--- a/Closures.thy Wed Sep 14 13:00:44 2011 +0000
+++ b/Closures.thy Wed Sep 14 13:39:03 2011 +0000
@@ -250,9 +250,6 @@
where
"a ^^^ n \<equiv> replicate n a"
-definition
- "length_test s a b \<equiv> length (filter (op= a) s) = length (filter (op= b) s)"
-
lemma an_bn_not_regular:
shows "\<not> regular (\<Union>n. {CHR ''a'' ^^^ n @ CHR ''b'' ^^^ n})"
proof
@@ -261,8 +258,13 @@
assume as: "regular A"
def B\<equiv>"\<Union>n. {CHR ''a'' ^^^ n}"
- have length_test: "\<And>s. s \<in> A \<Longrightarrow> length_test s (CHR ''a'') (CHR ''b'')"
- unfolding A_def length_test_def by auto
+ have sameness: "\<And>i j. CHR ''a'' ^^^ i @ CHR ''b'' ^^^ j \<in> A \<longleftrightarrow> i = j"
+ unfolding A_def
+ apply auto
+ apply(drule_tac f="\<lambda>s. length (filter (op= (CHR ''a'')) s) = length (filter (op= (CHR ''b'')) s)"
+ in arg_cong)
+ apply(simp)
+ done
have b: "infinite B"
unfolding infinite_iff_countable_subset
@@ -275,13 +277,7 @@
apply(auto)
apply(simp add: str_eq_def)
apply(drule_tac x="CHR ''b'' ^^^ n" in spec)
- apply(subgoal_tac "CHR ''a'' ^^^ na @ CHR ''b'' ^^^ n \<notin> A")
- apply(subgoal_tac "CHR ''a'' ^^^ n @ CHR ''b'' ^^^ n \<in> A")
- apply(blast)
- apply(auto simp add: A_def)[1]
- apply(rule notI)
- apply(drule length_test)
- apply(simp add: length_test_def)
+ apply(simp add: sameness)
done
ultimately
show "False" using continuation_lemma[OF as] by blast