Attic/MyhillNerode.thy
changeset 170 b1258b7d2789
parent 23 e31b733ace44
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/MyhillNerode.thy	Mon Jul 25 13:33:38 2011 +0000
@@ -0,0 +1,1816 @@
+theory MyhillNerode
+  imports "Main" "List_Prefix"
+begin
+
+text {* sequential composition of languages *}
+
+definition
+  lang_seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ; _" [100,100] 100)
+where 
+  "L1 ; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"
+
+lemma lang_seq_empty:
+  shows "{[]} ; L = L"
+  and   "L ; {[]} = L"
+unfolding lang_seq_def by auto
+
+lemma lang_seq_null:
+  shows "{} ; L = {}"
+  and   "L ; {} = {}"
+unfolding lang_seq_def by auto
+
+lemma lang_seq_append:
+  assumes a: "s1 \<in> L1"
+  and     b: "s2 \<in> L2"
+  shows "s1@s2 \<in> L1 ; L2"
+unfolding lang_seq_def
+using a b by auto 
+
+lemma lang_seq_union:
+  shows "(L1 \<union> L2); L3 = (L1; L3) \<union> (L2; L3)"
+  and   "L1; (L2 \<union> L3) = (L1; L2) \<union> (L1; L3)"
+unfolding lang_seq_def by auto
+
+lemma lang_seq_assoc:
+  shows "(L1 ; L2) ; L3 = L1 ; (L2 ; L3)"
+unfolding lang_seq_def
+apply(auto)
+apply(metis)
+by (metis append_assoc)
+
+
+section {* Kleene star for languages defined as least fixed point *}
+
+inductive_set
+  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
+  for L :: "string set"
+where
+  start[intro]: "[] \<in> L\<star>"
+| step[intro]:  "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>"
+
+lemma lang_star_empty:
+  shows "{}\<star> = {[]}"
+by (auto elim: Star.cases)
+
+lemma lang_star_cases:
+  shows "L\<star> =  {[]} \<union> L ; L\<star>"
+proof
+  { fix x
+    have "x \<in> L\<star> \<Longrightarrow> x \<in> {[]} \<union> L ; L\<star>"
+      unfolding lang_seq_def
+    by (induct rule: Star.induct) (auto)
+  }
+  then show "L\<star> \<subseteq> {[]} \<union> L ; L\<star>" by auto
+next
+  show "{[]} \<union> L ; L\<star> \<subseteq> L\<star>" 
+    unfolding lang_seq_def by auto
+qed
+
+lemma lang_star_cases':
+  shows "L\<star> =  {[]} \<union> L\<star> ; L"
+proof
+  { fix x
+    have "x \<in> L\<star> \<Longrightarrow> x \<in> {[]} \<union> L\<star> ; L"
+      unfolding lang_seq_def
+    apply (induct rule: Star.induct)
+    apply simp
+    apply simp
+    apply (erule disjE)
+    apply (auto)[1]
+    apply (erule exE | erule conjE)+
+    apply (rule disjI2)
+    apply (rule_tac x = "s1 @ s1a" in exI)
+    by auto
+  }
+  then show "L\<star> \<subseteq> {[]} \<union> L\<star> ; L" by auto
+next
+  show "{[]} \<union> L\<star> ; L \<subseteq> L\<star>" 
+    unfolding lang_seq_def
+    apply auto
+    apply (erule Star.induct)
+    apply auto
+    apply (drule step[of _ _ "[]"])
+    by (auto intro:start)
+qed
+
+lemma lang_star_simple:
+  shows "L \<subseteq> L\<star>"
+by (subst lang_star_cases)
+   (auto simp only: lang_seq_def)
+
+lemma lang_star_prop0_aux:
+  "s2 \<in> L\<star> \<Longrightarrow> \<forall> s1. s1 \<in> L \<longrightarrow> (\<exists> s3 s4. s3 \<in> L\<star> \<and> s4 \<in> L \<and> s1 @ s2 = s3 @ s4)" 
+apply (erule Star.induct)
+apply (clarify, rule_tac x = "[]" in exI, rule_tac x = s1 in exI, simp add:start)
+apply (clarify, drule_tac x = s1 in spec)
+apply (drule mp, simp, clarify)
+apply (rule_tac x = "s1a @ s3" in exI, rule_tac x = s4 in exI)
+by auto
+
+lemma lang_star_prop0:
+  "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> \<exists> s3 s4. s3 \<in> L\<star> \<and> s4 \<in> L \<and> s1 @ s2 = s3 @ s4" 
+by (auto dest:lang_star_prop0_aux)
+
+lemma lang_star_prop1:
+  assumes asm: "L1; L2 \<subseteq> L2" 
+  shows "L1\<star>; L2 \<subseteq> L2"
+proof -
+  { fix s1 s2
+    assume minor: "s2 \<in> L2"
+    assume major: "s1 \<in> L1\<star>"
+    then have "s1@s2 \<in> L2"
+    proof(induct rule: Star.induct)
+      case start
+      show "[]@s2 \<in> L2" using minor by simp
+    next
+      case (step s1 s1')
+      have "s1 \<in> L1" by fact
+      moreover
+      have "s1'@s2 \<in> L2" by fact
+      ultimately have "s1@(s1'@s2) \<in> L1; L2" by (auto simp add: lang_seq_def)
+      with asm have "s1@(s1'@s2) \<in> L2" by auto
+      then show "(s1@s1')@s2 \<in> L2" by simp
+    qed
+  } 
+  then show "L1\<star>; L2 \<subseteq> L2" by (auto simp add: lang_seq_def)
+qed
+
+lemma lang_star_prop2_aux:
+  "s2 \<in> L2\<star> \<Longrightarrow> \<forall> s1. s1 \<in> L1 \<and> L1 ; L2 \<subseteq> L1 \<longrightarrow> s1 @ s2 \<in> L1"
+apply (erule Star.induct, simp)
+apply (clarify, drule_tac x = "s1a @ s1" in spec)
+by (auto simp:lang_seq_def)
+
+lemma lang_star_prop2:
+  "L1; L2 \<subseteq> L1 \<Longrightarrow> L1 ; L2\<star> \<subseteq> L1"
+by (auto dest!:lang_star_prop2_aux simp:lang_seq_def)
+
+lemma lang_star_seq_subseteq: 
+  shows "L ; L\<star> \<subseteq> L\<star>"
+using lang_star_cases by blast
+
+lemma lang_star_double:
+  shows "L\<star>; L\<star> = L\<star>"
+proof
+  show "L\<star> ; L\<star> \<subseteq> L\<star>" 
+    using lang_star_prop1 lang_star_seq_subseteq by blast
+next
+  have "L\<star> \<subseteq> L\<star> \<union> L\<star>; (L; L\<star>)" by auto
+  also have "\<dots> = L\<star>;{[]} \<union> L\<star>; (L; L\<star>)" by (simp add: lang_seq_empty)
+  also have "\<dots> = L\<star>; ({[]} \<union> L; L\<star>)" by (simp only: lang_seq_union)
+  also have "\<dots> = L\<star>; L\<star>" using lang_star_cases by simp 
+  finally show "L\<star> \<subseteq> L\<star> ; L\<star>" by simp
+qed
+
+lemma lang_star_seq_subseteq': 
+  shows "L\<star>; L \<subseteq> L\<star>"
+proof -
+  have "L \<subseteq> L\<star>" by (rule lang_star_simple)
+  then have "L\<star>; L \<subseteq> L\<star>; L\<star>" by (auto simp add: lang_seq_def)
+  then show "L\<star>; L \<subseteq> L\<star>" using lang_star_double by blast
+qed
+
+lemma
+  shows "L\<star> \<subseteq> L\<star>\<star>"
+by (rule lang_star_simple)
+
+
+section {* regular expressions *}
+
+datatype rexp =
+  NULL
+| EMPTY
+| CHAR char
+| SEQ rexp rexp
+| ALT rexp rexp
+| STAR rexp
+
+
+consts L:: "'a \<Rightarrow> string set"
+
+overloading L_rexp \<equiv> "L::  rexp \<Rightarrow> string set"
+begin
+fun
+  L_rexp :: "rexp \<Rightarrow> string set"
+where
+    "L_rexp (NULL) = {}"
+  | "L_rexp (EMPTY) = {[]}"
+  | "L_rexp (CHAR c) = {[c]}"
+  | "L_rexp (SEQ r1 r2) = (L_rexp r1) ; (L_rexp r2)"
+  | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
+  | "L_rexp (STAR r) = (L_rexp r)\<star>"
+end
+
+
+text{* ************ now is the codes writen by chunhan ************************************* *}
+
+section {* Arden's Lemma revised *}
+
+lemma arden_aux1:
+  assumes a: "X \<subseteq> X ; A \<union> B"
+  and     b: "[] \<notin> A"
+  shows      "x \<in> X \<Longrightarrow> x \<in> B ; A\<star>"
+apply (induct x taking:length rule:measure_induct)
+apply (subgoal_tac "x \<in> X ; A \<union> B")
+defer
+using a
+apply (auto)[1]
+apply simp
+apply (erule disjE)
+defer
+apply (auto simp add:lang_seq_def) [1]
+apply (subgoal_tac "\<exists> x1 x2. x = x1 @ x2 \<and> x1 \<in> X \<and> x2 \<in> A")
+defer
+apply (auto simp add:lang_seq_def) [1]
+apply (erule exE | erule conjE)+
+apply simp
+apply (drule_tac x = x1 in spec)
+apply (simp)
+using b
+apply -
+apply (auto)[1]
+apply (subgoal_tac "x1 @ x2 \<in> (B ; A\<star>) ; A")
+defer
+apply (auto simp add:lang_seq_def)[1]
+by (metis Un_absorb1 lang_seq_assoc lang_seq_union(2) lang_star_double lang_star_simple mem_def sup1CI)
+
+theorem ardens_revised:
+  assumes nemp: "[] \<notin> A"
+  shows "(X = X ; A \<union> B) \<longleftrightarrow> (X = B ; A\<star>)"
+apply(rule iffI)
+defer
+apply(simp)
+apply(subst lang_star_cases')
+apply(subst lang_seq_union)
+apply(simp add: lang_seq_empty)
+apply(simp add: lang_seq_assoc)
+apply(auto)[1]
+proof -
+  assume "X = X ; A \<union> B"
+  then have as1: "X ; A \<union> B \<subseteq> X" and as2: "X \<subseteq> X ; A \<union> B" by simp_all
+  from as1 have a: "X ; A \<subseteq> X" and b: "B \<subseteq> X" by simp_all
+  from b have "B; A\<star> \<subseteq> X ; A\<star>" by (auto simp add: lang_seq_def)
+  moreover
+  from a have "X ; A\<star> \<subseteq> X" 
+
+by (rule lang_star_prop2)
+  ultimately have f1: "B ; A\<star> \<subseteq> X" by simp
+  from as2 nemp
+  have f2: "X \<subseteq> B; A\<star>" using arden_aux1 by auto
+  from f1 f2 show "X = B; A\<star>" by auto
+qed
+
+
+
+section {* equiv class' definition *}
+
+definition 
+  equiv_str :: "string \<Rightarrow> string set \<Rightarrow> string \<Rightarrow> bool" ("_ \<equiv>_\<equiv> _" [100, 100, 100] 100)
+where
+  "x \<equiv>Lang\<equiv> y \<longleftrightarrow> (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)"
+
+definition
+  equiv_class :: "string \<Rightarrow> (string set) \<Rightarrow> string set" ("\<lbrakk>_\<rbrakk>_" [100, 100] 100)
+where
+  "\<lbrakk>x\<rbrakk>Lang \<equiv> {y. x \<equiv>Lang\<equiv> y}"
+
+text {* Chunhan modifies Q to Quo *}
+
+definition  
+  quot :: "string set \<Rightarrow> string set \<Rightarrow> (string set) set" ("_ Quo _" [100, 100] 100)
+where
+  "L1 Quo L2 \<equiv> { \<lbrakk>x\<rbrakk>L2 | x. x \<in> L1}" 
+
+
+lemma lang_eqs_union_of_eqcls: 
+  "Lang = \<Union> {X. X \<in> (UNIV Quo Lang) \<and> (\<forall> x \<in> X. x \<in> Lang)}"
+proof
+  show "Lang \<subseteq> \<Union>{X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}"
+  proof
+    fix x
+    assume "x \<in> Lang"
+    thus "x \<in> \<Union>{X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}"
+    proof (simp add:quot_def)
+      assume "(1)": "x \<in> Lang"
+      show "\<exists>xa. (\<exists>x. xa = \<lbrakk>x\<rbrakk>Lang) \<and> (\<forall>x\<in>xa. x \<in> Lang) \<and> x \<in> xa" (is "\<exists>xa.?P xa")
+      proof -
+        have "?P (\<lbrakk>x\<rbrakk>Lang)" using "(1)"
+          by (auto simp:equiv_class_def equiv_str_def dest: spec[where  x = "[]"])
+        thus ?thesis by blast
+      qed
+    qed
+  qed   
+next
+  show "\<Union>{X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang} \<subseteq> Lang"
+    by auto
+qed
+
+lemma empty_notin_CS: "{} \<notin> UNIV Quo Lang"
+apply (clarsimp simp:quot_def equiv_class_def)
+by (rule_tac x = x in exI, auto simp:equiv_str_def)
+
+lemma no_two_cls_inters:
+  "\<lbrakk>X \<in> UNIV Quo Lang; Y \<in> UNIV Quo Lang; X \<noteq> Y\<rbrakk> \<Longrightarrow> X \<inter> Y = {}"
+by (auto simp:quot_def equiv_class_def equiv_str_def)
+
+text {* equiv_class transition *}
+definition 
+  CT :: "string set \<Rightarrow> char \<Rightarrow> string set \<Rightarrow> bool" ("_-_\<rightarrow>_" [99,99]99)
+where
+  "X-c\<rightarrow>Y \<equiv> ((X;{[c]}) \<subseteq> Y)"
+
+types t_equa_rhs = "(string set \<times> rexp) set"
+
+types t_equa = "(string set \<times> t_equa_rhs)"
+
+types t_equas = "t_equa set"
+
+text {* 
+  "empty_rhs" generates "\<lambda>" for init-state, just like "\<lambda>" for final states 
+  in Brzozowski method. But if the init-state is "{[]}" ("\<lambda>" itself) then 
+  empty set is returned, see definition of "equation_rhs" 
+*} 
+
+definition 
+  empty_rhs :: "string set \<Rightarrow> t_equa_rhs"
+where
+  "empty_rhs X \<equiv> if ([] \<in> X) then {({[]}, EMPTY)} else {}"
+
+definition 
+  folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
+where
+  "folds f z S \<equiv> SOME x. fold_graph f z S x"
+
+definition 
+  equation_rhs :: "(string set) set \<Rightarrow> string set \<Rightarrow> t_equa_rhs"
+where
+  "equation_rhs CS X \<equiv> if (X = {[]}) then {({[]}, EMPTY)}
+                         else {(S, folds ALT NULL {CHAR c| c. S-c\<rightarrow>X} )| S. S \<in> CS} \<union> empty_rhs X"
+
+definition 
+  equations :: "(string set) set \<Rightarrow> t_equas"
+where
+  "equations CS \<equiv> {(X, equation_rhs CS X) | X. X \<in> CS}"
+
+overloading L_rhs \<equiv> "L:: t_equa_rhs \<Rightarrow> string set"
+begin
+fun L_rhs:: "t_equa_rhs \<Rightarrow> string set"
+where
+  "L_rhs rhs = {x. \<exists> X r. (X, r) \<in> rhs \<and> x \<in> X;(L r)}"
+end
+
+definition 
+  distinct_rhs :: "t_equa_rhs \<Rightarrow> bool"
+where
+  "distinct_rhs rhs \<equiv> \<forall> X reg\<^isub>1 reg\<^isub>2. (X, reg\<^isub>1) \<in> rhs \<and> (X, reg\<^isub>2) \<in> rhs \<longrightarrow> reg\<^isub>1 = reg\<^isub>2"
+
+definition
+  distinct_equas_rhs :: "t_equas \<Rightarrow> bool"
+where
+  "distinct_equas_rhs equas \<equiv> \<forall> X rhs. (X, rhs) \<in> equas \<longrightarrow> distinct_rhs rhs"
+
+definition 
+  distinct_equas :: "t_equas \<Rightarrow> bool"
+where
+  "distinct_equas equas \<equiv> \<forall> X rhs rhs'. (X, rhs) \<in> equas \<and> (X, rhs') \<in> equas \<longrightarrow> rhs = rhs'"
+
+definition 
+  seq_rhs_r :: "t_equa_rhs \<Rightarrow> rexp \<Rightarrow> t_equa_rhs"
+where
+  "seq_rhs_r rhs r \<equiv> (\<lambda>(X, reg). (X, SEQ reg r)) ` rhs"
+
+definition 
+  del_x_paired :: "('a \<times> 'b) set \<Rightarrow> 'a \<Rightarrow> ('a \<times> 'b) set"
+where
+  "del_x_paired S x \<equiv> S - {X. X \<in> S \<and> fst X = x}"
+
+definition
+  arden_variate :: "string set \<Rightarrow> rexp \<Rightarrow> t_equa_rhs \<Rightarrow> t_equa_rhs"
+where
+  "arden_variate X r rhs \<equiv> seq_rhs_r (del_x_paired rhs X) (STAR r)"
+
+definition
+  no_EMPTY_rhs :: "t_equa_rhs \<Rightarrow> bool"
+where
+  "no_EMPTY_rhs rhs \<equiv> \<forall> X r. (X, r) \<in> rhs \<and> X \<noteq> {[]} \<longrightarrow> [] \<notin> L r"
+
+definition 
+  no_EMPTY_equas :: "t_equas \<Rightarrow> bool"
+where
+  "no_EMPTY_equas equas \<equiv> \<forall> X rhs. (X, rhs) \<in> equas \<longrightarrow> no_EMPTY_rhs rhs"
+
+lemma fold_alt_null_eqs:
+  "finite rS \<Longrightarrow> x \<in> L (folds ALT NULL rS) = (\<exists> r \<in> rS. x \<in> L r)"
+apply (simp add:folds_def)
+apply (rule someI2_ex)
+apply (erule finite_imp_fold_graph)
+apply (erule fold_graph.induct)
+by auto (*??? how do this be in Isar ?? *)
+
+lemma seq_rhs_r_prop1:
+  "L (seq_rhs_r rhs r) = (L rhs);(L r)"
+apply (auto simp:seq_rhs_r_def image_def lang_seq_def)
+apply (rule_tac x = "s1 @ s1a" in exI, rule_tac x = "s2a" in exI, simp)
+apply (rule_tac x = a in exI, rule_tac x = b in exI, simp)
+apply (rule_tac x = s1 in exI, rule_tac x = s1a in exI, simp)
+apply (rule_tac x = X in exI, rule_tac x  = "SEQ ra r" in exI, simp)
+apply (rule conjI)
+apply (rule_tac x = "(X, ra)" in bexI, simp+) 
+apply (rule_tac x = s1a in exI, rule_tac x = "s2a @ s2" in exI, simp)
+apply (simp add:lang_seq_def)
+by (rule_tac x = s2a in exI, rule_tac x = s2 in exI, simp)
+
+lemma del_x_paired_prop1:  
+  "\<lbrakk>distinct_rhs rhs; (X, r) \<in> rhs\<rbrakk> \<Longrightarrow> X ; L r \<union> L (del_x_paired rhs X) = L rhs"
+  apply (simp add:del_x_paired_def)
+  apply (simp add: distinct_rhs_def)
+  apply(auto simp add: lang_seq_def)
+  apply(metis)
+  done
+
+lemma arden_variate_prop:
+  assumes "(X, rx) \<in> rhs"
+  shows "(\<forall> Y. Y \<noteq> X \<longrightarrow> (\<exists> r. (Y, r) \<in> rhs) = (\<exists> r. (Y, r) \<in> (arden_variate X rx rhs)))"
+proof (rule allI, rule impI)
+  fix Y
+  assume "(1)": "Y \<noteq> X"
+  show "(\<exists>r. (Y, r) \<in> rhs) = (\<exists>r. (Y, r) \<in> arden_variate X rx rhs)"
+  proof
+    assume "(1_1)": "\<exists>r. (Y, r) \<in> rhs"
+    show "\<exists>r. (Y, r) \<in> arden_variate X rx rhs" (is "\<exists>r. ?P r")
+    proof -
+      from "(1_1)" obtain r where "(Y, r) \<in> rhs" ..
+      hence "?P (SEQ r (STAR rx))"
+      proof (simp add:arden_variate_def image_def)
+        have "(Y, r) \<in> rhs \<Longrightarrow> (Y, r) \<in> del_x_paired rhs X"
+          by (auto simp:del_x_paired_def "(1)")
+        thus "(Y, r) \<in> rhs \<Longrightarrow> (Y, SEQ r (STAR rx)) \<in> seq_rhs_r (del_x_paired rhs X) (STAR rx)"
+          by (auto simp:seq_rhs_r_def)
+      qed
+      thus ?thesis by blast
+    qed
+  next
+    assume "(2_1)": "\<exists>r. (Y, r) \<in> arden_variate X rx rhs"
+    thus "\<exists>r. (Y, r) \<in> rhs" (is "\<exists> r. ?P r")
+      by (auto simp:arden_variate_def del_x_paired_def seq_rhs_r_def image_def)
+  qed
+qed
+
+text {*
+  arden_variate_valid:  proves variation from 
+  
+   "X = X;r + Y;ry + \<dots>" to "X = Y;(SEQ ry (STAR r)) + \<dots>" 
+
+  holds the law of "language of left equiv language of right" 
+*}
+lemma arden_variate_valid:
+  assumes X_not_empty: "X \<noteq> {[]}"
+  and     l_eq_r:   "X = L rhs"
+  and     dist: "distinct_rhs rhs"
+  and     no_empty: "no_EMPTY_rhs rhs"
+  and     self_contained: "(X, r) \<in> rhs"
+  shows   "X = L (arden_variate X r rhs)" 
+proof -
+  have "[] \<notin> L r" using no_empty X_not_empty self_contained
+    by (auto simp:no_EMPTY_rhs_def)
+  hence ardens: "X = X;(L r) \<union> (L (del_x_paired rhs X)) \<longleftrightarrow> X = (L (del_x_paired rhs X)) ; (L r)\<star>" 
+    by (rule ardens_revised)
+  have del_x: "X = X ; L r \<union> L (del_x_paired rhs X) \<longleftrightarrow> X = L rhs" using dist l_eq_r self_contained
+    by (auto dest!:del_x_paired_prop1)
+  show ?thesis
+  proof
+    show "X \<subseteq> L (arden_variate X r rhs)"
+    proof
+      fix x
+      assume "(1_1)": "x \<in> X" with l_eq_r ardens del_x
+      show "x \<in> L (arden_variate X r rhs)" 
+        by (simp add:arden_variate_def seq_rhs_r_prop1 del:L_rhs.simps)
+    qed
+  next
+    show "L (arden_variate X r rhs) \<subseteq> X"
+    proof
+      fix x
+      assume "(2_1)": "x \<in> L (arden_variate X r rhs)" with ardens del_x l_eq_r
+      show "x \<in> X" 
+        by (simp add:arden_variate_def seq_rhs_r_prop1 del:L_rhs.simps)
+    qed
+  qed
+qed
+
+text {* 
+  merge_rhs {(x1, r1), (x2, r2}, (x4, r4), \<dots>} {(x1, r1'), (x3, r3'), \<dots>} = 
+     {(x1, ALT r1 r1'}, (x2, r2), (x3, r3'), (x4, r4), \<dots>} *}  
+definition 
+  merge_rhs :: "t_equa_rhs \<Rightarrow> t_equa_rhs \<Rightarrow> t_equa_rhs"
+where
+  "merge_rhs rhs rhs' \<equiv> {(X, r). (\<exists> r1 r2. ((X,r1) \<in> rhs \<and> (X, r2) \<in> rhs') \<and> r = ALT r1 r2)  \<or>
+                                 (\<exists> r1. (X, r1) \<in> rhs \<and> (\<not> (\<exists> r2. (X, r2) \<in> rhs')) \<and> r = r1) \<or>
+                                 (\<exists> r2. (X, r2) \<in> rhs' \<and> (\<not> (\<exists> r1. (X, r1) \<in> rhs)) \<and> r = r2)    }"                                  
+
+
+text {* rhs_subst rhs X=xrhs r: substitude all occurence of X in rhs((X,r) \<in> rhs) with xrhs *}
+definition 
+  rhs_subst :: "t_equa_rhs \<Rightarrow> string set \<Rightarrow> t_equa_rhs \<Rightarrow> rexp \<Rightarrow> t_equa_rhs"
+where
+  "rhs_subst rhs X xrhs r \<equiv> merge_rhs (del_x_paired rhs X) (seq_rhs_r xrhs r)"
+
+definition 
+  equas_subst_f :: "string set \<Rightarrow> t_equa_rhs \<Rightarrow> t_equa \<Rightarrow> t_equa"
+where
+  "equas_subst_f X xrhs equa \<equiv> let (Y, rhs) = equa in
+                                 if (\<exists> r. (X, r) \<in> rhs)
+                                 then (Y, rhs_subst rhs X xrhs (SOME r. (X, r) \<in> rhs))
+                                 else equa"
+
+definition
+  equas_subst :: "t_equas \<Rightarrow> string set \<Rightarrow> t_equa_rhs \<Rightarrow> t_equas"
+where
+  "equas_subst ES X xrhs \<equiv> del_x_paired (equas_subst_f X xrhs ` ES) X"
+
+lemma lang_seq_prop1:
+ "x \<in> X ; L r \<Longrightarrow> x \<in> X ; (L r \<union> L r')"
+by (auto simp:lang_seq_def)
+
+lemma lang_seq_prop1':
+  "x \<in> X; L r \<Longrightarrow> x \<in> X ; (L r' \<union> L r)"
+by (auto simp:lang_seq_def)
+
+lemma lang_seq_prop2:
+  "x \<in> X; (L r \<union> L r') \<Longrightarrow> x \<in> X;L r \<or> x \<in> X;L r'"
+by (auto simp:lang_seq_def)
+
+lemma merge_rhs_prop1:
+  shows "L (merge_rhs rhs rhs') = L rhs \<union> L rhs' "
+apply (auto simp add:merge_rhs_def dest!:lang_seq_prop2 intro:lang_seq_prop1)
+apply (rule_tac x = X in exI, rule_tac x = r1 in exI, simp)
+apply (case_tac "\<exists> r2. (X, r2) \<in> rhs'")
+apply (clarify, rule_tac x = X in exI, rule_tac x = "ALT r r2" in exI, simp add:lang_seq_prop1)
+apply (rule_tac x = X in exI, rule_tac x = r in exI, simp)
+apply (case_tac "\<exists> r1. (X, r1) \<in> rhs")
+apply (clarify, rule_tac x = X in exI, rule_tac x = "ALT r1 r" in exI, simp add:lang_seq_prop1')
+apply (rule_tac x = X in exI, rule_tac x = r in exI, simp)
+done
+
+lemma no_EMPTY_rhss_imp_merge_no_EMPTY:
+  "\<lbrakk>no_EMPTY_rhs rhs; no_EMPTY_rhs rhs'\<rbrakk> \<Longrightarrow> no_EMPTY_rhs (merge_rhs rhs rhs')"
+apply (simp add:no_EMPTY_rhs_def merge_rhs_def)
+apply (clarify, (erule conjE | erule exE | erule disjE)+)
+by auto
+
+lemma distinct_rhs_prop:
+  "\<lbrakk>distinct_rhs rhs; (X, r1) \<in> rhs; (X, r2) \<in> rhs\<rbrakk> \<Longrightarrow> r1 = r2"
+by (auto simp:distinct_rhs_def)
+
+lemma merge_rhs_prop2:
+  assumes dist_rhs: "distinct_rhs rhs"
+  and     dist_rhs':"distinct_rhs rhs'"
+  shows "distinct_rhs (merge_rhs rhs rhs')"
+apply (auto simp:merge_rhs_def distinct_rhs_def)
+using dist_rhs
+apply (drule distinct_rhs_prop, simp+)
+using dist_rhs'
+apply (drule distinct_rhs_prop, simp+)
+using dist_rhs
+apply (drule distinct_rhs_prop, simp+)
+using dist_rhs'
+apply (drule distinct_rhs_prop, simp+)
+done
+
+lemma seq_rhs_r_holds_distinct: 
+  "distinct_rhs rhs \<Longrightarrow> distinct_rhs (seq_rhs_r rhs r)"
+by (auto simp:distinct_rhs_def seq_rhs_r_def)
+
+lemma seq_rhs_r_prop0:
+  assumes l_eq_r: "X = L xrhs"
+  shows "L (seq_rhs_r xrhs r) = X ; L r "
+using l_eq_r
+by (auto simp only:seq_rhs_r_prop1)
+
+lemma rhs_subst_prop1:
+  assumes l_eq_r: "X = L xrhs"
+  and     dist:  "distinct_rhs rhs"
+  shows "(X, r) \<in> rhs \<Longrightarrow> L rhs = L (rhs_subst rhs X xrhs r)"
+apply (simp add:rhs_subst_def merge_rhs_prop1 del:L_rhs.simps)
+using l_eq_r 
+apply (drule_tac r = r in seq_rhs_r_prop0, simp del:L_rhs.simps)
+using dist
+by (auto dest!:del_x_paired_prop1 simp del:L_rhs.simps)
+
+lemma del_x_paired_holds_distinct_rhs:
+  "distinct_rhs rhs \<Longrightarrow> distinct_rhs (del_x_paired rhs x)"
+by (auto simp:distinct_rhs_def del_x_paired_def)
+
+lemma rhs_subst_holds_distinct_rhs:
+  "\<lbrakk>distinct_rhs rhs; distinct_rhs xrhs\<rbrakk> \<Longrightarrow> distinct_rhs (rhs_subst rhs X xrhs r)"
+apply (drule_tac r = r and rhs = xrhs in seq_rhs_r_holds_distinct)
+apply (drule_tac x = X in del_x_paired_holds_distinct_rhs)
+by (auto dest:merge_rhs_prop2[where rhs = "del_x_paired rhs X"] simp:rhs_subst_def)
+
+section {* myhill-nerode theorem *}
+
+definition left_eq_cls :: "t_equas \<Rightarrow> (string set) set"
+where
+  "left_eq_cls ES \<equiv> {X. \<exists> rhs. (X, rhs) \<in> ES} "
+
+definition right_eq_cls :: "t_equas \<Rightarrow> (string set) set"
+where
+  "right_eq_cls ES \<equiv> {Y. \<exists> X rhs r. (X, rhs) \<in> ES \<and> (Y, r) \<in> rhs }"
+
+definition rhs_eq_cls :: "t_equa_rhs \<Rightarrow> (string set) set"
+where
+  "rhs_eq_cls rhs \<equiv> {Y. \<exists> r. (Y, r) \<in> rhs}"
+
+definition ardenable :: "t_equa \<Rightarrow> bool"
+where
+  "ardenable equa \<equiv> let (X, rhs) = equa in 
+                      distinct_rhs rhs \<and> no_EMPTY_rhs rhs \<and> X = L rhs"
+
+text {*
+  Inv: Invairance of the equation-system, during the decrease of the equation-system, Inv holds.
+*}
+definition Inv :: "string set \<Rightarrow> t_equas \<Rightarrow> bool"
+where
+  "Inv X ES \<equiv> finite ES \<and> (\<exists> rhs. (X, rhs) \<in> ES) \<and> distinct_equas ES \<and> 
+            (\<forall> X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs) \<and> X \<noteq> {} \<and> rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls ES))"
+
+text {*
+  TCon: Termination Condition of the equation-system decreasion.
+*}
+definition TCon:: "'a set \<Rightarrow> bool"
+where
+  "TCon ES \<equiv> card ES = 1"
+
+
+text {* 
+  The following is a iteration principle, and is the main framework for the proof:
+   1: We can form the initial equation-system using "equations" defined above, and prove it has invariance Inv by lemma "init_ES_satisfy_Inv";
+   2: We can decrease the number of the equation-system using ardens_lemma_revised and substitution ("equas_subst", defined above), 
+        and prove it holds the property "step" in "wf_iter" by lemma "iteration_step"
+   and finally using property Inv and TCon to prove the myhill-nerode theorem
+  
+*}
+lemma wf_iter [rule_format]: 
+  fixes f
+  assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and>  (f(e'), f(e)) \<in> less_than)"
+  shows pe:     "P e \<longrightarrow> (\<exists> e'. P e' \<and>  Q e')"
+proof(induct e rule: wf_induct 
+           [OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify)
+  fix x 
+  assume h [rule_format]: 
+    "\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')"
+    and px: "P x"
+  show "\<exists>e'. P e' \<and> Q e'"
+  proof(cases "Q x")
+    assume "Q x" with px show ?thesis by blast
+  next
+    assume nq: "\<not> Q x"
+    from step [OF px nq]
+    obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto
+    show ?thesis
+    proof(rule h)
+      from ltf show "(e', x) \<in> inv_image less_than f" 
+	by (simp add:inv_image_def)
+    next
+      from pe' show "P e'" .
+    qed
+  qed
+qed
+
+
+text {* ******BEGIN: proving the initial equation-system satisfies Inv ****** *}
+
+lemma distinct_rhs_equations:
+  "(X, xrhs) \<in> equations (UNIV Quo Lang) \<Longrightarrow> distinct_rhs xrhs"
+by (auto simp: equations_def equation_rhs_def distinct_rhs_def empty_rhs_def dest:no_two_cls_inters)
+
+lemma every_nonempty_eqclass_has_strings:
+  "\<lbrakk>X \<in> (UNIV Quo Lang); X \<noteq> {[]}\<rbrakk> \<Longrightarrow> \<exists> clist. clist \<in> X \<and> clist \<noteq> []"
+by (auto simp:quot_def equiv_class_def equiv_str_def)
+
+lemma every_eqclass_is_derived_from_empty:
+  assumes not_empty: "X \<noteq> {[]}"
+  shows "X \<in> (UNIV Quo Lang) \<Longrightarrow> \<exists> clist. {[]};{clist} \<subseteq> X \<and> clist \<noteq> []"
+using not_empty
+apply (drule_tac every_nonempty_eqclass_has_strings, simp)
+by (auto intro:exI[where x = clist] simp:lang_seq_def)
+
+lemma equiv_str_in_CS:
+  "\<lbrakk>clist\<rbrakk>Lang \<in> (UNIV Quo Lang)"
+by (auto simp:quot_def)
+
+lemma has_str_imp_defined_by_str:
+  "\<lbrakk>str \<in> X; X \<in> UNIV Quo Lang\<rbrakk> \<Longrightarrow> X = \<lbrakk>str\<rbrakk>Lang"
+by (auto simp:quot_def equiv_class_def equiv_str_def)
+
+lemma every_eqclass_has_ascendent:
+  assumes has_str: "clist @ [c] \<in> X"
+  and     in_CS:   "X \<in> UNIV Quo Lang"
+  shows "\<exists> Y. Y \<in> UNIV Quo Lang \<and> Y-c\<rightarrow>X \<and> clist \<in> Y" (is "\<exists> Y. ?P Y")
+proof -
+  have "?P (\<lbrakk>clist\<rbrakk>Lang)" 
+  proof -
+    have "\<lbrakk>clist\<rbrakk>Lang \<in> UNIV Quo Lang"       
+      by (simp add:quot_def, rule_tac x = clist in exI, simp)
+    moreover have "\<lbrakk>clist\<rbrakk>Lang-c\<rightarrow>X" 
+    proof -
+      have "X = \<lbrakk>(clist @ [c])\<rbrakk>Lang" using has_str in_CS
+        by (auto intro!:has_str_imp_defined_by_str)
+      moreover have "\<forall> sl. sl \<in> \<lbrakk>clist\<rbrakk>Lang \<longrightarrow> sl @ [c] \<in> \<lbrakk>(clist @ [c])\<rbrakk>Lang"
+        by (auto simp:equiv_class_def equiv_str_def)
+      ultimately show ?thesis unfolding CT_def lang_seq_def
+        by auto
+    qed
+    moreover have "clist \<in> \<lbrakk>clist\<rbrakk>Lang" 
+      by (auto simp:equiv_str_def equiv_class_def)
+    ultimately show "?P (\<lbrakk>clist\<rbrakk>Lang)" by simp
+  qed
+  thus ?thesis by blast
+qed
+
+lemma finite_charset_rS:
+  "finite {CHAR c |c. Y-c\<rightarrow>X}"
+by (rule_tac A = UNIV and f = CHAR in finite_surj, auto)
+
+lemma l_eq_r_in_equations:
+  assumes X_in_equas: "(X, xrhs) \<in> equations (UNIV Quo Lang)"
+  shows "X = L xrhs"    
+proof (cases "X = {[]}")
+  case True
+  thus ?thesis using X_in_equas 
+    by (simp add:equations_def equation_rhs_def lang_seq_def)
+next
+  case False 
+  show ?thesis
+  proof 
+    show "X \<subseteq> L xrhs"
+    proof
+      fix x
+      assume "(1)": "x \<in> X"
+      show "x \<in> L xrhs"          
+      proof (cases "x = []")
+        assume empty: "x = []"
+        hence "x \<in> L (empty_rhs X)" using "(1)"
+          by (auto simp:empty_rhs_def lang_seq_def)
+        thus ?thesis using X_in_equas False empty "(1)" 
+          unfolding equations_def equation_rhs_def by auto
+      next
+        assume not_empty: "x \<noteq> []"
+        hence "\<exists> clist c. x = clist @ [c]" by (case_tac x rule:rev_cases, auto)
+        then obtain clist c where decom: "x = clist @ [c]" by blast
+        moreover have "\<And> Y. \<lbrakk>Y \<in> UNIV Quo Lang; Y-c\<rightarrow>X; clist \<in> Y\<rbrakk>
+          \<Longrightarrow> [c] \<in> L (folds ALT NULL {CHAR c |c. Y-c\<rightarrow>X})"
+        proof -
+          fix Y
+          assume Y_is_eq_cl: "Y \<in> UNIV Quo Lang"
+            and Y_CT_X: "Y-c\<rightarrow>X"
+            and clist_in_Y: "clist \<in> Y"
+          with finite_charset_rS 
+          show "[c] \<in> L (folds ALT NULL {CHAR c |c. Y-c\<rightarrow>X})"
+            by (auto simp :fold_alt_null_eqs)
+        qed
+        hence "\<exists>Xa. Xa \<in> UNIV Quo Lang \<and> clist @ [c] \<in> Xa ; L (folds ALT NULL {CHAR c |c. Xa-c\<rightarrow>X})" 
+          using X_in_equas False not_empty "(1)" decom
+          by (auto dest!:every_eqclass_has_ascendent simp:equations_def equation_rhs_def lang_seq_def)
+        then obtain Xa where 
+          "Xa \<in> UNIV Quo Lang \<and> clist @ [c] \<in> Xa ; L (folds ALT NULL {CHAR c |c. Xa-c\<rightarrow>X})" by blast
+        hence "x \<in> L {(S, folds ALT NULL {CHAR c |c. S-c\<rightarrow>X}) |S. S \<in> UNIV Quo Lang}" 
+          using X_in_equas "(1)" decom
+          by (auto simp add:equations_def equation_rhs_def intro!:exI[where x = Xa])
+        thus "x \<in> L xrhs" using X_in_equas False not_empty unfolding equations_def equation_rhs_def
+          by auto
+      qed
+    qed
+  next
+    show "L xrhs \<subseteq> X"
+    proof
+      fix x 
+      assume "(2)": "x \<in> L xrhs"
+      have "(2_1)": "\<And> s1 s2 r Xa. \<lbrakk>s1 \<in> Xa; s2 \<in> L (folds ALT NULL {CHAR c |c. Xa-c\<rightarrow>X})\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> X"
+        using finite_charset_rS
+        by (auto simp:CT_def lang_seq_def fold_alt_null_eqs)
+      have "(2_2)": "\<And> s1 s2 Xa r.\<lbrakk>s1 \<in> Xa; s2 \<in> L r; (Xa, r) \<in> empty_rhs X\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> X"
+        by (simp add:empty_rhs_def split:if_splits)
+      show "x \<in> X" using X_in_equas False "(2)"         
+        by (auto intro:"(2_1)" "(2_2)" simp:equations_def equation_rhs_def lang_seq_def)
+    qed
+  qed
+qed
+
+
+
+lemma no_EMPTY_equations:
+  "(X, xrhs) \<in> equations CS \<Longrightarrow> no_EMPTY_rhs xrhs"
+apply (clarsimp simp add:equations_def equation_rhs_def)
+apply (simp add:no_EMPTY_rhs_def empty_rhs_def, auto)
+apply (subgoal_tac "finite {CHAR c |c. Xa-c\<rightarrow>X}", drule_tac x = "[]" in fold_alt_null_eqs, clarsimp, rule finite_charset_rS)+
+done
+
+lemma init_ES_satisfy_ardenable:
+  "(X, xrhs) \<in> equations (UNIV Quo Lang)  \<Longrightarrow> ardenable (X, xrhs)"  
+  unfolding ardenable_def
+  by (auto intro:distinct_rhs_equations no_EMPTY_equations simp:l_eq_r_in_equations simp del:L_rhs.simps)
+
+lemma init_ES_satisfy_Inv:
+  assumes finite_CS: "finite (UNIV Quo Lang)"
+  and X_in_eq_cls: "X \<in> UNIV Quo Lang"
+  shows "Inv X (equations (UNIV Quo Lang))"
+proof -
+  have "finite (equations (UNIV Quo Lang))" using finite_CS
+    by (auto simp:equations_def)    
+  moreover have "\<exists>rhs. (X, rhs) \<in> equations (UNIV Quo Lang)" using X_in_eq_cls 
+    by (simp add:equations_def)
+  moreover have "distinct_equas (equations (UNIV Quo Lang))" 
+    by (auto simp:distinct_equas_def equations_def)
+  moreover have "\<forall>X xrhs. (X, xrhs) \<in> equations (UNIV Quo Lang) \<longrightarrow>
+                 rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls (equations (UNIV Quo Lang)))" 
+    apply (simp add:left_eq_cls_def equations_def rhs_eq_cls_def equation_rhs_def)
+    by (auto simp:empty_rhs_def split:if_splits)
+  moreover have "\<forall>X xrhs. (X, xrhs) \<in> equations (UNIV Quo Lang) \<longrightarrow> X \<noteq> {}"
+    by (clarsimp simp:equations_def empty_notin_CS intro:classical)
+  moreover have "\<forall>X xrhs. (X, xrhs) \<in> equations (UNIV Quo Lang) \<longrightarrow> ardenable (X, xrhs)"
+    by (auto intro!:init_ES_satisfy_ardenable)
+  ultimately show ?thesis by (simp add:Inv_def)
+qed
+
+
+text {* *********** END: proving the initial equation-system satisfies Inv ******* *}
+
+
+text {* ****** BEGIN: proving every equation-system's iteration step satisfies Inv ***** *}
+
+lemma not_T_aux: "\<lbrakk>\<not> TCon (insert a A); x = a\<rbrakk>
+       \<Longrightarrow> \<exists>y. x \<noteq> y \<and> y \<in> insert a A "
+apply (case_tac "insert a A = {a}")
+by (auto simp:TCon_def)
+
+lemma not_T_atleast_2[rule_format]:
+  "finite S \<Longrightarrow> \<forall> x. x \<in> S \<and> (\<not> TCon S)\<longrightarrow> (\<exists> y. x \<noteq> y \<and> y \<in> S)"
+apply (erule finite.induct, simp)
+apply (clarify, case_tac "x = a")
+by (erule not_T_aux, auto)
+
+lemma exist_another_equa: 
+  "\<lbrakk>\<not> TCon ES; finite ES; distinct_equas ES; (X, rhl) \<in> ES\<rbrakk> \<Longrightarrow> \<exists> Y yrhl. (Y, yrhl) \<in> ES \<and> X \<noteq> Y"
+apply (drule not_T_atleast_2, simp)
+apply (clarsimp simp:distinct_equas_def)
+apply (drule_tac x= X in spec, drule_tac x = rhl in spec, drule_tac x = b in spec)
+by auto
+
+lemma Inv_mono_with_lambda:
+  assumes Inv_ES: "Inv X ES"
+  and X_noteq_Y:  "X \<noteq> {[]}"
+  shows "Inv X (ES - {({[]}, yrhs)})"
+proof -
+  have "finite (ES - {({[]}, yrhs)})" using Inv_ES
+    by (simp add:Inv_def)
+  moreover have "\<exists>rhs. (X, rhs) \<in> ES - {({[]}, yrhs)}" using Inv_ES X_noteq_Y
+    by (simp add:Inv_def)
+  moreover have "distinct_equas (ES - {({[]}, yrhs)})" using Inv_ES X_noteq_Y
+    apply (clarsimp simp:Inv_def distinct_equas_def)
+    by (drule_tac x = Xa in spec, simp)    
+  moreover have "\<forall>X xrhs.(X, xrhs) \<in> ES - {({[]}, yrhs)} \<longrightarrow>
+                          ardenable (X, xrhs) \<and> X \<noteq> {}" using Inv_ES
+    by (clarify, simp add:Inv_def)
+  moreover 
+  have "insert {[]} (left_eq_cls (ES - {({[]}, yrhs)})) = insert {[]} (left_eq_cls ES)"
+    by (auto simp:left_eq_cls_def)
+  hence "\<forall>X xrhs.(X, xrhs) \<in> ES - {({[]}, yrhs)} \<longrightarrow>
+                          rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls (ES - {({[]}, yrhs)}))"
+    using Inv_ES by (auto simp:Inv_def)
+  ultimately show ?thesis by (simp add:Inv_def)
+qed
+
+lemma non_empty_card_prop:
+  "finite ES \<Longrightarrow> \<forall>e. e \<in> ES \<longrightarrow> card ES - Suc 0 < card ES"
+apply (erule finite.induct, simp)
+apply (case_tac[!] "a \<in> A")
+by (auto simp:insert_absorb)
+
+lemma ardenable_prop:
+  assumes not_lambda: "Y \<noteq> {[]}"
+  and ardable: "ardenable (Y, yrhs)"
+  shows "\<exists> yrhs'. Y = L yrhs' \<and> distinct_rhs yrhs' \<and> rhs_eq_cls yrhs' = rhs_eq_cls yrhs - {Y}" (is "\<exists> yrhs'. ?P yrhs'")
+proof (cases "(\<exists> reg. (Y, reg) \<in> yrhs)")
+  case True
+  thus ?thesis 
+  proof 
+    fix reg
+    assume self_contained: "(Y, reg) \<in> yrhs"
+    show ?thesis 
+    proof -
+      have "?P (arden_variate Y reg yrhs)"
+      proof -
+        have "Y = L (arden_variate Y reg yrhs)" 
+          using self_contained not_lambda ardable
+          by (rule_tac arden_variate_valid, simp_all add:ardenable_def)
+        moreover have "distinct_rhs (arden_variate Y reg yrhs)" 
+          using ardable 
+          by (auto simp:distinct_rhs_def arden_variate_def seq_rhs_r_def del_x_paired_def ardenable_def)
+        moreover have "rhs_eq_cls (arden_variate Y reg yrhs) = rhs_eq_cls yrhs - {Y}"
+        proof -
+          have "\<And> rhs r. rhs_eq_cls (seq_rhs_r rhs r) = rhs_eq_cls rhs"
+            apply (auto simp:rhs_eq_cls_def seq_rhs_r_def image_def)
+            by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "(x, ra)" in bexI, simp+)
+          moreover have "\<And> rhs X. rhs_eq_cls (del_x_paired rhs X) = rhs_eq_cls rhs - {X}"
+            by (auto simp:rhs_eq_cls_def del_x_paired_def)
+          ultimately show ?thesis by (simp add:arden_variate_def)
+        qed
+        ultimately show ?thesis by simp
+      qed
+      thus ?thesis by (rule_tac x= "arden_variate Y reg yrhs" in exI, simp)
+    qed
+  qed
+next
+  case False
+  hence "(2)": "rhs_eq_cls yrhs - {Y} = rhs_eq_cls yrhs"
+    by (auto simp:rhs_eq_cls_def)
+  show ?thesis 
+  proof -
+    have "?P yrhs" using False ardable "(2)" 
+      by (simp add:ardenable_def)      
+    thus ?thesis by blast
+  qed
+qed
+
+lemma equas_subst_f_del_no_other:
+  assumes self_contained: "(Y, rhs) \<in> ES"
+  shows "\<exists> rhs'. (Y, rhs') \<in> (equas_subst_f X xrhs ` ES)" (is "\<exists> rhs'. ?P rhs'")
+proof -
+  have "\<exists> rhs'. equas_subst_f X xrhs (Y, rhs) = (Y, rhs')"
+    by (auto simp:equas_subst_f_def)
+  then obtain rhs' where "equas_subst_f X xrhs (Y, rhs) = (Y, rhs')" by blast
+  hence "?P rhs'" unfolding image_def using self_contained
+    by (auto intro:bexI[where x = "(Y, rhs)"])
+  thus ?thesis by blast
+qed
+
+lemma del_x_paired_del_only_x: 
+  "\<lbrakk>X \<noteq> Y; (X, rhs) \<in> ES\<rbrakk> \<Longrightarrow> (X, rhs) \<in> del_x_paired ES Y"
+by (auto simp:del_x_paired_def)
+
+lemma equas_subst_del_no_other:
+ "\<lbrakk>(X, rhs) \<in> ES; X \<noteq> Y\<rbrakk> \<Longrightarrow> (\<exists>rhs. (X, rhs) \<in> equas_subst ES Y rhs')"
+unfolding equas_subst_def
+apply (drule_tac X = Y and xrhs = rhs' in equas_subst_f_del_no_other)
+by (erule exE, drule del_x_paired_del_only_x, auto)
+
+lemma equas_subst_holds_distinct:
+  "distinct_equas ES \<Longrightarrow> distinct_equas (equas_subst ES Y rhs')"
+apply (clarsimp simp add:equas_subst_def distinct_equas_def del_x_paired_def equas_subst_f_def)
+by (auto split:if_splits)
+
+lemma del_x_paired_dels: 
+  "(X, rhs) \<in> ES \<Longrightarrow> {Y. Y \<in> ES \<and> fst Y = X} \<inter> ES \<noteq> {}"
+by (auto)
+
+lemma del_x_paired_subset:
+  "(X, rhs) \<in> ES \<Longrightarrow> ES - {Y. Y \<in> ES \<and> fst Y = X} \<subset> ES"
+apply (drule del_x_paired_dels)
+by auto
+
+lemma del_x_paired_card_less: 
+  "\<lbrakk>finite ES; (X, rhs) \<in> ES\<rbrakk> \<Longrightarrow> card (del_x_paired ES X) < card ES"
+apply (simp add:del_x_paired_def)
+apply (drule del_x_paired_subset)
+by (auto intro:psubset_card_mono)
+
+lemma equas_subst_card_less:
+  "\<lbrakk>finite ES; (Y, yrhs) \<in> ES\<rbrakk> \<Longrightarrow> card (equas_subst ES Y rhs') < card ES"
+apply (simp add:equas_subst_def)
+apply (frule_tac h = "equas_subst_f Y rhs'" in finite_imageI)
+apply (drule_tac f = "equas_subst_f Y rhs'" in Finite_Set.card_image_le)
+apply (drule_tac X = Y and xrhs = rhs' in equas_subst_f_del_no_other,erule exE)
+by (drule del_x_paired_card_less, auto)
+
+lemma equas_subst_holds_distinct_rhs:
+  assumes   dist': "distinct_rhs yrhs'"
+  and     history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs)"
+  and     X_in :  "(X, xrhs) \<in> equas_subst ES Y yrhs'"
+  shows "distinct_rhs xrhs"
+using X_in history
+apply (clarsimp simp:equas_subst_def del_x_paired_def)
+apply (drule_tac x = a in spec, drule_tac x = b in spec)
+apply (simp add:ardenable_def equas_subst_f_def)
+by (auto intro:rhs_subst_holds_distinct_rhs simp:dist' split:if_splits)
+
+lemma r_no_EMPTY_imp_seq_rhs_r_no_EMPTY:
+  "[] \<notin> L r \<Longrightarrow> no_EMPTY_rhs (seq_rhs_r rhs r)"
+by (auto simp:no_EMPTY_rhs_def seq_rhs_r_def lang_seq_def)
+
+lemma del_x_paired_holds_no_EMPTY:
+  "no_EMPTY_rhs yrhs \<Longrightarrow> no_EMPTY_rhs (del_x_paired yrhs Y)"
+by (auto simp:no_EMPTY_rhs_def del_x_paired_def)
+
+lemma rhs_subst_holds_no_EMPTY:
+  "\<lbrakk>no_EMPTY_rhs yrhs; (Y, r) \<in> yrhs; Y \<noteq> {[]}\<rbrakk> \<Longrightarrow> no_EMPTY_rhs (rhs_subst yrhs Y rhs' r)"
+apply (auto simp:rhs_subst_def intro!:no_EMPTY_rhss_imp_merge_no_EMPTY r_no_EMPTY_imp_seq_rhs_r_no_EMPTY del_x_paired_holds_no_EMPTY)
+by (auto simp:no_EMPTY_rhs_def)
+
+lemma equas_subst_holds_no_EMPTY:
+  assumes substor: "Y \<noteq> {[]}"
+  and history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs)"
+  and X_in:"(X, xrhs) \<in> equas_subst ES Y yrhs'"
+  shows "no_EMPTY_rhs xrhs"
+proof-
+  from X_in have "\<exists> (Z, zrhs) \<in> ES. (X, xrhs) = equas_subst_f Y yrhs' (Z, zrhs)"
+    by (auto simp add:equas_subst_def del_x_paired_def)
+  then obtain Z zrhs where Z_in: "(Z, zrhs) \<in> ES"
+                       and X_Z: "(X, xrhs) = equas_subst_f Y yrhs' (Z, zrhs)" by blast
+  hence dist_zrhs: "distinct_rhs zrhs" using history
+    by (auto simp:ardenable_def)
+  show ?thesis
+  proof (cases "\<exists> r. (Y, r) \<in> zrhs")
+    case True
+    then obtain r where Y_in_zrhs: "(Y, r) \<in> zrhs" ..
+    hence some: "(SOME r. (Y, r) \<in> zrhs) = r" using Z_in dist_zrhs
+      by (auto simp:distinct_rhs_def)
+    hence "no_EMPTY_rhs (rhs_subst zrhs Y yrhs' r)"
+      using substor Y_in_zrhs history Z_in
+      by (rule_tac rhs_subst_holds_no_EMPTY, auto simp:ardenable_def)
+    thus ?thesis using X_Z True some
+      by (simp add:equas_subst_def equas_subst_f_def)
+  next
+    case False
+    hence "(X, xrhs) = (Z, zrhs)" using Z_in X_Z
+      by (simp add:equas_subst_f_def)
+    thus ?thesis using history Z_in
+      by (auto simp:ardenable_def)
+  qed
+qed
+
+lemma equas_subst_f_holds_left_eq_right:
+  assumes substor: "Y = L rhs'"
+  and     history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> distinct_rhs xrhs \<and> X = L xrhs"
+  and       subst: "(X, xrhs) = equas_subst_f Y rhs' (Z, zrhs)"
+  and     self_contained: "(Z, zrhs) \<in> ES"
+  shows "X = L xrhs"
+proof (cases "\<exists> r. (Y, r) \<in> zrhs")
+  case True
+  from True obtain r where "(1)":"(Y, r) \<in> zrhs" ..
+  show ?thesis
+  proof -
+    from history self_contained
+    have dist: "distinct_rhs zrhs" by auto
+    hence "(SOME r. (Y, r) \<in> zrhs) = r" using self_contained "(1)"
+      using distinct_rhs_def by (auto intro:some_equality)
+    moreover have "L zrhs = L (rhs_subst zrhs Y rhs' r)" using substor dist "(1)" self_contained
+      by (rule_tac rhs_subst_prop1, auto simp:distinct_equas_rhs_def)
+    ultimately show ?thesis using subst history self_contained
+      by (auto simp:equas_subst_f_def split:if_splits)
+  qed
+next
+  case False
+  thus ?thesis using history subst self_contained
+    by (auto simp:equas_subst_f_def)
+qed
+
+lemma equas_subst_holds_left_eq_right:
+  assumes history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs)"
+  and     substor: "Y = L rhs'"
+  and     X_in :  "(X, xrhs) \<in> equas_subst ES Y yrhs'"
+  shows "\<forall>X xrhs. (X, xrhs) \<in> equas_subst ES Y rhs' \<longrightarrow> X = L xrhs"
+apply (clarsimp simp add:equas_subst_def del_x_paired_def)
+using substor
+apply (drule_tac equas_subst_f_holds_left_eq_right)
+using history
+by (auto simp:ardenable_def)
+
+lemma equas_subst_holds_ardenable:
+  assumes substor: "Y = L yrhs'"
+  and history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs)"
+  and X_in:"(X, xrhs) \<in> equas_subst ES Y yrhs'"
+  and dist': "distinct_rhs yrhs'"
+  and not_lambda: "Y \<noteq> {[]}"
+  shows "ardenable (X, xrhs)"
+proof -
+  have "distinct_rhs xrhs" using history X_in dist' 
+    by (auto dest:equas_subst_holds_distinct_rhs)
+  moreover have "no_EMPTY_rhs xrhs" using history X_in not_lambda
+    by (auto intro:equas_subst_holds_no_EMPTY)
+  moreover have "X = L xrhs" using history substor X_in
+  by (auto dest: equas_subst_holds_left_eq_right simp del:L_rhs.simps)
+  ultimately show ?thesis using ardenable_def by simp
+qed
+
+lemma equas_subst_holds_cls_defined:
+  assumes         X_in: "(X, xrhs) \<in> equas_subst ES Y yrhs'"
+  and           Inv_ES: "Inv X' ES"
+  and            subst: "(Y, yrhs) \<in> ES"
+  and  cls_holds_but_Y: "rhs_eq_cls yrhs' = rhs_eq_cls yrhs - {Y}"
+  shows "rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls (equas_subst ES Y yrhs'))"
+proof-
+  have tac: "\<lbrakk> A \<subseteq> B; C \<subseteq> D; E \<subseteq> A \<union> B\<rbrakk> \<Longrightarrow> E \<subseteq> B \<union> D" by auto
+  from X_in have "\<exists> (Z, zrhs) \<in> ES. (X, xrhs) = equas_subst_f Y yrhs' (Z, zrhs)"
+    by (auto simp add:equas_subst_def del_x_paired_def)
+  then obtain Z zrhs where Z_in: "(Z, zrhs) \<in> ES"
+                       and X_Z: "(X, xrhs) = equas_subst_f Y yrhs' (Z, zrhs)" by blast
+  hence "rhs_eq_cls zrhs \<subseteq> insert {[]} (left_eq_cls ES)" using Inv_ES
+    by (auto simp:Inv_def)
+  moreover have "rhs_eq_cls yrhs' \<subseteq> insert {[]} (left_eq_cls ES) - {Y}" 
+    using Inv_ES subst cls_holds_but_Y
+    by (auto simp:Inv_def)
+  moreover have "rhs_eq_cls xrhs \<subseteq> rhs_eq_cls zrhs \<union> rhs_eq_cls yrhs' - {Y}"
+    using X_Z cls_holds_but_Y
+    apply (clarsimp simp add:equas_subst_f_def rhs_subst_def split:if_splits)
+    by (auto simp:rhs_eq_cls_def merge_rhs_def del_x_paired_def seq_rhs_r_def)
+  moreover have "left_eq_cls (equas_subst ES Y yrhs') = left_eq_cls ES - {Y}" using subst
+    by (auto simp: left_eq_cls_def equas_subst_def del_x_paired_def equas_subst_f_def
+             dest: equas_subst_f_del_no_other
+             split: if_splits)
+  ultimately show ?thesis by blast
+qed
+
+lemma iteration_step: 
+  assumes Inv_ES: "Inv X ES"
+  and    not_T: "\<not> TCon ES"
+  shows "(\<exists> ES'. Inv X ES' \<and> (card ES', card ES) \<in> less_than)" 
+proof -
+  from Inv_ES not_T have another: "\<exists>Y yrhs. (Y, yrhs) \<in> ES \<and> X \<noteq> Y" unfolding Inv_def
+    by (clarify, rule_tac exist_another_equa[where X = X], auto)
+  then obtain Y yrhs where subst: "(Y, yrhs) \<in> ES" and not_X: " X \<noteq> Y" by blast
+  show ?thesis (is "\<exists> ES'. ?P ES'")
+  proof (cases "Y = {[]}") 
+    case True
+      --"in this situation, we pick a \"\<lambda>\" equation, thus directly remove it from the equation-system"
+    have "?P (ES - {(Y, yrhs)})" 
+    proof 
+      show "Inv X (ES - {(Y, yrhs)})" using True not_X
+        by (simp add:Inv_ES Inv_mono_with_lambda)
+    next 
+      show "(card (ES - {(Y, yrhs)}), card ES) \<in> less_than" using Inv_ES subst
+        by (auto elim:non_empty_card_prop[rule_format] simp:Inv_def)
+    qed
+    thus ?thesis by blast
+  next
+    case False
+      --"in this situation, we pick a equation and using ardenable to get a 
+        rhs without itself in it, then use equas_subst to form a new equation-system"
+    hence "\<exists> yrhs'. Y = L yrhs' \<and> distinct_rhs yrhs' \<and> rhs_eq_cls yrhs' = rhs_eq_cls yrhs - {Y}" 
+      using subst Inv_ES
+      by (auto intro:ardenable_prop simp add:Inv_def simp del:L_rhs.simps)
+    then obtain yrhs' where Y'_l_eq_r: "Y = L yrhs'"
+      and dist_Y': "distinct_rhs yrhs'"
+      and cls_holds_but_Y: "rhs_eq_cls yrhs' = rhs_eq_cls yrhs - {Y}" by blast
+    hence "?P (equas_subst ES Y yrhs')"
+    proof -
+      have finite_del: "\<And> S x. finite S \<Longrightarrow> finite (del_x_paired S x)" 
+        apply (rule_tac A = "del_x_paired S x" in finite_subset)
+        by (auto simp:del_x_paired_def)
+      have "finite (equas_subst ES Y yrhs')" using Inv_ES 
+        by (auto intro!:finite_del simp:equas_subst_def Inv_def)
+      moreover have "\<exists>rhs. (X, rhs) \<in> equas_subst ES Y yrhs'" using Inv_ES not_X
+        by (auto intro:equas_subst_del_no_other simp:Inv_def)
+      moreover have "distinct_equas (equas_subst ES Y yrhs')" using Inv_ES
+        by (auto intro:equas_subst_holds_distinct simp:Inv_def)
+      moreover have "\<forall>X xrhs. (X, xrhs) \<in> equas_subst ES Y yrhs' \<longrightarrow> ardenable (X, xrhs)"
+        using Inv_ES dist_Y' False Y'_l_eq_r
+        apply (clarsimp simp:Inv_def)
+        by (rule equas_subst_holds_ardenable, simp_all)
+      moreover have "\<forall>X xrhs. (X, xrhs) \<in> equas_subst ES Y yrhs' \<longrightarrow> X \<noteq> {}" using Inv_ES
+        by (clarsimp simp:equas_subst_def Inv_def del_x_paired_def equas_subst_f_def split:if_splits, auto)
+      moreover have "\<forall>X xrhs. (X, xrhs) \<in> equas_subst ES Y yrhs' \<longrightarrow>
+                               rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls (equas_subst ES Y yrhs'))"
+        using Inv_ES subst cls_holds_but_Y
+        apply (rule_tac impI | rule_tac allI)+
+        by (erule equas_subst_holds_cls_defined, auto)
+      moreover have "(card (equas_subst ES Y yrhs'), card ES) \<in> less_than"using Inv_ES subst
+        by (simp add:equas_subst_card_less Inv_def)
+      ultimately show "?P (equas_subst ES Y yrhs')" by (auto simp:Inv_def)      
+    qed
+    thus ?thesis by blast
+  qed
+qed
+
+text {* ***** END: proving every equation-system's iteration step satisfies Inv ************** *}
+
+lemma iteration_conc: 
+  assumes history: "Inv X ES"
+  shows "\<exists> ES'. Inv X ES' \<and> TCon ES'" (is "\<exists> ES'. ?P ES'")
+proof (cases "TCon ES")
+  case True
+  hence "?P ES" using history by simp
+  thus ?thesis by blast
+next
+  case False  
+  thus ?thesis using history iteration_step
+    by (rule_tac f = card in wf_iter, simp_all)
+qed
+
+lemma eqset_imp_iff': "A = B \<Longrightarrow> \<forall> x. x \<in> A \<longleftrightarrow> x \<in> B"
+apply (auto simp:mem_def)
+done
+
+lemma set_cases2:
+  "\<lbrakk>(A = {} \<Longrightarrow> R A); \<And> x. (A = {x}) \<Longrightarrow> R A; \<And> x y. \<lbrakk>x \<noteq> y; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> R A\<rbrakk> \<Longrightarrow> R A"
+apply (case_tac "A = {}", simp)
+by (case_tac "\<exists> x. A = {x}", clarsimp, blast)
+
+lemma rhs_aux:"\<lbrakk>distinct_rhs rhs; {Y. \<exists>r. (Y, r) \<in> rhs} = {X}\<rbrakk> \<Longrightarrow> (\<exists>r. rhs = {(X, r)})"
+apply (rule_tac A = rhs in set_cases2, simp)
+apply (drule_tac x = X in eqset_imp_iff, clarsimp)
+apply (drule eqset_imp_iff',clarsimp)
+apply (frule_tac x = a in spec, drule_tac x = aa in spec)
+by (auto simp:distinct_rhs_def)
+
+lemma every_eqcl_has_reg: 
+  assumes finite_CS: "finite (UNIV Quo Lang)"
+  and X_in_CS: "X \<in> (UNIV Quo Lang)"
+  shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r")
+proof-
+  have "\<exists>ES'. Inv X ES' \<and> TCon ES'" using finite_CS X_in_CS
+    by (auto intro:init_ES_satisfy_Inv iteration_conc)
+  then obtain ES' where Inv_ES': "Inv X ES'" 
+                   and  TCon_ES': "TCon ES'" by blast
+  from Inv_ES' TCon_ES' 
+  have "\<exists> rhs. ES' = {(X, rhs)}"
+    apply (clarsimp simp:Inv_def TCon_def)
+    apply (rule_tac x = rhs in exI)
+    by (auto dest!:card_Suc_Diff1 simp:card_eq_0_iff)  
+  then obtain rhs where ES'_single_equa: "ES' = {(X, rhs)}" ..
+  hence X_ardenable: "ardenable (X, rhs)" using Inv_ES'
+    by (simp add:Inv_def)
+  
+  from X_ardenable have X_l_eq_r: "X = L rhs"
+    by (simp add:ardenable_def)
+  hence rhs_not_empty: "rhs \<noteq> {}" using Inv_ES' ES'_single_equa
+    by (auto simp:Inv_def ardenable_def)
+  have rhs_eq_cls: "rhs_eq_cls rhs \<subseteq> {X, {[]}}"
+    using Inv_ES' ES'_single_equa
+    by (auto simp:Inv_def ardenable_def left_eq_cls_def)
+  have X_not_empty: "X \<noteq> {}" using Inv_ES' ES'_single_equa
+    by (auto simp:Inv_def)    
+  show ?thesis
+  proof (cases "X = {[]}")
+    case True
+    hence "?E EMPTY" by (simp)
+    thus ?thesis by blast
+  next
+    case False with  X_ardenable
+    have "\<exists> rhs'. X = L rhs' \<and> rhs_eq_cls rhs' = rhs_eq_cls rhs - {X} \<and> distinct_rhs rhs'"
+      by (drule_tac ardenable_prop, auto)
+    then obtain rhs' where X_eq_rhs': "X = L rhs'"
+      and rhs'_eq_cls: "rhs_eq_cls rhs' = rhs_eq_cls rhs - {X}" 
+      and rhs'_dist : "distinct_rhs rhs'" by blast
+    have "rhs_eq_cls rhs' \<subseteq> {{[]}}" using rhs_eq_cls False rhs'_eq_cls rhs_not_empty 
+      by blast
+    hence "rhs_eq_cls rhs' = {{[]}}" using X_not_empty X_eq_rhs'
+      by (auto simp:rhs_eq_cls_def)
+    hence "\<exists> r. rhs' = {({[]}, r)}" using rhs'_dist
+      by (auto intro:rhs_aux simp:rhs_eq_cls_def)
+    then obtain r where "rhs' = {({[]}, r)}" ..
+    hence "?E r" using X_eq_rhs' by (auto simp add:lang_seq_def)
+    thus ?thesis by blast     
+  qed
+qed
+
+text {* definition of a regular language *}
+
+abbreviation
+  reg :: "string set => bool"
+where
+  "reg L1 \<equiv> (\<exists>r::rexp. L r = L1)"
+
+theorem myhill_nerode: 
+  assumes finite_CS: "finite (UNIV Quo Lang)"
+  shows   "\<exists> (reg::rexp). Lang = L reg" (is "\<exists> r. ?P r")
+proof -
+  have has_r_each: "\<forall>C\<in>{X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. \<exists>(r::rexp). C = L r" using finite_CS
+    by (auto dest:every_eqcl_has_reg)  
+  have "\<exists> (rS::rexp set). finite rS \<and> 
+                          (\<forall> C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. \<exists> r \<in> rS. C = L r) \<and> 
+                          (\<forall> r \<in> rS. \<exists> C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. C = L r)" 
+       (is "\<exists> rS. ?Q rS")
+  proof-
+    have "\<And> C. C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang} \<Longrightarrow> C = L (SOME (ra::rexp). C = L ra)"
+      using has_r_each
+      apply (erule_tac x = C in ballE, erule_tac exE)
+      by (rule_tac a = r in someI2, simp+)
+    hence "?Q ((\<lambda> C. SOME r. C = L r) ` {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang})" using has_r_each
+      using finite_CS by auto
+    thus ?thesis by blast    
+  qed
+  then obtain rS where finite_rS : "finite rS"
+    and has_r_each': "\<forall> C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. \<exists> r \<in> (rS::rexp set). C = L r"
+    and has_cl_each: "\<forall> r \<in> (rS::rexp set). \<exists> C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. C = L r" by blast
+  have "?P (folds ALT NULL rS)"
+  proof
+    show "Lang \<subseteq> L (folds ALT NULL rS)" using finite_rS lang_eqs_union_of_eqcls[of Lang] has_r_each'
+      apply (clarsimp simp:fold_alt_null_eqs) by blast
+  next 
+    show "L (folds ALT NULL rS) \<subseteq> Lang" using finite_rS lang_eqs_union_of_eqcls[of Lang] has_cl_each
+      by (clarsimp simp:fold_alt_null_eqs)
+  qed
+  thus ?thesis by blast
+qed 
+
+
+text {* tests by Christian *}
+
+(* Alternative definition for Quo *)
+definition 
+  QUOT :: "string set \<Rightarrow> (string set) set"  
+where
+  "QUOT Lang \<equiv> (\<Union>x. {\<lbrakk>x\<rbrakk>Lang})"
+
+lemma test: 
+  "UNIV Quo Lang = QUOT Lang"
+by (auto simp add: quot_def QUOT_def)
+
+lemma test1:
+  assumes finite_CS: "finite (QUOT Lang)"
+  shows "reg Lang"
+using finite_CS
+unfolding test[symmetric]
+by (auto dest: myhill_nerode)
+
+lemma cons_one: "x @ y \<in> {z} \<Longrightarrow> x @ y = z"
+by simp
+
+lemma quot_lambda: "QUOT {[]} = {{[]}, UNIV - {[]}}"
+proof 
+  show "QUOT {[]} \<subseteq> {{[]}, UNIV - {[]}}"
+  proof 
+    fix x 
+    assume in_quot: "x \<in> QUOT {[]}"
+    show "x \<in> {{[]}, UNIV - {[]}}"
+    proof -
+      from in_quot 
+      have "x = {[]} \<or> x = UNIV - {[]}"
+        unfolding QUOT_def equiv_class_def
+      proof 
+        fix xa
+        assume in_univ: "xa \<in> UNIV"
+           and in_eqiv: "x \<in> {{y. xa \<equiv>{[]}\<equiv> y}}"
+        show "x = {[]} \<or> x = UNIV - {[]}"
+        proof(cases "xa = []")
+          case True
+          hence "{y. xa \<equiv>{[]}\<equiv> y} = {[]}" using in_eqiv
+            by (auto simp add:equiv_str_def)
+          thus ?thesis using in_eqiv by (rule_tac disjI1, simp)
+        next
+          case False
+          hence "{y. xa \<equiv>{[]}\<equiv> y} = UNIV - {[]}" using in_eqiv
+            by (auto simp:equiv_str_def)
+          thus ?thesis using in_eqiv by (rule_tac disjI2, simp)
+        qed
+      qed
+      thus ?thesis by simp
+    qed
+  qed
+next
+  show "{{[]}, UNIV - {[]}} \<subseteq> QUOT {[]}"
+  proof
+    fix x
+    assume in_res: "x \<in> {{[]}, (UNIV::string set) - {[]}}"
+    show "x \<in> (QUOT {[]})"
+    proof -
+      have "x = {[]} \<Longrightarrow> x \<in> QUOT {[]}"
+        apply (simp add:QUOT_def equiv_class_def equiv_str_def)
+        by (rule_tac x = "[]" in exI, auto)
+      moreover have "x = UNIV - {[]} \<Longrightarrow> x \<in> QUOT {[]}"
+        apply (simp add:QUOT_def equiv_class_def equiv_str_def)
+        by (rule_tac x = "''a''" in exI, auto)
+      ultimately show ?thesis using in_res by blast
+    qed
+  qed
+qed
+
+lemma quot_single_aux: "\<lbrakk>x \<noteq> []; x \<noteq> [c]\<rbrakk> \<Longrightarrow> x @ z \<noteq> [c]"
+by (induct x, auto)
+
+lemma quot_single: "\<And> (c::char). QUOT {[c]} = {{[]}, {[c]}, UNIV - {[], [c]}}"
+proof - 
+  fix c::"char" 
+  have exist_another: "\<exists> a. a \<noteq> c" 
+    apply (case_tac "c = CHR ''a''")
+    apply (rule_tac x = "CHR ''b''" in exI, simp)
+    by (rule_tac x = "CHR ''a''" in exI, simp)  
+  show "QUOT {[c]} = {{[]}, {[c]}, UNIV - {[], [c]}}"
+  proof
+    show "QUOT {[c]} \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"
+    proof 
+      fix x 
+      assume in_quot: "x \<in> QUOT {[c]}"
+      show "x \<in> {{[]}, {[c]}, UNIV - {[],[c]}}"
+      proof -
+        from in_quot 
+        have "x = {[]} \<or> x = {[c]} \<or> x = UNIV - {[],[c]}"
+          unfolding QUOT_def equiv_class_def
+        proof 
+          fix xa
+          assume in_eqiv: "x \<in> {{y. xa \<equiv>{[c]}\<equiv> y}}"
+          show "x = {[]} \<or> x = {[c]} \<or> x = UNIV - {[], [c]}"
+          proof-
+            have "xa = [] \<Longrightarrow> x = {[]}" using in_eqiv 
+              by (auto simp add:equiv_str_def)
+            moreover have "xa = [c] \<Longrightarrow> x = {[c]}"
+            proof -
+              have "xa = [c] \<Longrightarrow> {y. xa \<equiv>{[c]}\<equiv> y} = {[c]}" using in_eqiv
+                apply (simp add:equiv_str_def)
+                apply (rule set_ext, rule iffI, simp)
+                apply (drule_tac x = "[]" in spec, auto)
+                done   
+              thus "xa = [c] \<Longrightarrow> x = {[c]}" using in_eqiv by simp 
+            qed
+            moreover have "\<lbrakk>xa \<noteq> []; xa \<noteq> [c]\<rbrakk> \<Longrightarrow> x = UNIV - {[],[c]}"
+            proof -
+              have "\<lbrakk>xa \<noteq> []; xa \<noteq> [c]\<rbrakk> \<Longrightarrow> {y. xa \<equiv>{[c]}\<equiv> y} = UNIV - {[],[c]}" 
+                apply (clarsimp simp add:equiv_str_def)
+                apply (rule set_ext, rule iffI, simp)
+                apply (rule conjI)
+                apply (drule_tac x = "[c]" in spec, simp)
+                apply (drule_tac x = "[]" in spec, simp)
+                by (auto dest:quot_single_aux)
+              thus "\<lbrakk>xa \<noteq> []; xa \<noteq> [c]\<rbrakk> \<Longrightarrow> x = UNIV - {[],[c]}" using in_eqiv by simp
+            qed
+            ultimately show ?thesis by blast
+          qed
+        qed
+        thus ?thesis by simp
+      qed
+    qed
+  next
+    show "{{[]}, {[c]}, UNIV - {[],[c]}} \<subseteq> QUOT {[c]}"
+    proof
+      fix x
+      assume in_res: "x \<in> {{[]},{[c]}, (UNIV::string set) - {[],[c]}}"
+      show "x \<in> (QUOT {[c]})"
+      proof -
+        have "x = {[]} \<Longrightarrow> x \<in> QUOT {[c]}"
+          apply (simp add:QUOT_def equiv_class_def equiv_str_def)
+          by (rule_tac x = "[]" in exI, auto)
+        moreover have "x = {[c]} \<Longrightarrow> x \<in> QUOT {[c]}"
+          apply (simp add:QUOT_def equiv_class_def equiv_str_def)
+          apply (rule_tac x = "[c]" in exI, simp)
+          apply (rule set_ext, rule iffI, simp+)
+          by (drule_tac x = "[]" in spec, simp)
+        moreover have "x = UNIV - {[],[c]} \<Longrightarrow> x \<in> QUOT {[c]}"
+          using exist_another
+          apply (clarsimp simp add:QUOT_def equiv_class_def equiv_str_def)        
+          apply (rule_tac x = "[a]" in exI, simp)
+          apply (rule set_ext, rule iffI, simp)
+          apply (clarsimp simp:quot_single_aux, simp)
+          apply (rule conjI)
+          apply (drule_tac x = "[c]" in spec, simp)
+          by (drule_tac x = "[]" in spec, simp)     
+        ultimately show ?thesis using in_res by blast
+      qed
+    qed
+  qed
+qed
+
+lemma eq_class_imp_eq_str:
+  "\<lbrakk>x\<rbrakk>lang = \<lbrakk>y\<rbrakk>lang \<Longrightarrow> x \<equiv>lang\<equiv> y"
+by (auto simp:equiv_class_def equiv_str_def)
+
+lemma finite_tag_image: 
+  "finite (range tag) \<Longrightarrow> finite (((op `) tag) ` S)"
+apply (rule_tac B = "Pow (tag ` UNIV)" in finite_subset)
+by (auto simp add:image_def Pow_def)
+
+lemma str_inj_imps:
+  assumes str_inj: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<equiv>lang\<equiv> n"
+  shows "inj_on ((op `) tag) (QUOT lang)"
+proof (clarsimp simp add:inj_on_def QUOT_def)
+  fix x y
+  assume eq_tag: "tag ` \<lbrakk>x\<rbrakk>lang = tag ` \<lbrakk>y\<rbrakk>lang"
+  show "\<lbrakk>x\<rbrakk>lang = \<lbrakk>y\<rbrakk>lang"
+  proof -
+    have aux1:"\<And>a b. a \<in> (\<lbrakk>b\<rbrakk>lang) \<Longrightarrow> (a \<equiv>lang\<equiv> b)"
+      by (simp add:equiv_class_def equiv_str_def)
+    have aux2: "\<And> A B f. \<lbrakk>f ` A = f ` B; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists> a b. a \<in> A \<and> b \<in> B \<and> f a = f b"
+      by auto
+    have aux3: "\<And> a l. \<lbrakk>a\<rbrakk>l \<noteq> {}" 
+      by (auto simp:equiv_class_def equiv_str_def)
+    show ?thesis using eq_tag
+      apply (drule_tac aux2, simp add:aux3, clarsimp)
+      apply (drule_tac str_inj, (drule_tac aux1)+)
+      by (simp add:equiv_str_def equiv_class_def)
+  qed
+qed
+
+definition tag_str_ALT :: "string set \<Rightarrow> string set \<Rightarrow> string \<Rightarrow> (string set \<times> string set)"
+where
+  "tag_str_ALT L\<^isub>1 L\<^isub>2 x \<equiv> (\<lbrakk>x\<rbrakk>L\<^isub>1, \<lbrakk>x\<rbrakk>L\<^isub>2)"
+
+lemma tag_str_alt_range_finite:
+  assumes finite1: "finite (QUOT L\<^isub>1)"
+  and finite2: "finite (QUOT L\<^isub>2)"
+  shows "finite (range (tag_str_ALT L\<^isub>1 L\<^isub>2))"
+proof -
+  have "{y. \<exists>x. y = (\<lbrakk>x\<rbrakk>L\<^isub>1, \<lbrakk>x\<rbrakk>L\<^isub>2)} \<subseteq> (QUOT L\<^isub>1) \<times> (QUOT L\<^isub>2)"
+    by (auto simp:QUOT_def)
+  thus ?thesis using finite1 finite2
+    by (auto simp: image_def tag_str_ALT_def UNION_def 
+            intro: finite_subset[where B = "(QUOT L\<^isub>1) \<times> (QUOT L\<^isub>2)"])
+qed
+
+lemma tag_str_alt_inj:
+  "tag_str_ALT L\<^isub>1 L\<^isub>2 x = tag_str_ALT L\<^isub>1 L\<^isub>2 y \<Longrightarrow> x \<equiv>(L\<^isub>1 \<union> L\<^isub>2)\<equiv> y"
+apply (simp add:tag_str_ALT_def equiv_class_def equiv_str_def)
+by blast
+  
+lemma quot_alt:
+  assumes finite1: "finite (QUOT L\<^isub>1)"
+  and finite2: "finite (QUOT L\<^isub>2)"
+  shows "finite (QUOT (L\<^isub>1 \<union> L\<^isub>2))"
+proof (rule_tac f = "(op `) (tag_str_ALT L\<^isub>1 L\<^isub>2)" in finite_imageD)
+  show "finite (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2) ` QUOT (L\<^isub>1 \<union> L\<^isub>2))"
+    using finite_tag_image tag_str_alt_range_finite finite1 finite2
+    by auto
+next
+  show "inj_on (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2)) (QUOT (L\<^isub>1 \<union> L\<^isub>2))"
+    apply (rule_tac str_inj_imps)
+    by (erule_tac tag_str_alt_inj)
+qed
+
+(* list_diff:: list substract, once different return tailer *)
+fun list_diff :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix "-" 51)
+where
+  "list_diff []  xs = []" |
+  "list_diff (x#xs) [] = x#xs" |
+  "list_diff (x#xs) (y#ys) = (if x = y then list_diff xs ys else (x#xs))"
+
+lemma [simp]: "(x @ y) - x = y"
+apply (induct x)
+by (case_tac y, simp+)
+
+lemma [simp]: "x - x = []"
+by (induct x, auto)
+
+lemma [simp]: "x = xa @ y \<Longrightarrow> x - xa = y "
+by (induct x, auto)
+
+lemma [simp]: "x - [] = x"
+by (induct x, auto)
+
+lemma [simp]: "xa \<le> x \<Longrightarrow> (x @ y) - xa = (x - xa) @ y"
+by (auto elim:prefixE)
+
+definition tag_str_SEQ:: "string set \<Rightarrow> string set \<Rightarrow> string \<Rightarrow> (string set \<times> string set set)"
+where
+  "tag_str_SEQ L\<^isub>1 L\<^isub>2 x \<equiv> if (\<exists> xa \<le> x. xa \<in> L\<^isub>1)
+                         then (\<lbrakk>x\<rbrakk>L\<^isub>1, {\<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 | xa.  xa \<le> x \<and> xa \<in> L\<^isub>1})
+                         else (\<lbrakk>x\<rbrakk>L\<^isub>1, {})"
+
+lemma tag_seq_eq_E:
+  "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y \<Longrightarrow>
+   ((\<exists> xa \<le> x. xa \<in> L\<^isub>1) \<and> \<lbrakk>x\<rbrakk>L\<^isub>1 = \<lbrakk>y\<rbrakk>L\<^isub>1 \<and> 
+    {\<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 | xa. xa \<le> x \<and> xa \<in> L\<^isub>1} = {\<lbrakk>(y - ya)\<rbrakk>L\<^isub>2 | ya. ya \<le> y \<and> ya \<in> L\<^isub>1} ) \<or>
+   ((\<forall> xa \<le> x. xa \<notin> L\<^isub>1) \<and> \<lbrakk>x\<rbrakk>L\<^isub>1 = \<lbrakk>y\<rbrakk>L\<^isub>1)"
+by (simp add:tag_str_SEQ_def split:if_splits, blast)
+
+lemma tag_str_seq_range_finite:
+  assumes finite1: "finite (QUOT L\<^isub>1)"
+  and finite2: "finite (QUOT L\<^isub>2)"
+  shows "finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))"
+proof -
+  have "(range (tag_str_SEQ L\<^isub>1 L\<^isub>2)) \<subseteq> (QUOT L\<^isub>1) \<times> (Pow (QUOT L\<^isub>2))"
+    by (auto simp:image_def tag_str_SEQ_def QUOT_def)
+  thus ?thesis using finite1 finite2 
+    by (rule_tac B = "(QUOT L\<^isub>1) \<times> (Pow (QUOT L\<^isub>2))" in finite_subset, auto)
+qed
+  
+lemma app_in_seq_decom[rule_format]:
+  "\<forall> x. x @ z \<in> L\<^isub>1 ; L\<^isub>2 \<longrightarrow> (\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2) \<or> 
+                            (\<exists> za \<le> z. (x @ za) \<in> L\<^isub>1 \<and> (z - za) \<in> L\<^isub>2)"
+apply (induct z)
+apply (simp, rule allI, rule impI, rule disjI1)
+apply (clarsimp simp add:lang_seq_def)
+apply (rule_tac x = s1 in exI, simp)
+apply (rule allI | rule impI)+
+apply (drule_tac x = "x @ [a]" in spec, simp)
+apply (erule exE | erule conjE | erule disjE)+
+apply (rule disjI2, rule_tac x = "[a]" in exI, simp)
+apply (rule disjI1, rule_tac x = xa in exI, simp) 
+apply (erule exE | erule conjE)+
+apply (rule disjI2, rule_tac x = "a # za" in exI, simp)
+done
+
+lemma tag_str_seq_inj:
+  assumes tag_eq: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y"
+  shows "(x::string) \<equiv>(L\<^isub>1 ; L\<^isub>2)\<equiv> y"
+proof -
+  have aux: "\<And> x y z. \<lbrakk>tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y; x @ z \<in> L\<^isub>1 ; L\<^isub>2\<rbrakk> 
+                       \<Longrightarrow> y @ z \<in> L\<^isub>1 ; L\<^isub>2"
+  proof (drule app_in_seq_decom, erule disjE)
+    fix x y z
+    assume tag_eq: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y"
+      and x_gets_l2: "\<exists>xa\<le>x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2"
+    from x_gets_l2 have "\<exists> xa \<le> x. xa \<in> L\<^isub>1" by blast
+    hence xy_l2:"{\<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 | xa. xa \<le> x \<and> xa \<in> L\<^isub>1} = {\<lbrakk>(y - ya)\<rbrakk>L\<^isub>2 | ya. ya \<le> y \<and> ya \<in> L\<^isub>1}"
+      using tag_eq tag_seq_eq_E by blast
+    from x_gets_l2 obtain xa where xa_le_x: "xa \<le> x"
+                               and xa_in_l1: "xa \<in> L\<^isub>1"
+                               and rest_in_l2: "(x - xa) @ z \<in> L\<^isub>2" by blast
+    hence "\<exists> ya. \<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 = \<lbrakk>(y - ya)\<rbrakk>L\<^isub>2 \<and> ya \<le> y \<and> ya \<in> L\<^isub>1" using xy_l2 by auto
+    then obtain ya where ya_le_x: "ya \<le> y"
+                     and ya_in_l1: "ya \<in> L\<^isub>1"
+                     and rest_eq: "\<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 = \<lbrakk>(y - ya)\<rbrakk>L\<^isub>2" by blast
+    from rest_eq rest_in_l2 have "(y - ya) @ z \<in> L\<^isub>2" 
+      by (auto simp:equiv_class_def equiv_str_def)
+    hence "ya @ ((y - ya) @ z) \<in> L\<^isub>1 ; L\<^isub>2" using ya_in_l1
+      by (auto simp:lang_seq_def)
+    thus "y @ z \<in> L\<^isub>1 ; L\<^isub>2" using ya_le_x 
+      by (erule_tac prefixE, simp)
+  next
+    fix x y z
+    assume tag_eq: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y"
+      and x_gets_l1: "\<exists>za\<le>z. x @ za \<in> L\<^isub>1 \<and> z - za \<in> L\<^isub>2"
+    from tag_eq tag_seq_eq_E have x_y_eq: "\<lbrakk>x\<rbrakk>L\<^isub>1 = \<lbrakk>y\<rbrakk>L\<^isub>1" by blast
+    from x_gets_l1 obtain za where za_le_z: "za \<le> z"
+                               and x_za_in_l1: "(x @ za) \<in> L\<^isub>1"
+                               and rest_in_l2: "z - za \<in> L\<^isub>2" by blast
+    from x_y_eq x_za_in_l1 have y_za_in_l1: "y @ za \<in> L\<^isub>1"
+      by (auto simp:equiv_class_def equiv_str_def)
+    hence "(y @ za) @ (z - za) \<in> L\<^isub>1 ; L\<^isub>2" using rest_in_l2
+      apply (simp add:lang_seq_def)
+      by (rule_tac x = "y @ za" in exI, rule_tac x = "z - za" in exI, simp)
+    thus "y @ z \<in> L\<^isub>1 ; L\<^isub>2" using za_le_z
+      by (erule_tac prefixE, simp)
+  qed
+  show ?thesis using tag_eq
+    apply (simp add:equiv_str_def)
+    by (auto intro:aux)
+qed
+
+lemma quot_seq: 
+  assumes finite1: "finite (QUOT L\<^isub>1)"
+  and finite2: "finite (QUOT L\<^isub>2)"
+  shows "finite (QUOT (L\<^isub>1;L\<^isub>2))"
+proof (rule_tac f = "(op `) (tag_str_SEQ L\<^isub>1 L\<^isub>2)" in finite_imageD)
+  show "finite (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2) ` QUOT (L\<^isub>1 ; L\<^isub>2))"
+    using finite_tag_image tag_str_seq_range_finite finite1 finite2
+    by auto
+next
+  show "inj_on (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2)) (QUOT (L\<^isub>1 ; L\<^isub>2))"
+    apply (rule_tac str_inj_imps)
+    by (erule_tac tag_str_seq_inj)
+qed
+
+(****************** the STAR case ************************)
+
+lemma app_eq_elim[rule_format]:
+  "\<And> a. \<forall> b x y. a @ b = x @ y \<longrightarrow> (\<exists> aa ab. a = aa @ ab \<and> x = aa \<and> y = ab @ b) \<or>
+                                   (\<exists> ba bb. b = ba @ bb \<and> x = a @ ba \<and> y = bb \<and> ba \<noteq> [])"
+  apply (induct_tac a rule:List.induct, simp)
+  apply (rule allI | rule impI)+
+  by (case_tac x, auto)
+
+definition tag_str_STAR:: "string set \<Rightarrow> string \<Rightarrow> string set set"
+where
+  "tag_str_STAR L\<^isub>1 x \<equiv> if (x = []) 
+                       then {}
+                       else {\<lbrakk>x\<^isub>2\<rbrakk>L\<^isub>1 | x\<^isub>1 x\<^isub>2. x =  x\<^isub>1 @ x\<^isub>2 \<and> x\<^isub>1 \<in> L\<^isub>1\<star> \<and> x\<^isub>2 \<noteq> []}"
+
+lemma tag_str_star_range_finite:
+  assumes finite1: "finite (QUOT L\<^isub>1)"
+  shows "finite (range (tag_str_STAR L\<^isub>1))"
+proof -
+  have "range (tag_str_STAR L\<^isub>1) \<subseteq> Pow (QUOT L\<^isub>1)"
+    by (auto simp:image_def tag_str_STAR_def QUOT_def)
+  thus ?thesis using finite1
+    by (rule_tac B = "Pow (QUOT L\<^isub>1)" in finite_subset, auto)
+qed
+
+lemma star_prop[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>"
+by (erule Star.induct, auto)
+
+lemma star_prop2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>"
+by (drule step[of y lang "[]"], auto simp:start)
+
+lemma star_prop3[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>"
+by (erule Star.induct, auto intro:star_prop2)
+
+lemma postfix_prop: "y >>= (x @ y) \<Longrightarrow> x = []"
+by (erule postfixE, induct x arbitrary:y, auto)
+
+lemma inj_aux:
+  "\<lbrakk>(m @ z) \<in> L\<^isub>1\<star>; m \<equiv>L\<^isub>1\<equiv> yb; xa @ m = x; xa \<in> L\<^isub>1\<star>; m \<noteq> [];
+    \<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= m\<rbrakk> 
+  \<Longrightarrow> (yb @ z) \<in> L\<^isub>1\<star>"
+proof- 
+  have "\<And>s. s \<in> L\<^isub>1\<star> \<Longrightarrow> \<forall> m z yb. (s = m @ z \<and> m \<equiv>L\<^isub>1\<equiv> yb \<and> x = xa @ m \<and> xa \<in> L\<^isub>1\<star> \<and> m \<noteq> [] \<and>  
+    (\<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= m) \<longrightarrow> (yb @ z) \<in> L\<^isub>1\<star>)"    
+    apply (erule Star.induct, simp)
+    apply (rule allI | rule impI | erule conjE)+
+    apply (drule app_eq_elim)
+    apply (erule disjE | erule exE | erule conjE)+
+    apply simp
+    apply (simp (no_asm) only:append_assoc[THEN sym])
+    apply (rule step) 
+    apply (simp add:equiv_str_def)
+    apply simp
+
+    apply (erule exE | erule conjE)+    
+    apply (rotate_tac 3)
+    apply (frule_tac x = "xa @ s1" in spec)
+    apply (rotate_tac 12)
+    apply (drule_tac x = ba in spec)
+    apply (erule impE)
+    apply ( simp add:star_prop3)
+    apply (simp)
+    apply (drule postfix_prop)
+    apply simp
+    done
+  thus "\<lbrakk>(m @ z) \<in> L\<^isub>1\<star>; m \<equiv>L\<^isub>1\<equiv> yb; xa @ m = x; xa \<in> L\<^isub>1\<star>; m \<noteq> [];
+         \<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= m\<rbrakk> 
+        \<Longrightarrow> (yb @ z) \<in> L\<^isub>1\<star>" by blast
+qed
+
+
+lemma min_postfix_exists[rule_format]:
+  "finite A \<Longrightarrow> A \<noteq> {} \<and> (\<forall> a \<in> A. \<forall> b \<in> A. ((b >>= a) \<or> (a >>= b))) 
+                \<longrightarrow> (\<exists> min. (min \<in> A \<and> (\<forall> a \<in> A. a >>= min)))"
+apply (erule finite.induct)
+apply simp
+apply simp
+apply (case_tac "A = {}")
+apply simp
+apply clarsimp
+apply (case_tac "a >>= min")
+apply (rule_tac x = min in exI, simp)
+apply (rule_tac x = a in exI, simp)
+apply clarify
+apply (rotate_tac 5)
+apply (erule_tac x = aa in ballE) defer apply simp
+apply (erule_tac ys = min in postfix_trans)
+apply (erule_tac x = min in ballE) 
+by simp+
+
+lemma tag_str_star_inj:
+  "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 (y::string) \<Longrightarrow> x \<equiv>L\<^isub>1\<star>\<equiv> y"
+proof -
+  have aux: "\<And> x y z. \<lbrakk>tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y; x @ z \<in> L\<^isub>1\<star>\<rbrakk> \<Longrightarrow> y @ z \<in> L\<^isub>1\<star>"
+  proof-
+    fix x y z
+    assume tag_eq: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y"
+      and x_z: "x @ z \<in> L\<^isub>1\<star>"
+    show "y @ z \<in> L\<^isub>1\<star>"
+    proof (cases "x = []")
+      case True
+      with tag_eq have "y = []" by (simp add:tag_str_STAR_def split:if_splits, blast)
+      thus ?thesis using x_z True by simp
+    next
+      case False
+      hence not_empty: "{xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>} \<noteq> {}" using x_z
+        by (simp, rule_tac x = x in exI, rule_tac x = "[]" in exI, simp add:start)
+      have finite_set: "finite {xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>}"
+        apply (rule_tac B = "{xb. \<exists> xa. x = xa @ xb}" in finite_subset)
+        apply auto
+        apply (induct x, simp)
+        apply (subgoal_tac "{xb. \<exists>xa. a # x = xa @ xb} = insert (a # x) {xb. \<exists>xa. x = xa @ xb}")
+        apply auto
+        by (case_tac xaa, simp+)
+      have comparable: "\<forall> a \<in> {xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>}. 
+                        \<forall> b \<in> {xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>}.
+                          ((b >>= a) \<or> (a >>= b))"
+        by (auto simp:postfix_def, drule app_eq_elim, blast)
+      hence "\<exists> min. min \<in> {xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>} 
+                \<and> (\<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= min)"
+        using finite_set not_empty comparable
+        apply (drule_tac min_postfix_exists, simp)
+        by (erule exE, rule_tac x = min in exI, auto)
+      then obtain min xa where x_decom: "x = xa @ min \<and> xa \<in> L\<^isub>1\<star>"
+        and min_not_empty: "min \<noteq> []"
+        and min_z_in_star: "min @ z \<in> L\<^isub>1\<star>"
+        and is_min: "\<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= min"  by blast
+      from x_decom min_not_empty have "\<lbrakk>min\<rbrakk>L\<^isub>1 \<in> tag_str_STAR L\<^isub>1 x"  by (auto simp:tag_str_STAR_def)
+      hence "\<exists> yb. \<lbrakk>yb\<rbrakk>L\<^isub>1 \<in> tag_str_STAR L\<^isub>1 y \<and> \<lbrakk>min\<rbrakk>L\<^isub>1 = \<lbrakk>yb\<rbrakk>L\<^isub>1" using tag_eq by auto
+      hence "\<exists> ya yb. y = ya @ yb \<and> ya \<in> L\<^isub>1\<star> \<and> min \<equiv>L\<^isub>1\<equiv> yb \<and> yb \<noteq> [] " 
+        by (simp add:tag_str_STAR_def equiv_class_def equiv_str_def split:if_splits, blast)        
+      then obtain ya yb where y_decom: "y = ya @ yb"
+                          and ya_in_star: "ya \<in> L\<^isub>1\<star>"
+                          and yb_not_empty: "yb \<noteq> []"
+                          and min_yb_eq: "min \<equiv>L\<^isub>1\<equiv> yb"  by blast
+      from min_z_in_star min_yb_eq min_not_empty is_min x_decom
+      have "yb @ z \<in> L\<^isub>1\<star>"
+        by (rule_tac x = x and xa = xa in inj_aux, simp+)
+      thus ?thesis using ya_in_star y_decom
+        by (auto dest:star_prop)        
+    qed
+  qed
+  show "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 (y::string) \<Longrightarrow> x \<equiv>L\<^isub>1\<star>\<equiv> y"
+    by (auto intro:aux simp:equiv_str_def)
+qed
+
+lemma quot_star:  
+  assumes finite1: "finite (QUOT L\<^isub>1)"
+  shows "finite (QUOT (L\<^isub>1\<star>))"
+proof (rule_tac f = "(op `) (tag_str_STAR L\<^isub>1)" in finite_imageD)
+  show "finite (op ` (tag_str_STAR L\<^isub>1) ` QUOT (L\<^isub>1\<star>))"
+    using finite_tag_image tag_str_star_range_finite finite1
+    by auto
+next
+  show "inj_on (op ` (tag_str_STAR L\<^isub>1)) (QUOT (L\<^isub>1\<star>))"
+    apply (rule_tac str_inj_imps)
+    by (erule_tac tag_str_star_inj)
+qed
+
+lemma other_direction:
+  "Lang = L (r::rexp) \<Longrightarrow> finite (QUOT Lang)"
+apply (induct arbitrary:Lang rule:rexp.induct)
+apply (simp add:QUOT_def equiv_class_def equiv_str_def)
+by (simp_all add:quot_lambda quot_single quot_seq quot_alt quot_star)  
+
+end