −
+ −
lemma pderivs_lang_subsetI:+ −
assumes "\<And>s. s \<in> A \<Longrightarrow> pderivs s r \<subseteq> C"+ −
shows "pderivs_lang A r \<subseteq> C"+ −
using assms unfolding pderivs_lang_def by (rule UN_least)+ −
+ −
lemma pderivs_lang_union:+ −
shows "pderivs_lang (A \<union> B) r = (pderivs_lang A r \<union> pderivs_lang B r)"+ −
by (simp add: pderivs_lang_def)+ −
+ −
lemma pderivs_lang_subset:+ −
shows "A \<subseteq> B \<Longrightarrow> pderivs_lang A r \<subseteq> pderivs_lang B r"+ −
by (auto simp add: pderivs_lang_def)+ −
+ −
definition+ −
"UNIV1 \<equiv> UNIV - {[]}"+ −
+ −
lemma pderivs_lang_Zero [simp]:+ −
shows "pderivs_lang UNIV1 Zero = {}"+ −
unfolding UNIV1_def pderivs_lang_def by auto+ −
+ −
lemma pderivs_lang_One [simp]:+ −
shows "pderivs_lang UNIV1 One = {}"+ −
unfolding UNIV1_def pderivs_lang_def by (auto split: if_splits)+ −
+ −
lemma pderivs_lang_Atom [simp]:+ −
shows "pderivs_lang UNIV1 (Atom c) = {One}"+ −
unfolding UNIV1_def pderivs_lang_def + −
apply(auto)+ −
apply(frule rev_subsetD)+ −
apply(rule pderivs_Atom)+ −
apply(simp)+ −
apply(case_tac xa)+ −
apply(auto split: if_splits)+ −
done+ −
+ −
lemma pderivs_lang_Plus [simp]:+ −
shows "pderivs_lang UNIV1 (Plus r1 r2) = pderivs_lang UNIV1 r1 \<union> pderivs_lang UNIV1 r2"+ −
unfolding UNIV1_def pderivs_lang_def by auto+ −
+ −
+ −
text {* Non-empty suffixes of a string (needed for teh cases of @{const Times} and @{const Star} *}+ −
+ −
definition+ −
"PSuf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"+ −
+ −
lemma PSuf_snoc:+ −
shows "PSuf (s @ [c]) = (PSuf s) @@ {[c]} \<union> {[c]}"+ −
unfolding PSuf_def conc_def+ −
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)+ −
+ −
lemma PSuf_Union:+ −
shows "(\<Union>v \<in> PSuf s @@ {[c]}. f v) = (\<Union>v \<in> PSuf s. f (v @ [c]))"+ −
by (auto simp add: conc_def)+ −
+ −
lemma pderivs_lang_snoc:+ −
shows "pderivs_lang (PSuf s @@ {[c]}) r = (pderiv_set c (pderivs_lang (PSuf s) r))"+ −
unfolding pderivs_lang_def+ −
by (simp add: PSuf_Union pderivs_snoc)+ −
+ −
lemma pderivs_Times:+ −
shows "pderivs s (Times r1 r2) \<subseteq> Timess (pderivs s r1) r2 \<union> (pderivs_lang (PSuf s) r2)"+ −
proof (induct s rule: rev_induct)+ −
case (snoc c s)+ −
have ih: "pderivs s (Times r1 r2) \<subseteq> Timess (pderivs s r1) r2 \<union> (pderivs_lang (PSuf s) r2)" + −
by fact+ −
have "pderivs (s @ [c]) (Times r1 r2) = pderiv_set c (pderivs s (Times r1 r2))" + −
by (simp add: pderivs_snoc)+ −
also have "\<dots> \<subseteq> pderiv_set c (Timess (pderivs s r1) r2 \<union> (pderivs_lang (PSuf s) r2))"+ −
using ih by (auto) (blast)+ −
also have "\<dots> = pderiv_set c (Timess (pderivs s r1) r2) \<union> pderiv_set c (pderivs_lang (PSuf s) r2)"+ −
by (simp)+ −
also have "\<dots> = pderiv_set c (Timess (pderivs s r1) r2) \<union> pderivs_lang (PSuf s @@ {[c]}) r2"+ −
by (simp add: pderivs_lang_snoc)+ −
also + −
have "\<dots> \<subseteq> pderiv_set c (Timess (pderivs s r1) r2) \<union> pderiv c r2 \<union> pderivs_lang (PSuf s @@ {[c]}) r2"+ −
by auto+ −
also + −
have "\<dots> \<subseteq> Timess (pderiv_set c (pderivs s r1)) r2 \<union> pderiv c r2 \<union> pderivs_lang (PSuf s @@ {[c]}) r2"+ −
by (auto simp add: if_splits) (blast)+ −
also have "\<dots> = Timess (pderivs (s @ [c]) r1) r2 \<union> pderiv c r2 \<union> pderivs_lang (PSuf s @@ {[c]}) r2"+ −
by (simp add: pderivs_snoc)+ −
also have "\<dots> \<subseteq> Timess (pderivs (s @ [c]) r1) r2 \<union> pderivs_lang (PSuf (s @ [c])) r2"+ −
unfolding pderivs_lang_def by (auto simp add: PSuf_snoc) + −
finally show ?case .+ −
qed (simp) + −
+ −
lemma pderivs_lang_Times_aux1:+ −
assumes a: "s \<in> UNIV1"+ −
shows "pderivs_lang (PSuf s) r \<subseteq> pderivs_lang UNIV1 r"+ −
using a unfolding UNIV1_def PSuf_def pderivs_lang_def by auto+ −
+ −
lemma pderivs_lang_Times_aux2:+ −
assumes a: "s \<in> UNIV1"+ −
shows "Timess (pderivs s r1) r2 \<subseteq> Timess (pderivs_lang UNIV1 r1) r2"+ −
using a unfolding pderivs_lang_def by auto+ −
+ −
lemma pderivs_lang_Times:+ −
shows "pderivs_lang UNIV1 (Times r1 r2) \<subseteq> Timess (pderivs_lang UNIV1 r1) r2 \<union> pderivs_lang UNIV1 r2"+ −
apply(rule pderivs_lang_subsetI)+ −
apply(rule subset_trans)+ −
apply(rule pderivs_Times)+ −
using pderivs_lang_Times_aux1 pderivs_lang_Times_aux2+ −
apply(blast)+ −
done+ −
+ −
lemma pderivs_Star:+ −
assumes a: "s \<noteq> []"+ −
shows "pderivs s (Star r) \<subseteq> Timess (pderivs_lang (PSuf s) r) (Star r)"+ −
using a+ −
proof (induct s rule: rev_induct)+ −
case (snoc c s)+ −
have ih: "s \<noteq> [] \<Longrightarrow> pderivs s (Star r) \<subseteq> Timess (pderivs_lang (PSuf s) r) (Star r)" by fact+ −
{ assume asm: "s \<noteq> []"+ −
have "pderivs (s @ [c]) (Star r) = pderiv_set c (pderivs s (Star r))" by (simp add: pderivs_snoc)+ −
also have "\<dots> \<subseteq> pderiv_set c (Timess (pderivs_lang (PSuf s) r) (Star r))"+ −
using ih[OF asm] by (auto) (blast)+ −
also have "\<dots> \<subseteq> Timess (pderiv_set c (pderivs_lang (PSuf s) r)) (Star r) \<union> pderiv c (Star r)"+ −
by (auto split: if_splits) (blast)++ −
also have "\<dots> \<subseteq> Timess (pderivs_lang (PSuf (s @ [c])) r) (Star r) \<union> (Timess (pderiv c r) (Star r))"+ −
by (simp only: PSuf_snoc pderivs_lang_snoc pderivs_lang_union)+ −
(auto simp add: pderivs_lang_def)+ −
also have "\<dots> = Timess (pderivs_lang (PSuf (s @ [c])) r) (Star r)"+ −
by (auto simp add: PSuf_snoc PSuf_Union pderivs_snoc pderivs_lang_def)+ −
finally have ?case .+ −
}+ −
moreover+ −
{ assume asm: "s = []"+ −
then have ?case+ −
apply (auto simp add: pderivs_lang_def pderivs_snoc PSuf_def)+ −
apply(rule_tac x = "[c]" in exI)+ −
apply(auto)+ −
done+ −
}+ −
ultimately show ?case by blast+ −
qed (simp)+ −
+ −
lemma pderivs_lang_Star:+ −
shows "pderivs_lang UNIV1 (Star r) \<subseteq> Timess (pderivs_lang UNIV1 r) (Star r)"+ −
apply(rule pderivs_lang_subsetI)+ −
apply(rule subset_trans)+ −
apply(rule pderivs_Star)+ −
apply(simp add: UNIV1_def)+ −
apply(simp add: UNIV1_def PSuf_def)+ −
apply(auto simp add: pderivs_lang_def)+ −
done+ −
+ −
lemma finite_Timess [simp]:+ −
assumes a: "finite A"+ −
shows "finite (Timess A r)"+ −
using a by auto+ −
+ −
lemma finite_pderivs_lang_UNIV1:+ −
shows "finite (pderivs_lang UNIV1 r)"+ −
apply(induct r)+ −
apply(simp_all add: + −
finite_subset[OF pderivs_lang_Times]+ −
finite_subset[OF pderivs_lang_Star])+ −
done+ −
+ −
lemma pderivs_lang_UNIV:+ −
shows "pderivs_lang UNIV r = pderivs [] r \<union> pderivs_lang UNIV1 r"+ −
unfolding UNIV1_def pderivs_lang_def+ −
by blast+ −
+ −
lemma finite_pderivs_lang_UNIV:+ −
shows "finite (pderivs_lang UNIV r)"+ −
unfolding pderivs_lang_UNIV+ −
by (simp add: finite_pderivs_lang_UNIV1)+ −
+ −
lemma finite_pderivs_lang:+ −
shows "finite (pderivs_lang A r)"+ −
by (metis finite_pderivs_lang_UNIV pderivs_lang_subset rev_finite_subset subset_UNIV)+ −
+ −
+ −
end+ −