--- a/Paper/Paper.thy Sat Feb 19 19:27:33 2011 +0000
+++ b/Paper/Paper.thy Sat Feb 19 20:15:59 2011 +0000
@@ -976,9 +976,26 @@
where @{text "A"} and @{text "B"} are some arbitrary languages.
We can show in general, if @{term "finite (UNIV // \<approx>A)"} and @{term "finite (UNIV // \<approx>B)"}
then @{term "finite ((UNIV // \<approx>A) \<times> (UNIV // \<approx>B))"} holds. The range of
- @{term "tag_str_ALT A B"} is a subset of this. It remains to be shown
- that @{text "=tag\<^isub>A\<^isub>L\<^isub>T="} refines @{text "\<approx>(A \<union> B)"}.
+ @{term "tag_str_ALT A B"} is a subset of this product set. It remains to show
+ that @{text "=tag\<^isub>A\<^isub>L\<^isub>T A B="} refines @{term "\<approx>(A \<union> B)"}. This amounts to
+ showing
+ %
+ \begin{center}
+ @{term "tag\<^isub>A\<^isub>L\<^isub>T A B x = tag\<^isub>A\<^isub>L\<^isub>T A B y \<longrightarrow> x \<approx>(A \<union> B) y"}
+ \end{center}
+ \noindent
+ which by unfolding the Myhill-Nerode relation is identical to
+ %
+ \begin{equation}\label{pattern}
+ @{text "\<forall>z. tag\<^isub>A\<^isub>L\<^isub>T A B x = tag\<^isub>A\<^isub>L\<^isub>T A B y \<and> x @ z \<in> A \<union> B \<longrightarrow> y @ z \<in> A \<union> B"}
+ \end{equation}
+
+ \noindent
+ since both @{text "=tag\<^isub>A\<^isub>L\<^isub>T A B="} and @{term "\<approx>(A \<union> B)"} are symmetric. To solve
+ \eqref{pattern} we just have to unfold the tagging-relation and analyse
+ in which set, @{text A} or @{text B}, the string @{term "x @ z"} is. Fianlly we
+ can discharge this case by setting @{text A} to @{term "L r\<^isub>1"} and @{text B} to @{term "L r\<^isub>2"}.\qed
\end{proof}