Derivatives.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Sun, 22 Dec 2013 07:37:26 +0000
changeset 393 058f29ab515c
parent 379 8c4b6fb43ebe
permissions -rw-r--r--
added

header "Derivatives of regular expressions"

(* Author: Christian Urban *)

theory Derivatives
imports Regular_Exp
begin

text{* This theory is based on work by Brozowski \cite{Brzozowski64} and Antimirov \cite{Antimirov95}. *}

subsection {* Brozowski's derivatives of regular expressions *}

fun
  deriv :: "'a \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp"
where
  "deriv c (Zero) = Zero"
| "deriv c (One) = Zero"
| "deriv c (Atom c') = (if c = c' then One else Zero)"
| "deriv c (Plus r1 r2) = Plus (deriv c r1) (deriv c r2)"
| "deriv c (Times r1 r2) = 
    (if nullable r1 then Plus (Times (deriv c r1) r2) (deriv c r2) else Times (deriv c r1) r2)"
| "deriv c (Star r) = Times (deriv c r) (Star r)"

fun 
  derivs :: "'a list \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp"
where
  "derivs [] r = r"
| "derivs (c # s) r = derivs s (deriv c r)"


lemma lang_deriv: "lang (deriv c r) = Deriv c (lang r)"
by (induct r) (simp_all add: nullable_iff)

lemma lang_derivs: "lang (derivs s r) = Derivs s (lang r)"
by (induct s arbitrary: r) (simp_all add: lang_deriv)

text {* A regular expression matcher: *}

definition matcher :: "'a rexp \<Rightarrow> 'a list \<Rightarrow> bool" where
"matcher r s = nullable (derivs s r)"

lemma matcher_correctness: "matcher r s \<longleftrightarrow> s \<in> lang r"
by (induct s arbitrary: r)
   (simp_all add: nullable_iff lang_deriv matcher_def Deriv_def)


subsection {* Antimirov's partial derivatives *}

abbreviation
  "Timess rs r \<equiv> (\<Union>r' \<in> rs. {Times r' r})"

fun
  pderiv :: "'a \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp set"
where
  "pderiv c Zero = {}"
| "pderiv c One = {}"
| "pderiv c (Atom c') = (if c = c' then {One} else {})"
| "pderiv c (Plus r1 r2) = (pderiv c r1) \<union> (pderiv c r2)"
| "pderiv c (Times r1 r2) = 
    (if nullable r1 then Timess (pderiv c r1) r2 \<union> pderiv c r2 else Timess (pderiv c r1) r2)"
| "pderiv c (Star r) = Timess (pderiv c r) (Star r)"

fun
  pderivs :: "'a list \<Rightarrow> 'a rexp \<Rightarrow> ('a rexp) set"
where
  "pderivs [] r = {r}"
| "pderivs (c # s) r = \<Union> (pderivs s ` pderiv c r)"

abbreviation
 pderiv_set :: "'a \<Rightarrow> 'a rexp set \<Rightarrow> 'a rexp set"
where
  "pderiv_set c rs \<equiv> \<Union> (pderiv c ` rs)"

abbreviation
  pderivs_set :: "'a list \<Rightarrow> 'a rexp set \<Rightarrow> 'a rexp set"
where
  "pderivs_set s rs \<equiv> \<Union> (pderivs s ` rs)"

lemma pderivs_append:
  "pderivs (s1 @ s2) r = \<Union> (pderivs s2 ` pderivs s1 r)"
by (induct s1 arbitrary: r) (simp_all)

lemma pderivs_snoc:
  shows "pderivs (s @ [c]) r = pderiv_set c (pderivs s r)"
by (simp add: pderivs_append)

lemma pderivs_simps [simp]:
  shows "pderivs s Zero = (if s = [] then {Zero} else {})"
  and   "pderivs s One = (if s = [] then {One} else {})"
  and   "pderivs s (Plus r1 r2) = (if s = [] then {Plus r1 r2} else (pderivs s r1) \<union> (pderivs s r2))"
by (induct s) (simp_all)

lemma pderivs_Atom:
  shows "pderivs s (Atom c) \<subseteq> {Atom c, One}"
by (induct s) (simp_all)

subsection {* Relating left-quotients and partial derivatives *}

lemma Deriv_pderiv:
  shows "Deriv c (lang r) = \<Union> (lang ` pderiv c r)"
by (induct r) (auto simp add: nullable_iff conc_UNION_distrib)

lemma Derivs_pderivs:
  shows "Derivs s (lang r) = \<Union> (lang ` pderivs s r)"
proof (induct s arbitrary: r)
  case (Cons c s)
  have ih: "\<And>r. Derivs s (lang r) = \<Union> (lang ` pderivs s r)" by fact
  have "Derivs (c # s) (lang r) = Derivs s (Deriv c (lang r))" by simp
  also have "\<dots> = Derivs s (\<Union> (lang ` pderiv c r))" by (simp add: Deriv_pderiv)
  also have "\<dots> = Derivss s (lang ` (pderiv c r))"
    by (auto simp add:  Derivs_def)
  also have "\<dots> = \<Union> (lang ` (pderivs_set s (pderiv c r)))"
    using ih by auto
  also have "\<dots> = \<Union> (lang ` (pderivs (c # s) r))" by simp
  finally show "Derivs (c # s) (lang r) = \<Union> (lang ` pderivs (c # s) r)" .
qed (simp add: Derivs_def)

subsection {* Relating derivatives and partial derivatives *}

lemma deriv_pderiv:
  shows "\<Union> (lang ` (pderiv c r)) = lang (deriv c r)"
unfolding lang_deriv Deriv_pderiv by simp

lemma derivs_pderivs:
  shows "\<Union> (lang ` (pderivs s r)) = lang (derivs s r)"
unfolding lang_derivs Derivs_pderivs by simp


subsection {* Finiteness property of partial derivatives *}

definition
  pderivs_lang :: "'a lang \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp set"
where
  "pderivs_lang A r \<equiv> \<Union>x \<in> A. pderivs x r"

lemma pderivs_lang_subsetI:
  assumes "\<And>s. s \<in> A \<Longrightarrow> pderivs s r \<subseteq> C"
  shows "pderivs_lang A r \<subseteq> C"
using assms unfolding pderivs_lang_def by (rule UN_least)

lemma pderivs_lang_union:
  shows "pderivs_lang (A \<union> B) r = (pderivs_lang A r \<union> pderivs_lang B r)"
by (simp add: pderivs_lang_def)

lemma pderivs_lang_subset:
  shows "A \<subseteq> B \<Longrightarrow> pderivs_lang A r \<subseteq> pderivs_lang B r"
by (auto simp add: pderivs_lang_def)

definition
  "UNIV1 \<equiv> UNIV - {[]}"

lemma pderivs_lang_Zero [simp]:
  shows "pderivs_lang UNIV1 Zero = {}"
unfolding UNIV1_def pderivs_lang_def by auto

lemma pderivs_lang_One [simp]:
  shows "pderivs_lang UNIV1 One = {}"
unfolding UNIV1_def pderivs_lang_def by (auto split: if_splits)

lemma pderivs_lang_Atom [simp]:
  shows "pderivs_lang UNIV1 (Atom c) = {One}"
unfolding UNIV1_def pderivs_lang_def 
apply(auto)
apply(frule rev_subsetD)
apply(rule pderivs_Atom)
apply(simp)
apply(case_tac xa)
apply(auto split: if_splits)
done

lemma pderivs_lang_Plus [simp]:
  shows "pderivs_lang UNIV1 (Plus r1 r2) = pderivs_lang UNIV1 r1 \<union> pderivs_lang UNIV1 r2"
unfolding UNIV1_def pderivs_lang_def by auto


text {* Non-empty suffixes of a string (needed for the cases of @{const Times} and @{const Star} below) *}

definition
  "PSuf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"

lemma PSuf_snoc:
  shows "PSuf (s @ [c]) = (PSuf s) @@ {[c]} \<union> {[c]}"
unfolding PSuf_def conc_def
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)

lemma PSuf_Union:
  shows "(\<Union>v \<in> PSuf s @@ {[c]}. f v) = (\<Union>v \<in> PSuf s. f (v @ [c]))"
by (auto simp add: conc_def)

lemma pderivs_lang_snoc:
  shows "pderivs_lang (PSuf s @@ {[c]}) r = (pderiv_set c (pderivs_lang (PSuf s) r))"
unfolding pderivs_lang_def
by (simp add: PSuf_Union pderivs_snoc)

lemma pderivs_Times:
  shows "pderivs s (Times r1 r2) \<subseteq> Timess (pderivs s r1) r2 \<union> (pderivs_lang (PSuf s) r2)"
proof (induct s rule: rev_induct)
  case (snoc c s)
  have ih: "pderivs s (Times r1 r2) \<subseteq> Timess (pderivs s r1) r2 \<union> (pderivs_lang (PSuf s) r2)" 
    by fact
  have "pderivs (s @ [c]) (Times r1 r2) = pderiv_set c (pderivs s (Times r1 r2))" 
    by (simp add: pderivs_snoc)
  also have "\<dots> \<subseteq> pderiv_set c (Timess (pderivs s r1) r2 \<union> (pderivs_lang (PSuf s) r2))"
    using ih by fast
  also have "\<dots> = pderiv_set c (Timess (pderivs s r1) r2) \<union> pderiv_set c (pderivs_lang (PSuf s) r2)"
    by (simp)
  also have "\<dots> = pderiv_set c (Timess (pderivs s r1) r2) \<union> pderivs_lang (PSuf s @@ {[c]}) r2"
    by (simp add: pderivs_lang_snoc)
  also 
  have "\<dots> \<subseteq> pderiv_set c (Timess (pderivs s r1) r2) \<union> pderiv c r2 \<union> pderivs_lang (PSuf s @@ {[c]}) r2"
    by auto
  also 
  have "\<dots> \<subseteq> Timess (pderiv_set c (pderivs s r1)) r2 \<union> pderiv c r2 \<union> pderivs_lang (PSuf s @@ {[c]}) r2"
    by (auto simp add: if_splits)
  also have "\<dots> = Timess (pderivs (s @ [c]) r1) r2 \<union> pderiv c r2 \<union> pderivs_lang (PSuf s @@ {[c]}) r2"
    by (simp add: pderivs_snoc)
  also have "\<dots> \<subseteq> Timess (pderivs (s @ [c]) r1) r2 \<union> pderivs_lang (PSuf (s @ [c])) r2"
    unfolding pderivs_lang_def by (auto simp add: PSuf_snoc)  
  finally show ?case .
qed (simp) 

lemma pderivs_lang_Times_aux1:
  assumes a: "s \<in> UNIV1"
  shows "pderivs_lang (PSuf s) r \<subseteq> pderivs_lang UNIV1 r"
using a unfolding UNIV1_def PSuf_def pderivs_lang_def by auto

lemma pderivs_lang_Times_aux2:
  assumes a: "s \<in> UNIV1"
  shows "Timess (pderivs s r1) r2 \<subseteq> Timess (pderivs_lang UNIV1 r1) r2"
using a unfolding pderivs_lang_def by auto

lemma pderivs_lang_Times:
  shows "pderivs_lang UNIV1 (Times r1 r2) \<subseteq> Timess (pderivs_lang UNIV1 r1) r2 \<union> pderivs_lang UNIV1 r2"
apply(rule pderivs_lang_subsetI)
apply(rule subset_trans)
apply(rule pderivs_Times)
using pderivs_lang_Times_aux1 pderivs_lang_Times_aux2
apply(blast)
done

lemma pderivs_Star:
  assumes a: "s \<noteq> []"
  shows "pderivs s (Star r) \<subseteq> Timess (pderivs_lang (PSuf s) r) (Star r)"
using a
proof (induct s rule: rev_induct)
  case (snoc c s)
  have ih: "s \<noteq> [] \<Longrightarrow> pderivs s (Star r) \<subseteq> Timess (pderivs_lang (PSuf s) r) (Star r)" by fact
  { assume asm: "s \<noteq> []"
    have "pderivs (s @ [c]) (Star r) = pderiv_set c (pderivs s (Star r))" by (simp add: pderivs_snoc)
    also have "\<dots> \<subseteq> pderiv_set c (Timess (pderivs_lang (PSuf s) r) (Star r))"
      using ih[OF asm] by fast
    also have "\<dots> \<subseteq> Timess (pderiv_set c (pderivs_lang (PSuf s) r)) (Star r) \<union> pderiv c (Star r)"
      by (auto split: if_splits)
    also have "\<dots> \<subseteq> Timess (pderivs_lang (PSuf (s @ [c])) r) (Star r) \<union> (Timess (pderiv c r) (Star r))"
      by (simp only: PSuf_snoc pderivs_lang_snoc pderivs_lang_union)
         (auto simp add: pderivs_lang_def)
    also have "\<dots> = Timess (pderivs_lang (PSuf (s @ [c])) r) (Star r)"
      by (auto simp add: PSuf_snoc PSuf_Union pderivs_snoc pderivs_lang_def)
    finally have ?case .
  }
  moreover
  { assume asm: "s = []"
    then have ?case by (auto simp add: pderivs_lang_def pderivs_snoc PSuf_def)
  }
  ultimately show ?case by blast
qed (simp)

lemma pderivs_lang_Star:
  shows "pderivs_lang UNIV1 (Star r) \<subseteq> Timess (pderivs_lang UNIV1 r) (Star r)"
apply(rule pderivs_lang_subsetI)
apply(rule subset_trans)
apply(rule pderivs_Star)
apply(simp add: UNIV1_def)
apply(simp add: UNIV1_def PSuf_def)
apply(auto simp add: pderivs_lang_def)
done

lemma finite_Timess [simp]:
  assumes a: "finite A"
  shows "finite (Timess A r)"
using a by auto

lemma finite_pderivs_lang_UNIV1:
  shows "finite (pderivs_lang UNIV1 r)"
apply(induct r)
apply(simp_all add: 
  finite_subset[OF pderivs_lang_Times]
  finite_subset[OF pderivs_lang_Star])
done
    
lemma pderivs_lang_UNIV:
  shows "pderivs_lang UNIV r = pderivs [] r \<union> pderivs_lang UNIV1 r"
unfolding UNIV1_def pderivs_lang_def
by blast

lemma finite_pderivs_lang_UNIV:
  shows "finite (pderivs_lang UNIV r)"
unfolding pderivs_lang_UNIV
by (simp add: finite_pderivs_lang_UNIV1)

lemma finite_pderivs_lang:
  shows "finite (pderivs_lang A r)"
by (metis finite_pderivs_lang_UNIV pderivs_lang_subset rev_finite_subset subset_UNIV)

end