prio/PrioG.thy
changeset 336 f9e0d3274c14
parent 333 813e7257c7c3
child 339 b3add51e2e0f
--- a/prio/PrioG.thy	Mon Feb 27 18:53:53 2012 +0000
+++ b/prio/PrioG.thy	Tue Feb 28 13:13:32 2012 +0000
@@ -2,6 +2,7 @@
 imports PrioGDef 
 begin
 
+
 lemma runing_ready: 
   shows "runing s \<subseteq> readys s"
   unfolding runing_def readys_def
@@ -415,26 +416,7 @@
   and xz: "(x, z) \<in> r^+"
   and neq: "y \<noteq> z"
   shows "(y, z) \<in> r^+"
-proof -
- from xz and neq show ?thesis
- proof(induct)
-   case (base ya)
-   have "(x, ya) \<in> r" by fact
-   from unique [OF xy this] have "y = ya" .
-   with base show ?case by auto
- next
-   case (step ya z)
-   show ?case
-   proof(cases "y = ya")
-     case True
-     from step True show ?thesis by simp
-   next
-     case False
-     from step False
-     show ?thesis by auto
-   qed
- qed
-qed
+by (metis neq rtranclD tranclD unique xy xz)
 
 lemma unique_base:
   fixes r x y z
@@ -443,25 +425,7 @@
   and xz: "(x, z) \<in> r^+"
   and neq_yz: "y \<noteq> z"
   shows "(y, z) \<in> r^+"
-proof -
-  from xz neq_yz show ?thesis
-  proof(induct)
-    case (base ya)
-    from xy unique base show ?case by auto
-  next
-    case (step ya z)
-    show ?case
-    proof(cases "y = ya")
-      case True
-      from True step show ?thesis by auto
-    next
-      case False
-      from False step 
-      have "(y, ya) \<in> r\<^sup>+" by auto
-      with step show ?thesis by auto
-    qed
-  qed
-qed
+by (metis neq_yz unique unique_minus xy xz)
 
 lemma unique_chain:
   fixes r x y z
@@ -672,25 +636,7 @@
   "\<And>th'. \<lbrakk>vt (V th cs # s); \<not> holding (wq (V th cs # s)) th' cs; next_th s th cs th'\<rbrakk> \<Longrightarrow> False"
   apply (unfold cs_holding_def next_th_def wq_def,
          auto simp:Let_def)
-proof -
-  fix rest
-  assume vt: "vt (V th cs # s)"
-    and eq_wq[folded wq_def]: " wq_fun (schs s) cs = th # rest"
-    and nrest: "rest \<noteq> []"
-    and ni: "hd (SOME q. distinct q \<and> set q = set rest)
-            \<notin> set (SOME q. distinct q \<and> set q = set rest)"
-  have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
-  proof(rule someI2)
-    from wq_distinct[OF step_back_vt[OF vt], of cs] and eq_wq
-    show "distinct rest \<and> set rest = set rest" by auto
-  next
-    fix x assume "distinct x \<and> set x = set rest"
-    hence "set x = set rest" by auto
-    with nrest
-    show "x \<noteq> []" by (case_tac x, auto)
-  qed
-  with ni show "False" by auto
-qed
+by (metis (lifting, full_types) List.member_def distinct.simps(2) hd_in_set member_rec(2) someI_ex step_back_vt wq_def wq_distinct)
 
 lemma step_v_release_inv[elim_format]:
 "\<And>c t. \<lbrakk>vt (V th cs # s); \<not> holding (wq (V th cs # s)) t c; holding (wq s) t c\<rbrakk> \<Longrightarrow> 
@@ -718,61 +664,7 @@
 
 lemma step_v_waiting_mono:
   "\<And>t c. \<lbrakk>vt (V th cs # s); waiting (wq (V th cs # s)) t c\<rbrakk> \<Longrightarrow> waiting (wq s) t c"
-proof -
-  fix t c
-  let ?s' = "(V th cs # s)"
-  assume vt: "vt ?s'" 
-    and wt: "waiting (wq ?s') t c"
-  show "waiting (wq s) t c"
-  proof(cases "c = cs")
-    case False
-    assume neq_cs: "c \<noteq> cs"
-    hence "waiting (wq ?s') t c = waiting (wq s) t c"
-      by (unfold cs_waiting_def wq_def, auto simp:Let_def)
-    with wt show ?thesis by simp
-  next
-    case True
-    with wt show ?thesis
-      apply (unfold cs_waiting_def wq_def, auto simp:Let_def split:list.splits)
-    proof -
-      fix a list
-      assume not_in: "t \<notin> set list"
-        and is_in: "t \<in> set (SOME q. distinct q \<and> set q = set list)"
-        and eq_wq: "wq_fun (schs s) cs = a # list"
-      have "set (SOME q. distinct q \<and> set q = set list) = set list"
-      proof(rule someI2)
-        from wq_distinct [OF step_back_vt[OF vt], of cs]
-        and eq_wq[folded wq_def]
-        show "distinct list \<and> set list = set list" by auto
-      next
-        fix x assume "distinct x \<and> set x = set list"
-        thus "set x = set list" by auto
-      qed
-      with not_in is_in show "t = a" by auto
-    next
-      fix list
-      assume is_waiting: "waiting (wq (V th cs # s)) t cs"
-      and eq_wq: "wq_fun (schs s) cs = t # list"
-      hence "t \<in> set list"
-        apply (unfold wq_def, auto simp:Let_def cs_waiting_def)
-      proof -
-        assume " t \<in> set (SOME q. distinct q \<and> set q = set list)"
-        moreover have "\<dots> = set list" 
-        proof(rule someI2)
-          from wq_distinct [OF step_back_vt[OF vt], of cs]
-            and eq_wq[folded wq_def]
-          show "distinct list \<and> set list = set list" by auto
-        next
-          fix x assume "distinct x \<and> set x = set list" 
-          thus "set x = set list" by auto
-        qed
-        ultimately show "t \<in> set list" by simp
-      qed
-      with eq_wq and wq_distinct [OF step_back_vt[OF vt], of cs, unfolded wq_def]
-      show False by auto
-    qed
-  qed
-qed
+by (metis abs2 block_pre cs_waiting_def event.simps(20))
 
 lemma step_depend_v:
 fixes th::thread
@@ -808,13 +700,7 @@
   fixes A
   assumes h: "\<And> x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> x = y"
   shows "A = {} \<or> (\<exists> a. A = {a})"
-proof(cases "A = {}")
-  case True thus ?thesis by simp
-next
-  case False then obtain a where "a \<in> A" by auto
-  with h have "A = {a}" by auto
-  thus ?thesis by simp
-qed
+by (metis assms insertCI nonempty_iff)
 
 lemma depend_target_th: "(Th th, x) \<in> depend (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
   by (unfold s_depend_def, auto)
@@ -1076,13 +962,7 @@
   fixes s
   assumes vt: "vt s"
   shows "wf ((depend s)^-1)"
-proof(rule finite_acyclic_wf_converse)
-  from finite_depend [OF vt]
-  show "finite (depend s)" .
-next
-  from acyclic_depend[OF vt]
-  show "acyclic (depend s)" .
-qed
+by (metis acyclic_depend assms finite_acyclic_wf_converse finite_depend)
 
 lemma hd_np_in: "x \<in> set l \<Longrightarrow> hd l \<in> set l"
 by (induct l, auto)
@@ -1203,31 +1083,17 @@
   and eq_wq: "wq s cs = thread#rest"
   and not_in: "th \<notin>  set rest"
   shows "(th \<in> readys (V thread cs#s)) = (th \<in> readys s)"
-proof -
-  from assms show ?thesis
-    apply (auto simp:readys_def)
-    apply(simp add:s_waiting_def[folded wq_def])
-    apply (erule_tac x = csa in allE)
-    apply (simp add:s_waiting_def wq_def Let_def split:if_splits)
-    apply (case_tac "csa = cs", simp)
-    apply (erule_tac x = cs in allE)
-    apply(auto simp add: s_waiting_def[folded wq_def] Let_def split: list.splits)
-    apply(auto simp add: wq_def)
-    apply (auto simp:s_waiting_def wq_def Let_def split:list.splits)
-    proof -
-       assume th_nin: "th \<notin> set rest"
-        and th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
-        and eq_wq: "wq_fun (schs s) cs = thread # rest"
-      have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
-      proof(rule someI2)
-        from wq_distinct[OF vt, of cs, unfolded wq_def] and eq_wq[unfolded wq_def]
-        show "distinct rest \<and> set rest = set rest" by auto
-      next
-        show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
-      qed
-      with th_nin th_in show False by auto
-    qed
-qed
+using assms 
+apply (auto simp:readys_def)
+apply(simp add:s_waiting_def[folded wq_def])
+apply (erule_tac x = csa in allE)
+apply (simp add:s_waiting_def wq_def Let_def split:if_splits)
+apply (case_tac "csa = cs", simp)
+apply (erule_tac x = cs in allE)
+apply(auto simp add: s_waiting_def[folded wq_def] Let_def split: list.splits)
+apply(auto simp add: wq_def)
+apply (auto simp:s_waiting_def wq_def Let_def split:list.splits)
+by (metis (lifting, full_types) distinct.simps(2) someI_ex wq_def wq_distinct)
 
 lemma chain_building:
   assumes vt: "vt s"
@@ -1404,51 +1270,8 @@
     apply (insert wq_distinct[OF step_back_vt[OF vtv], of cs])
     apply (unfold holdents_def, unfold step_depend_v[OF vtv],
             auto simp:next_th_def)
-  proof -
-    fix rest
-    assume dst: "distinct (rest::thread list)"
-      and ne: "rest \<noteq> []"
-    and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
-    moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
-    proof(rule someI2)
-      from dst show "distinct rest \<and> set rest = set rest" by auto
-    next
-      show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
-    qed
-    ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> 
-                     set (SOME q. distinct q \<and> set q = set rest)" by simp
-    moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
-    proof(rule someI2)
-      from dst show "distinct rest \<and> set rest = set rest" by auto
-    next
-      fix x assume " distinct x \<and> set x = set rest" with ne
-      show "x \<noteq> []" by auto
-    qed
-    ultimately 
-    show "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> depend s"
-      by auto
-  next
-    fix rest
-    assume dst: "distinct (rest::thread list)"
-      and ne: "rest \<noteq> []"
-    and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
-    moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
-    proof(rule someI2)
-      from dst show "distinct rest \<and> set rest = set rest" by auto
-    next
-      show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
-    qed
-    ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> 
-                     set (SOME q. distinct q \<and> set q = set rest)" by simp
-    moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
-    proof(rule someI2)
-      from dst show "distinct rest \<and> set rest = set rest" by auto
-    next
-      fix x assume " distinct x \<and> set x = set rest" with ne
-      show "x \<noteq> []" by auto
-    qed
-    ultimately show "False" by auto 
-  qed
+    apply (metis (lifting, full_types) hd_in_set hd_np_in someI_ex)
+    by (metis (lifting, full_types) hd_in_set hd_np_in someI_ex)
   ultimately 
   have "holdents s thread = insert cs (holdents (V thread cs#s) thread)"
     by auto
@@ -2308,106 +2131,20 @@
   assumes le_ij: "i \<le> j"
     and le_js: "j \<le> length s"
   shows "length (down_to j i s) = j - i"
-proof -
-  have "length (down_to j i s) = length (from_to i j (rev s))"
-    by (unfold down_to_def, auto)
-  also have "\<dots> = j - i"
-  proof(rule length_from_to_in[OF le_ij])
-    from le_js show "j \<le> length (rev s)" by simp
-  qed
-  finally show ?thesis .
-qed
+by (metis down_to_def le_ij le_js length_from_to_in length_rev)
 
 
 lemma moment_head: 
   assumes le_it: "Suc i \<le> length t"
   obtains e where "moment (Suc i) t = e#moment i t"
-proof -
-  have "i \<le> Suc i" by simp
-  from length_down_to_in [OF this le_it]
-  have "length (down_to (Suc i) i t) = 1" by auto
-  then obtain e where "down_to (Suc i) i t = [e]"
-    apply (cases "(down_to (Suc i) i t)") by auto
-  moreover have "down_to (Suc i) 0 t = down_to (Suc i) i t @ down_to i 0 t"
-    by (rule down_to_conc[symmetric], auto)
-  ultimately have eq_me: "moment (Suc i) t = e#(moment i t)"
-    by (auto simp:down_to_moment)
-  from that [OF this] show ?thesis .
-qed
+by (metis assms moment_plus)
 
 lemma cnp_cnv_eq:
   fixes th s
   assumes "vt s"
   and "th \<notin> threads s"
   shows "cntP s th = cntV s th"
-proof -
-  from assms show ?thesis
-  proof(induct)
-    case (vt_cons s e)
-    have ih: "th \<notin> threads s \<Longrightarrow> cntP s th = cntV s th" by fact
-    have not_in: "th \<notin> threads (e # s)" by fact
-    have "step s e" by fact
-    thus ?case proof(cases)
-      case (thread_create thread prio)
-      assume eq_e: "e = Create thread prio"
-      hence "thread \<in> threads (e#s)" by simp
-      with not_in and eq_e have "th \<notin> threads s" by auto
-      from ih [OF this] show ?thesis using eq_e
-        by (auto simp:cntP_def cntV_def count_def)
-    next
-      case (thread_exit thread)
-      assume eq_e: "e = Exit thread"
-        and not_holding: "holdents s thread = {}"
-      have vt_s: "vt s" by fact
-      from finite_holding[OF vt_s] have "finite (holdents s thread)" .
-      with not_holding have "cntCS s thread = 0" by (unfold cntCS_def, auto)
-      moreover have "thread \<in> readys s" using thread_exit by (auto simp:runing_def)
-      moreover note cnp_cnv_cncs[OF vt_s, of thread]
-      ultimately have eq_thread: "cntP s thread = cntV s thread" by auto
-      show ?thesis
-      proof(cases "th = thread")
-        case True
-        with eq_thread eq_e show ?thesis 
-          by (auto simp:cntP_def cntV_def count_def)
-      next
-        case False
-        with not_in and eq_e have "th \<notin> threads s" by simp
-        from ih[OF this] and eq_e show ?thesis 
-           by (auto simp:cntP_def cntV_def count_def)
-      qed
-    next
-      case (thread_P thread cs)
-      assume eq_e: "e = P thread cs"
-      have "thread \<in> runing s" by fact
-      with not_in eq_e have neq_th: "thread \<noteq> th" 
-        by (auto simp:runing_def readys_def)
-      from not_in eq_e have "th \<notin> threads s" by simp
-      from ih[OF this] and neq_th and eq_e show ?thesis
-        by (auto simp:cntP_def cntV_def count_def)
-    next
-      case (thread_V thread cs)
-      assume eq_e: "e = V thread cs"
-      have "thread \<in> runing s" by fact
-      with not_in eq_e have neq_th: "thread \<noteq> th" 
-        by (auto simp:runing_def readys_def)
-      from not_in eq_e have "th \<notin> threads s" by simp
-      from ih[OF this] and neq_th and eq_e show ?thesis
-        by (auto simp:cntP_def cntV_def count_def)
-    next
-      case (thread_set thread prio)
-      assume eq_e: "e = Set thread prio"
-        and "thread \<in> runing s"
-      hence "thread \<in> threads (e#s)" 
-        by (simp add:runing_def readys_def)
-      with not_in and eq_e have "th \<notin> threads s" by auto
-      from ih [OF this] show ?thesis using eq_e
-        by (auto simp:cntP_def cntV_def count_def)  
-    qed
-  next
-    case vt_nil
-    show ?case by (auto simp:cntP_def cntV_def count_def)
-  qed
-qed
+by (metis (full_types) add_0_right assms(1) assms(2) cnp_cnv_cncs not_thread_cncs)
 
 lemma eq_depend: 
   "depend (wq s) = depend s"
@@ -2515,43 +2252,8 @@
 lemma le_cp:
   assumes vt: "vt s"
   shows "preced th s \<le> cp s th"
-proof(unfold cp_eq_cpreced preced_def cpreced_def, simp)
-  show "Prc (original_priority th s) (birthtime th s)
-    \<le> Max (insert (Prc (original_priority th s) (birthtime th s))
-            ((\<lambda>th. Prc (original_priority th s) (birthtime th s)) ` dependents (wq s) th))"
-    (is "?l \<le> Max (insert ?l ?A)")
-  proof(cases "?A = {}")
-    case False
-    have "finite ?A" (is "finite (?f ` ?B)")
-    proof -
-      have "finite ?B" 
-      proof-
-        have "finite {th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+}"
-        proof -
-          let ?F = "\<lambda> (x, y). the_th x"
-          have "{th'. (Th th', Th th) \<in> (depend (wq s))\<^sup>+} \<subseteq> ?F ` ((depend (wq s))\<^sup>+)"
-            apply (auto simp:image_def)
-            by (rule_tac x = "(Th x, Th th)" in bexI, auto)
-          moreover have "finite \<dots>"
-          proof -
-            from finite_depend[OF vt] have "finite (depend s)" .
-            hence "finite ((depend (wq s))\<^sup>+)"
-              apply (unfold finite_trancl)
-              by (auto simp: s_depend_def cs_depend_def wq_def)
-            thus ?thesis by auto
-          qed
-          ultimately show ?thesis by (auto intro:finite_subset)
-        qed
-        thus ?thesis by (simp add:cs_dependents_def)
-      qed
-      thus ?thesis by simp
-    qed
-    from Max_insert [OF this False, of ?l] show ?thesis by auto
-  next
-    case True
-    thus ?thesis by auto
-  qed
-qed
+apply(unfold cp_eq_cpreced preced_def cpreced_def, simp)
+by (metis (mono_tags) Max_ge assms dependents_threads finite_imageI finite_insert finite_threads insertI1 preced_def rev_finite_subset)
 
 lemma max_cp_eq: 
   assumes vt: "vt s"