--- a/Derivatives.thy Thu Jul 28 17:52:36 2011 +0000
+++ b/Derivatives.thy Sun Jul 31 10:27:41 2011 +0000
@@ -417,7 +417,7 @@
lemma MN_Rel_Ders:
shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A"
-unfolding Ders_def str_eq_def str_eq_rel_def
+unfolding Ders_def str_eq_def
by auto
subsection {*
@@ -442,20 +442,17 @@
qed
moreover
have "=(\<lambda>x. pders x r)= \<subseteq> \<approx>(lang r)"
- unfolding tag_eq_rel_def
- unfolding str_eq_def2
- unfolding MN_Rel_Ders
- unfolding Ders_pders
- by auto
+ unfolding tag_eq_def
+ by (auto simp add: MN_Rel_Ders Ders_pders)
moreover
have "equiv UNIV =(\<lambda>x. pders x r)="
unfolding equiv_def refl_on_def sym_def trans_def
- unfolding tag_eq_rel_def
+ unfolding tag_eq_def
by auto
moreover
have "equiv UNIV (\<approx>(lang r))"
unfolding equiv_def refl_on_def sym_def trans_def
- unfolding str_eq_rel_def
+ unfolding str_eq_def
by auto
ultimately show "finite (UNIV // \<approx>(lang r))"
by (rule refined_partition_finite)