--- a/Paper/Paper.thy Thu May 12 05:55:05 2011 +0000
+++ b/Paper/Paper.thy Wed May 18 19:54:43 2011 +0000
@@ -12,9 +12,8 @@
abbreviation
"EClass x R \<equiv> R `` {x}"
-abbreviation
- "append_rexp2 r_itm r \<equiv> append_rexp r r_itm"
-
+abbreviation
+ "Append_rexp2 r_itm r == Append_rexp r r_itm"
notation (latex output)
str_eq_rel ("\<approx>\<^bsub>_\<^esub>") and
@@ -32,8 +31,9 @@
EClass ("\<lbrakk>_\<rbrakk>\<^bsub>_\<^esub>" [100, 100] 100) and
transition ("_ \<^raw:\ensuremath{\stackrel{\text{>_\<^raw:}}{\Longmapsto}}> _" [100, 100, 100] 100) and
Setalt ("\<^raw:\ensuremath{\bigplus}>_" [1000] 999) and
- append_rexp2 ("_ \<^raw:\ensuremath{\triangleleft}> _" [100, 100] 100) and
- append_rhs_rexp ("_ \<^raw:\ensuremath{\triangleleft}> _" [100, 100] 50) and
+ Append_rexp2 ("_ \<^raw:\ensuremath{\triangleleft}> _" [100, 100] 100) and
+ Append_rexp_rhs ("_ \<^raw:\ensuremath{\triangleleft}> _" [100, 100] 50) and
+
uminus ("\<^raw:\ensuremath{\overline{>_\<^raw:}}>" [100] 100) and
tag_str_ALT ("tag\<^isub>A\<^isub>L\<^isub>T _ _" [100, 100] 100) and
tag_str_ALT ("tag\<^isub>A\<^isub>L\<^isub>T _ _ _" [100, 100, 100] 100) and
@@ -494,8 +494,8 @@
\begin{center}
@{text "\<calL>(Y, r) \<equiv>"} %
- @{thm (rhs) L_rhs_item.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm}
- @{thm L_rhs_item.simps(1)[where r="r", THEN eq_reflection]}
+ @{thm (rhs) L_rhs_trm.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm}
+ @{thm L_rhs_trm.simps(1)[where r="r", THEN eq_reflection]}
\end{center}
\noindent
@@ -561,13 +561,13 @@
we define the \emph{append-operation} taking a term and a regular expression as argument
\begin{center}
- @{thm append_rexp.simps(2)[where X="Y" and r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}\hspace{10mm}
- @{thm append_rexp.simps(1)[where r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}
+ @{thm Append_rexp.simps(2)[where X="Y" and r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}\hspace{10mm}
+ @{thm Append_rexp.simps(1)[where r="r\<^isub>1" and rexp="r\<^isub>2", THEN eq_reflection]}
\end{center}
\noindent
We lift this operation to entire right-hand sides of equations, written as
- @{thm (lhs) append_rhs_rexp_def[where rexp="r"]}. With this we can define
+ @{thm (lhs) Append_rexp_rhs_def[where rexp="r"]}. With this we can define
the \emph{arden-operation} for an equation of the form @{text "X = rhs"} as:
%
\begin{equation}\label{arden_def}
@@ -712,10 +712,10 @@
@{term "finite ES"} & @{text "(finiteness)"}\\
& @{text "\<and>"} & @{thm (rhs) finite_rhs_def} & @{text "(finiteness rhs)"}\\
& @{text "\<and>"} & @{text "\<forall>(X, rhs)\<in>ES. X = \<Union>\<calL> ` rhs"} & @{text "(soundness)"}\\
- & @{text "\<and>"} & @{thm (rhs) distinct_equas_def}\\
+ & @{text "\<and>"} & @{thm (rhs) distinctness_def}\\
& & & @{text "(distinctness)"}\\
& @{text "\<and>"} & @{thm (rhs) ardenable_all_def} & @{text "(ardenable)"}\\
- & @{text "\<and>"} & @{thm (rhs) valid_eqs_def} & @{text "(validity)"}\\
+ & @{text "\<and>"} & @{thm (rhs) validity_def} & @{text "(validity)"}\\
\end{tabular}
\end{center}