--- a/prio/ExtGG.thy Sat Feb 11 19:39:50 2012 +0000
+++ b/prio/ExtGG.thy Sun Feb 12 04:45:20 2012 +0000
@@ -29,7 +29,7 @@
locale highest_gen =
fixes s th prio tm
- assumes vt_s: "vt step s"
+ assumes vt_s: "vt s"
and threads_s: "th \<in> threads s"
and highest: "preced th s = Max ((cp s)`threads s)"
and preced_th: "preced th s = Prc prio tm"
@@ -88,14 +88,14 @@
locale extend_highest_gen = highest_gen +
fixes t
- assumes vt_t: "vt step (t@s)"
+ assumes vt_t: "vt (t@s)"
and create_low: "Create th' prio' \<in> set t \<Longrightarrow> prio' \<le> prio"
and set_diff_low: "Set th' prio' \<in> set t \<Longrightarrow> th' \<noteq> th \<and> prio' \<le> prio"
and exit_diff: "Exit th' \<in> set t \<Longrightarrow> th' \<noteq> th"
lemma step_back_vt_app:
- assumes vt_ts: "vt cs (t@s)"
- shows "vt cs s"
+ assumes vt_ts: "vt (t@s)"
+ shows "vt s"
proof -
from vt_ts show ?thesis
proof(induct t)
@@ -103,13 +103,13 @@
from Nil show ?case by auto
next
case (Cons e t)
- assume ih: " vt cs (t @ s) \<Longrightarrow> vt cs s"
- and vt_et: "vt cs ((e # t) @ s)"
+ assume ih: " vt (t @ s) \<Longrightarrow> vt s"
+ and vt_et: "vt ((e # t) @ s)"
show ?case
proof(rule ih)
- show "vt cs (t @ s)"
+ show "vt (t @ s)"
proof(rule step_back_vt)
- from vt_et show "vt cs (e # t @ s)" by simp
+ from vt_et show "vt (e # t @ s)" by simp
qed
qed
qed
@@ -127,7 +127,7 @@
lemma ind [consumes 0, case_names Nil Cons, induct type]:
assumes
h0: "R []"
- and h2: "\<And> e t. \<lbrakk>vt step (t@s); step (t@s) e;
+ and h2: "\<And> e t. \<lbrakk>vt (t@s); step (t@s) e;
extend_highest_gen s th prio tm t;
extend_highest_gen s th prio tm (e#t); R t\<rbrakk> \<Longrightarrow> R (e#t)"
shows "R t"
@@ -137,11 +137,11 @@
from h0 show "R []" .
next
case (Cons e t')
- assume ih: "\<lbrakk>vt step (t' @ s); extend_highest_gen s th prio tm t'\<rbrakk> \<Longrightarrow> R t'"
- and vt_e: "vt step ((e # t') @ s)"
+ assume ih: "\<lbrakk>vt (t' @ s); extend_highest_gen s th prio tm t'\<rbrakk> \<Longrightarrow> R t'"
+ and vt_e: "vt ((e # t') @ s)"
and et: "extend_highest_gen s th prio tm (e # t')"
from vt_e and step_back_step have stp: "step (t'@s) e" by auto
- from vt_e and step_back_vt have vt_ts: "vt step (t'@s)" by auto
+ from vt_e and step_back_vt have vt_ts: "vt (t'@s)" by auto
show ?case
proof(rule h2 [OF vt_ts stp _ _ _ ])
show "R t'"
@@ -149,7 +149,7 @@
from et show ext': "extend_highest_gen s th prio tm t'"
by (unfold extend_highest_gen_def extend_highest_gen_axioms_def, auto dest:step_back_vt)
next
- from vt_ts show "vt step (t' @ s)" .
+ from vt_ts show "vt (t' @ s)" .
qed
next
from et show "extend_highest_gen s th prio tm (e # t')" .
@@ -264,7 +264,7 @@
by (unfold eq_e, simp)
moreover have "\<dots> = max (?f thread) (Max (?f ` (threads (t@s))))"
proof(rule Max_insert)
- from Cons have "vt step (t @ s)" by auto
+ from Cons have "vt (t @ s)" by auto
from finite_threads[OF this]
show "finite (?f ` (threads (t@s)))" by simp
next
@@ -310,7 +310,7 @@
next
case (Exit thread)
assume eq_e: "e = Exit thread"
- from Cons have vt_e: "vt step (e#(t @ s))" by auto
+ from Cons have vt_e: "vt (e#(t @ s))" by auto
from Cons and eq_e have stp: "step (t@s) (Exit thread)" by auto
from stp have thread_ts: "thread \<in> threads (t @ s)"
by(cases, unfold runing_def readys_def, auto)
@@ -353,7 +353,7 @@
(is "?t = Max (?g ` ?B)") by simp
moreover have "?g thread \<le> \<dots>"
proof(rule Max_ge)
- have "vt step (t@s)" by fact
+ have "vt (t@s)" by fact
from finite_threads [OF this]
show "finite (?g ` ?B)" by simp
next
@@ -428,7 +428,7 @@
next
show "finite ((\<lambda>th'. preced th' (t @ s)) ` threads (t @ s))"
proof -
- from Cons have "vt step (t @ s)" by auto
+ from Cons have "vt (t @ s)" by auto
from finite_threads[OF this] show ?thesis by auto
qed
qed
@@ -601,7 +601,7 @@
show ?case
proof(cases e)
case (V thread cs)
- from Cons and V have vt_v: "vt step (V thread cs#(t@s))" by auto
+ from Cons and V have vt_v: "vt (V thread cs#(t@s))" by auto
show ?thesis
proof -
@@ -729,7 +729,7 @@
by blast
from red_moment[of "Suc(i+k)"]
and eq_me have "extend_highest_gen s th prio tm (e # moment (i + k) t)" by simp
- hence vt_e: "vt step (e#(moment (i + k) t)@s)"
+ hence vt_e: "vt (e#(moment (i + k) t)@s)"
by (unfold extend_highest_gen_def extend_highest_gen_axioms_def
highest_gen_def, auto)
have not_runing': "th' \<notin> runing (moment (i + k) t @ s)"
@@ -847,7 +847,7 @@
eq_me: "moment (Suc i) t = e # moment i t" by blast
from red_moment[of "Suc i"] and eq_me
have "extend_highest_gen s th prio tm (e # moment i t)" by simp
- hence vt_e: "vt step (e#(moment i t)@s)"
+ hence vt_e: "vt (e#(moment i t)@s)"
by (unfold extend_highest_gen_def extend_highest_gen_axioms_def
highest_gen_def, auto)
from step_back_step[OF this] have stp_i: "step (moment i t @ s) e" .
@@ -858,7 +858,7 @@
have "cntP (moment i t@s) th' = cntV (moment i t@s) th'"
proof(rule cnp_cnv_eq)
from step_back_vt [OF vt_e]
- show "vt step (moment i t @ s)" .
+ show "vt (moment i t @ s)" .
next
from eq_e and stp_i
have "step (moment i t @ s) (Create th' prio)" by simp