--- a/Myhill_1.thy Thu Feb 10 12:32:45 2011 +0000
+++ b/Myhill_1.thy Thu Feb 10 13:10:16 2011 +0000
@@ -448,7 +448,7 @@
section {* Substitution Operation on equations *}
text {*
- Suppose and equation @{text "X = xrhs"}, @{text "subst_op"} substitutes
+ Suppose and equation @{text "X = xrhs"}, @{text "Subst"} substitutes
all occurences of @{text "X"} in @{text "rhs"} by @{text "xrhs"}.
*}
@@ -476,7 +476,7 @@
*}
definition
- "remove_op ES Y yrhs \<equiv>
+ "Remove ES Y yrhs \<equiv>
Subst_all (ES - {(Y, yrhs)}) Y (Arden Y yrhs)"
text {*
@@ -486,7 +486,7 @@
definition
"iter X ES \<equiv> (let (Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) \<in> ES \<and> (X \<noteq> Y)
- in remove_op ES Y yrhs)"
+ in Remove ES Y yrhs)"
text {*
The following term @{text "reduce X ES"} repeatedly removes characteriztion equations
@@ -911,7 +911,6 @@
by (auto simp:classes_of_def)
lemma Subst_all_keeps_self_contained:
- fixes Y
assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A")
shows "self_contained (Subst_all ES Y (Arden Y yrhs))"
(is "self_contained ?B")
@@ -1046,7 +1045,7 @@
using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto)
let ?ES' = "iter X ES"
show ?thesis
- proof(unfold iter_def remove_op_def, rule someI2 [where a = "(Y, yrhs)"], clarsimp)
+ proof(unfold iter_def Remove_def, rule someI2 [where a = "(Y, yrhs)"], clarsimp)
from X_in_ES Y_in_ES and not_eq and Inv_ES
show "(Y, yrhs) \<in> ES \<and> X \<noteq> Y"
by (auto simp: invariant_def distinct_equas_def)