Prefix_subtract.thy
changeset 31 b6815473ee2e
child 149 e122cb146ecc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Prefix_subtract.thy	Tue Jan 25 12:14:31 2011 +0000
@@ -0,0 +1,58 @@
+theory Prefix_subtract
+  imports Main List_Prefix
+begin
+
+section {* A small theory of prefix subtraction *}
+
+text {*
+  The notion of @{text "prefix_subtract"} is need to make proofs more readable.
+  *}
+
+fun prefix_subtract :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix "-" 51)
+where
+  "prefix_subtract []     xs     = []" 
+| "prefix_subtract (x#xs) []     = x#xs" 
+| "prefix_subtract (x#xs) (y#ys) = (if x = y then prefix_subtract xs ys else (x#xs))"
+
+lemma [simp]: "(x @ y) - x = y"
+apply (induct x)
+by (case_tac y, simp+)
+
+lemma [simp]: "x - x = []"
+by (induct x, auto)
+
+lemma [simp]: "x = xa @ y \<Longrightarrow> x - xa = y "
+by (induct x, auto)
+
+lemma [simp]: "x - [] = x"
+by (induct x, auto)
+
+lemma [simp]: "(x - y = []) \<Longrightarrow> (x \<le> y)"
+proof-   
+  have "\<exists>xa. x = xa @ (x - y) \<and> xa \<le> y"
+    apply (rule prefix_subtract.induct[of _ x y], simp+)
+    by (clarsimp, rule_tac x = "y # xa" in exI, simp+)
+  thus "(x - y = []) \<Longrightarrow> (x \<le> y)" by simp
+qed
+
+lemma diff_prefix:
+  "\<lbrakk>c \<le> a - b; b \<le> a\<rbrakk> \<Longrightarrow> b @ c \<le> a"
+by (auto elim:prefixE)
+
+lemma diff_diff_appd: 
+  "\<lbrakk>c < a - b; b < a\<rbrakk> \<Longrightarrow> (a - b) - c = a - (b @ c)"
+apply (clarsimp simp:strict_prefix_def)
+by (drule diff_prefix, auto elim:prefixE)
+
+lemma app_eq_cases[rule_format]:
+  "\<forall> x . x @ y = m @ n \<longrightarrow> (x \<le> m \<or> m \<le> x)"
+apply (induct y, simp)
+apply (clarify, drule_tac x = "x @ [a]" in spec)
+by (clarsimp, auto simp:prefix_def)
+
+lemma app_eq_dest:
+  "x @ y = m @ n \<Longrightarrow> 
+               (x \<le> m \<and> (m - x) @ n = y) \<or> (m \<le> x \<and> (x - m) @ y = n)"
+by (frule_tac app_eq_cases, auto elim:prefixE)
+
+end