--- a/Myhill_1.thy Tue Feb 08 15:59:47 2011 +0000
+++ b/Myhill_1.thy Tue Feb 08 16:49:18 2011 +0000
@@ -434,21 +434,6 @@
*}
text {*
- The functions @{text "the_r"} and @{text "the_Trn"} are used to extract
- subcomponents from right hand side items.
- *}
-
-fun
- the_r :: "rhs_item \<Rightarrow> rexp"
-where
- "the_r (Lam r) = r"
-
-fun
- the_trn_rexp:: "rhs_item \<Rightarrow> rexp"
-where
- "the_trn_rexp (Trn Y r) = r"
-
-text {*
Every right-hand side item @{text "itm"} defines a language given
by @{text "L(itm)"}, defined as:
*}
@@ -519,26 +504,6 @@
definition
"trns_of rhs X \<equiv> {Trn X r | r. Trn X r \<in> rhs}"
-text {*
- The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items
- using @{text "ALT"} to form a single regular expression.
- It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}.
- *}
-
-definition
- "rexp_of rhs X \<equiv> \<Uplus> {r. Trn X r \<in> rhs}"
-
-text {*
- The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"}
- using @{text "ALT"} to form a single regular expression.
- When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"}
- is used to compute compute the regular expression corresponds to @{text "rhs"}.
-*}
-
-
-definition
- "rexp_of_lam rhs \<equiv> \<Uplus> {r. Lam r \<in> rhs}"
-
text {*
The following @{text "attach_rexp rexp' itm"} attach
the regular expression @{text "rexp'"} to
@@ -726,14 +691,12 @@
proof -
have "finite {Trn Y r | Y r. Trn Y r \<in> rhs}"
by (rule rev_finite_subset[OF fin]) (auto)
- then have "finite (the_trn_rexp ` {Trn Y r | Y r. Trn Y r \<in> rhs})"
- by auto
+ then have "finite ((\<lambda>(Y, r). Trn Y r) ` {(Y, r) | Y r. Trn Y r \<in> rhs})"
+ by (simp add: image_Collect)
+ then have "finite {(Y, r) | Y r. Trn Y r \<in> rhs}"
+ by (erule_tac finite_imageD) (simp add: inj_on_def)
then show "finite {r. Trn Y r \<in> rhs}"
- apply(erule_tac rev_finite_subset)
- apply(auto simp add: image_def)
- apply(rule_tac x="Trn Y x" in exI)
- apply(auto)
- done
+ by (erule_tac f="snd" in finite_surj) (auto simp add: image_def)
qed
lemma finite_Lam:
@@ -742,11 +705,10 @@
proof -
have "finite {Lam r | r. Lam r \<in> rhs}"
by (rule rev_finite_subset[OF fin]) (auto)
- then have "finite (the_r ` {Lam r | r. Lam r \<in> rhs})"
- by auto
then show "finite {r. Lam r \<in> rhs}"
- apply(erule_tac rev_finite_subset)
- apply(auto simp add: image_def)
+ apply(simp add: image_Collect[symmetric])
+ apply(erule finite_imageD)
+ apply(auto simp add: inj_on_def)
done
qed
@@ -931,7 +893,6 @@
and finite: "finite rhs"
shows "X = L (arden_variate X rhs)"
proof -
- thm rexp_of_def
def A \<equiv> "L (\<Uplus>{r. Trn X r \<in> rhs})"
def b \<equiv> "rhs - trns_of rhs X"
def B \<equiv> "L b"
@@ -1244,7 +1205,7 @@
shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r")
proof-
def A \<equiv> "arden_variate X xrhs"
- have "?P (rexp_of_lam A)"
+ have "?P (\<Uplus>{r. Lam r \<in> A})"
proof -
have "L (\<Uplus>{r. Lam r \<in> A}) = L ({Lam r | r. Lam r \<in> A})"
proof(rule rexp_of_lam_eq_lam_set)
@@ -1280,7 +1241,7 @@
from Inv_ES ES_single show "finite xrhs"
by (simp add:Inv_def finite_rhs_def)
qed
- finally show ?thesis unfolding rexp_of_lam_def by simp
+ finally show ?thesis by simp
qed
thus ?thesis by auto
qed