--- a/prio/ExtGG.thy Mon Apr 23 08:01:37 2012 +0000
+++ b/prio/ExtGG.thy Mon Apr 30 15:32:34 2012 +0000
@@ -952,6 +952,20 @@
show ?thesis by auto
qed
+lemma runing_inversion_4:
+ assumes runing': "th' \<in> runing (t@s)"
+ and neq_th: "th' \<noteq> th"
+ shows "th' \<in> threads s"
+ and "\<not>detached s th'"
+ and "cp (t@s) th' = preced th s"
+using runing_inversion_3 [OF runing']
+ and neq_th
+ and runing_preced_inversion[OF runing']
+apply(auto simp add: detached_eq[OF vt_s])
+done
+
+
+
lemma live: "runing (t@s) \<noteq> {}"
proof(cases "th \<in> runing (t@s)")
case True thus ?thesis by auto