Theories/Myhill_1.thy
changeset 166 7743d2ad71d1
parent 165 b04cc5e4e84c
child 167 61d0a412a3ae
--- a/Theories/Myhill_1.thy	Tue May 31 20:32:49 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,783 +0,0 @@
-theory Myhill_1
-imports Main Folds Regular
-        "~~/src/HOL/Library/While_Combinator" 
-begin
-
-section {* Direction @{text "finite partition \<Rightarrow> regular language"} *}
-
-lemma Pair_Collect[simp]:
-  shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
-by simp
-
-text {* Myhill-Nerode relation *}
-
-definition
-  str_eq_rel :: "lang \<Rightarrow> (string \<times> string) set" ("\<approx>_" [100] 100)
-where
-  "\<approx>A \<equiv> {(x, y).  (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)}"
-
-definition 
-  finals :: "lang \<Rightarrow> lang set"
-where
-  "finals A \<equiv> {\<approx>A `` {s} | s . s \<in> A}"
-
-lemma lang_is_union_of_finals: 
-  shows "A = \<Union> finals A"
-unfolding finals_def
-unfolding Image_def
-unfolding str_eq_rel_def
-by (auto) (metis append_Nil2)
-
-lemma finals_in_partitions:
-  shows "finals A \<subseteq> (UNIV // \<approx>A)"
-unfolding finals_def quotient_def
-by auto
-
-section {* Equational systems *}
-
-text {* The two kinds of terms in the rhs of equations. *}
-
-datatype rhs_trm = 
-   Lam "rexp"            (* Lambda-marker *)
- | Trn "lang" "rexp"     (* Transition *)
-
-
-overloading L_rhs_trm \<equiv> "L:: rhs_trm \<Rightarrow> lang"
-begin
-  fun L_rhs_trm:: "rhs_trm \<Rightarrow> lang"
-  where
-    "L_rhs_trm (Lam r) = L r" 
-  | "L_rhs_trm (Trn X r) = X ;; L r"
-end
-
-overloading L_rhs \<equiv> "L:: rhs_trm set \<Rightarrow> lang"
-begin
-   fun L_rhs:: "rhs_trm set \<Rightarrow> lang"
-   where 
-     "L_rhs rhs = \<Union> (L ` rhs)"
-end
-
-lemma L_rhs_set:
-  shows "L {Trn X r | r. P r} = \<Union>{L (Trn X r) | r. P r}"
-by (auto simp del: L_rhs_trm.simps)
-
-lemma L_rhs_union_distrib:
-  fixes A B::"rhs_trm set"
-  shows "L A \<union> L B = L (A \<union> B)"
-by simp
-
-
-
-text {* Transitions between equivalence classes *}
-
-definition 
-  transition :: "lang \<Rightarrow> char \<Rightarrow> lang \<Rightarrow> bool" ("_ \<Turnstile>_\<Rightarrow>_" [100,100,100] 100)
-where
-  "Y \<Turnstile>c\<Rightarrow> X \<equiv> Y ;; {[c]} \<subseteq> X"
-
-text {* Initial equational system *}
-
-definition
-  "Init_rhs CS X \<equiv>  
-      if ([] \<in> X) then 
-          {Lam EMPTY} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y \<Turnstile>c\<Rightarrow> X}
-      else 
-          {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y \<Turnstile>c\<Rightarrow> X}"
-
-definition 
-  "Init CS \<equiv> {(X, Init_rhs CS X) | X.  X \<in> CS}"
-
-
-section {* Arden Operation on equations *}
-
-fun 
-  Append_rexp :: "rexp \<Rightarrow> rhs_trm \<Rightarrow> rhs_trm"
-where
-  "Append_rexp r (Lam rexp)   = Lam (SEQ rexp r)"
-| "Append_rexp r (Trn X rexp) = Trn X (SEQ rexp r)"
-
-
-definition
-  "Append_rexp_rhs rhs rexp \<equiv> (Append_rexp rexp) ` rhs"
-
-definition 
-  "Arden X rhs \<equiv> 
-     Append_rexp_rhs (rhs - {Trn X r | r. Trn X r \<in> rhs}) (STAR (\<Uplus> {r. Trn X r \<in> rhs}))"
-
-
-section {* Substitution Operation on equations *}
-
-definition 
-  "Subst rhs X xrhs \<equiv> 
-        (rhs - {Trn X r | r. Trn X r \<in> rhs}) \<union> (Append_rexp_rhs xrhs (\<Uplus> {r. Trn X r \<in> rhs}))"
-
-definition
-  Subst_all :: "(lang \<times> rhs_trm set) set \<Rightarrow> lang \<Rightarrow> rhs_trm set \<Rightarrow> (lang \<times> rhs_trm set) set"
-where
-  "Subst_all ES X xrhs \<equiv> {(Y, Subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"
-
-definition
-  "Remove ES X xrhs \<equiv> 
-      Subst_all  (ES - {(X, xrhs)}) X (Arden X xrhs)"
-
-
-section {* While-combinator *}
-
-definition 
-  "Iter X ES \<equiv> (let (Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) \<in> ES \<and> X \<noteq> Y
-                in Remove ES Y yrhs)"
-
-lemma IterI2:
-  assumes "(Y, yrhs) \<in> ES"
-  and     "X \<noteq> Y"
-  and     "\<And>Y yrhs. \<lbrakk>(Y, yrhs) \<in> ES; X \<noteq> Y\<rbrakk> \<Longrightarrow> Q (Remove ES Y yrhs)"
-  shows "Q (Iter X ES)"
-unfolding Iter_def using assms
-by (rule_tac a="(Y, yrhs)" in someI2) (auto)
-
-abbreviation
-  "Cond ES \<equiv> card ES \<noteq> 1"
-
-definition 
-  "Solve X ES \<equiv> while Cond (Iter X) ES"
-
-
-section {* Invariants *}
-
-definition 
-  "distinctness ES \<equiv> 
-     \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"
-
-definition 
-  "soundness ES \<equiv> \<forall>(X, rhs) \<in> ES. X = L rhs"
-
-definition 
-  "ardenable rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)"
-
-definition 
-  "ardenable_all ES \<equiv> \<forall>(X, rhs) \<in> ES. ardenable rhs"
-
-definition
-  "finite_rhs ES \<equiv> \<forall>(X, rhs) \<in> ES. finite rhs"
-
-lemma finite_rhs_def2:
-  "finite_rhs ES = (\<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs)"
-unfolding finite_rhs_def by auto
-
-definition 
-  "rhss rhs \<equiv> {X | X r. Trn X r \<in> rhs}"
-
-definition
-  "lhss ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"
-
-definition 
-  "validity ES \<equiv> \<forall>(X, rhs) \<in> ES. rhss rhs \<subseteq> lhss ES"
-
-lemma rhss_union_distrib:
-  shows "rhss (A \<union> B) = rhss A \<union> rhss B"
-by (auto simp add: rhss_def)
-
-lemma lhss_union_distrib:
-  shows "lhss (A \<union> B) = lhss A \<union> lhss B"
-by (auto simp add: lhss_def)
-
-
-definition 
-  "invariant ES \<equiv> finite ES
-                \<and> finite_rhs ES
-                \<and> soundness ES 
-                \<and> distinctness ES 
-                \<and> ardenable_all ES 
-                \<and> validity ES"
-
-
-lemma invariantI:
-  assumes "soundness ES" "finite ES" "distinctness ES" "ardenable_all ES" 
-          "finite_rhs ES" "validity ES"
-  shows "invariant ES"
-using assms by (simp add: invariant_def)
-
-
-subsection {* The proof of this direction *}
-
-lemma finite_Trn:
-  assumes fin: "finite rhs"
-  shows "finite {r. Trn Y r \<in> rhs}"
-proof -
-  have "finite {Trn Y r | Y r. Trn Y r \<in> rhs}"
-    by (rule rev_finite_subset[OF fin]) (auto)
-  then have "finite ((\<lambda>(Y, r). Trn Y r) ` {(Y, r) | Y r. Trn Y r \<in> rhs})"
-    by (simp add: image_Collect)
-  then have "finite {(Y, r) | Y r. Trn Y r \<in> rhs}"
-    by (erule_tac finite_imageD) (simp add: inj_on_def)
-  then show "finite {r. Trn Y r \<in> rhs}"
-    by (erule_tac f="snd" in finite_surj) (auto simp add: image_def)
-qed
-
-lemma finite_Lam:
-  assumes fin: "finite rhs"
-  shows "finite {r. Lam r \<in> rhs}"
-proof -
-  have "finite {Lam r | r. Lam r \<in> rhs}"
-    by (rule rev_finite_subset[OF fin]) (auto)
-  then show "finite {r. Lam r \<in> rhs}"
-    apply(simp add: image_Collect[symmetric])
-    apply(erule finite_imageD)
-    apply(auto simp add: inj_on_def)
-    done
-qed
-
-lemma rhs_trm_soundness:
-  assumes finite:"finite rhs"
-  shows "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))"
-proof -
-  have "finite {r. Trn X r \<in> rhs}" 
-    by (rule finite_Trn[OF finite]) 
-  then show "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))"
-    by (simp only: L_rhs_set L_rhs_trm.simps) (auto simp add: Seq_def)
-qed
-
-lemma lang_of_append_rexp:
-  "L (Append_rexp r rhs_trm) = L rhs_trm ;; L r"
-by (induct rule: Append_rexp.induct)
-   (auto simp add: seq_assoc)
-
-lemma lang_of_append_rexp_rhs:
-  "L (Append_rexp_rhs rhs r) = L rhs ;; L r"
-unfolding Append_rexp_rhs_def
-by (auto simp add: Seq_def lang_of_append_rexp)
-
-
-
-subsubsection {* Intialization *}
-
-lemma defined_by_str:
-  assumes "s \<in> X" "X \<in> UNIV // \<approx>A" 
-  shows "X = \<approx>A `` {s}"
-using assms
-unfolding quotient_def Image_def str_eq_rel_def
-by auto
-
-lemma every_eqclass_has_transition:
-  assumes has_str: "s @ [c] \<in> X"
-  and     in_CS:   "X \<in> UNIV // \<approx>A"
-  obtains Y where "Y \<in> UNIV // \<approx>A" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y"
-proof -
-  def Y \<equiv> "\<approx>A `` {s}"
-  have "Y \<in> UNIV // \<approx>A" 
-    unfolding Y_def quotient_def by auto
-  moreover
-  have "X = \<approx>A `` {s @ [c]}" 
-    using has_str in_CS defined_by_str by blast
-  then have "Y ;; {[c]} \<subseteq> X" 
-    unfolding Y_def Image_def Seq_def
-    unfolding str_eq_rel_def
-    by clarsimp
-  moreover
-  have "s \<in> Y" unfolding Y_def 
-    unfolding Image_def str_eq_rel_def by simp
-  ultimately show thesis using that by blast
-qed
-
-lemma l_eq_r_in_eqs:
-  assumes X_in_eqs: "(X, rhs) \<in> Init (UNIV // \<approx>A)"
-  shows "X = L rhs"
-proof 
-  show "X \<subseteq> L rhs"
-  proof
-    fix x
-    assume in_X: "x \<in> X"
-    { assume empty: "x = []"
-      then have "x \<in> L rhs" using X_in_eqs in_X
-	unfolding Init_def Init_rhs_def
-        by auto
-    }
-    moreover
-    { assume not_empty: "x \<noteq> []"
-      then obtain s c where decom: "x = s @ [c]"
-	using rev_cases by blast
-      have "X \<in> UNIV // \<approx>A" using X_in_eqs unfolding Init_def by auto
-      then obtain Y where "Y \<in> UNIV // \<approx>A" "Y ;; {[c]} \<subseteq> X" "s \<in> Y"
-        using decom in_X every_eqclass_has_transition by blast
-      then have "x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // \<approx>A \<and> Y \<Turnstile>c\<Rightarrow> X}"
-        unfolding transition_def
-	using decom by (force simp add: Seq_def)
-      then have "x \<in> L rhs" using X_in_eqs in_X
-	unfolding Init_def Init_rhs_def by simp
-    }
-    ultimately show "x \<in> L rhs" by blast
-  qed
-next
-  show "L rhs \<subseteq> X" using X_in_eqs
-    unfolding Init_def Init_rhs_def transition_def
-    by auto 
-qed
-
-lemma test:
-  assumes X_in_eqs: "(X, rhs) \<in> Init (UNIV // \<approx>A)"
-  shows "X = \<Union> (L `  rhs)"
-using assms l_eq_r_in_eqs by (simp)
-
-lemma finite_Init_rhs: 
-  assumes finite: "finite CS"
-  shows "finite (Init_rhs CS X)"
-proof-
-  def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" 
-  def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"
-  have "finite (CS \<times> (UNIV::char set))" using finite by auto
-  then have "finite S" using S_def 
-    by (rule_tac B = "CS \<times> UNIV" in finite_subset) (auto)
-  moreover have "{Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X} = h ` S"
-    unfolding S_def h_def image_def by auto
-  ultimately
-  have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" by auto
-  then show "finite (Init_rhs CS X)" unfolding Init_rhs_def transition_def by simp
-qed
-
-lemma Init_ES_satisfies_invariant:
-  assumes finite_CS: "finite (UNIV // \<approx>A)"
-  shows "invariant (Init (UNIV // \<approx>A))"
-proof (rule invariantI)
-  show "soundness (Init (UNIV // \<approx>A))"
-    unfolding soundness_def 
-    using l_eq_r_in_eqs by auto
-  show "finite (Init (UNIV // \<approx>A))" using finite_CS
-    unfolding Init_def by simp
-  show "distinctness (Init (UNIV // \<approx>A))"     
-    unfolding distinctness_def Init_def by simp
-  show "ardenable_all (Init (UNIV // \<approx>A))"
-    unfolding ardenable_all_def Init_def Init_rhs_def ardenable_def
-   by auto 
-  show "finite_rhs (Init (UNIV // \<approx>A))"
-    using finite_Init_rhs[OF finite_CS]
-    unfolding finite_rhs_def Init_def by auto
-  show "validity (Init (UNIV // \<approx>A))"
-    unfolding validity_def Init_def Init_rhs_def rhss_def lhss_def
-    by auto
-qed
-
-subsubsection {* Interation step *}
-
-lemma Arden_keeps_eq:
-  assumes l_eq_r: "X = L rhs"
-  and not_empty: "ardenable rhs"
-  and finite: "finite rhs"
-  shows "X = L (Arden X rhs)"
-proof -
-  def A \<equiv> "L (\<Uplus>{r. Trn X r \<in> rhs})"
-  def b \<equiv> "{Trn X r | r. Trn X r \<in> rhs}"
-  def B \<equiv> "L (rhs - b)"
-  have not_empty2: "[] \<notin> A" 
-    using finite_Trn[OF finite] not_empty
-    unfolding A_def ardenable_def by simp
-  have "X = L rhs" using l_eq_r by simp
-  also have "\<dots> = L (b \<union> (rhs - b))" unfolding b_def by auto
-  also have "\<dots> = L b \<union> B" unfolding B_def by (simp only: L_rhs_union_distrib)
-  also have "\<dots> = X ;; A \<union> B"
-    unfolding b_def
-    unfolding rhs_trm_soundness[OF finite]
-    unfolding A_def
-    by blast
-  finally have "X = X ;; A \<union> B" . 
-  then have "X = B ;; A\<star>"
-    by (simp add: arden[OF not_empty2])
-  also have "\<dots> = L (Arden X rhs)"
-    unfolding Arden_def A_def B_def b_def
-    by (simp only: lang_of_append_rexp_rhs L_rexp.simps)
-  finally show "X = L (Arden X rhs)" by simp
-qed 
-
-lemma Append_keeps_finite:
-  "finite rhs \<Longrightarrow> finite (Append_rexp_rhs rhs r)"
-by (auto simp:Append_rexp_rhs_def)
-
-lemma Arden_keeps_finite:
-  "finite rhs \<Longrightarrow> finite (Arden X rhs)"
-by (auto simp:Arden_def Append_keeps_finite)
-
-lemma Append_keeps_nonempty:
-  "ardenable rhs \<Longrightarrow> ardenable (Append_rexp_rhs rhs r)"
-apply (auto simp:ardenable_def Append_rexp_rhs_def)
-by (case_tac x, auto simp:Seq_def)
-
-lemma nonempty_set_sub:
-  "ardenable rhs \<Longrightarrow> ardenable (rhs - A)"
-by (auto simp:ardenable_def)
-
-lemma nonempty_set_union:
-  "\<lbrakk>ardenable rhs; ardenable rhs'\<rbrakk> \<Longrightarrow> ardenable (rhs \<union> rhs')"
-by (auto simp:ardenable_def)
-
-lemma Arden_keeps_nonempty:
-  "ardenable rhs \<Longrightarrow> ardenable (Arden X rhs)"
-by (simp only:Arden_def Append_keeps_nonempty nonempty_set_sub)
-
-
-lemma Subst_keeps_nonempty:
-  "\<lbrakk>ardenable rhs; ardenable xrhs\<rbrakk> \<Longrightarrow> ardenable (Subst rhs X xrhs)"
-by (simp only: Subst_def Append_keeps_nonempty nonempty_set_union nonempty_set_sub)
-
-lemma Subst_keeps_eq:
-  assumes substor: "X = L xrhs"
-  and finite: "finite rhs"
-  shows "L (Subst rhs X xrhs) = L rhs" (is "?Left = ?Right")
-proof-
-  def A \<equiv> "L (rhs - {Trn X r | r. Trn X r \<in> rhs})"
-  have "?Left = A \<union> L (Append_rexp_rhs xrhs (\<Uplus>{r. Trn X r \<in> rhs}))"
-    unfolding Subst_def
-    unfolding L_rhs_union_distrib[symmetric]
-    by (simp add: A_def)
-  moreover have "?Right = A \<union> L ({Trn X r | r. Trn X r \<in> rhs})"
-  proof-
-    have "rhs = (rhs - {Trn X r | r. Trn X r \<in> rhs}) \<union> ({Trn X r | r. Trn X r \<in> rhs})" by auto
-    thus ?thesis 
-      unfolding A_def
-      unfolding L_rhs_union_distrib
-      by simp
-  qed
-  moreover have "L (Append_rexp_rhs xrhs (\<Uplus>{r. Trn X r \<in> rhs})) = L ({Trn X r | r. Trn X r \<in> rhs})" 
-    using finite substor by (simp only: lang_of_append_rexp_rhs rhs_trm_soundness)
-  ultimately show ?thesis by simp
-qed
-
-lemma Subst_keeps_finite_rhs:
-  "\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (Subst rhs Y yrhs)"
-by (auto simp: Subst_def Append_keeps_finite)
-
-lemma Subst_all_keeps_finite:
-  assumes finite: "finite ES"
-  shows "finite (Subst_all ES Y yrhs)"
-proof -
-  def eqns \<equiv> "{(X::lang, rhs) |X rhs. (X, rhs) \<in> ES}"
-  def h \<equiv> "\<lambda>(X::lang, rhs). (X, Subst rhs Y yrhs)"
-  have "finite (h ` eqns)" using finite h_def eqns_def by auto
-  moreover 
-  have "Subst_all ES Y yrhs = h ` eqns" unfolding h_def eqns_def Subst_all_def by auto
-  ultimately
-  show "finite (Subst_all ES Y yrhs)" by simp
-qed
-
-lemma Subst_all_keeps_finite_rhs:
-  "\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (Subst_all ES Y yrhs)"
-by (auto intro:Subst_keeps_finite_rhs simp add:Subst_all_def finite_rhs_def)
-
-lemma append_rhs_keeps_cls:
-  "rhss (Append_rexp_rhs rhs r) = rhss rhs"
-apply (auto simp:rhss_def Append_rexp_rhs_def)
-apply (case_tac xa, auto simp:image_def)
-by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)
-
-lemma Arden_removes_cl:
-  "rhss (Arden Y yrhs) = rhss yrhs - {Y}"
-apply (simp add:Arden_def append_rhs_keeps_cls)
-by (auto simp:rhss_def)
-
-lemma lhss_keeps_cls:
-  "lhss (Subst_all ES Y yrhs) = lhss ES"
-by (auto simp:lhss_def Subst_all_def)
-
-lemma Subst_updates_cls:
-  "X \<notin> rhss xrhs \<Longrightarrow> 
-      rhss (Subst rhs X xrhs) = rhss rhs \<union> rhss xrhs - {X}"
-apply (simp only:Subst_def append_rhs_keeps_cls rhss_union_distrib)
-by (auto simp:rhss_def)
-
-lemma Subst_all_keeps_validity:
-  assumes sc: "validity (ES \<union> {(Y, yrhs)})"        (is "validity ?A")
-  shows "validity (Subst_all ES Y (Arden Y yrhs))"  (is "validity ?B")
-proof -
-  { fix X xrhs'
-    assume "(X, xrhs') \<in> ?B"
-    then obtain xrhs 
-      where xrhs_xrhs': "xrhs' = Subst xrhs Y (Arden Y yrhs)"
-      and X_in: "(X, xrhs) \<in> ES" by (simp add:Subst_all_def, blast)    
-    have "rhss xrhs' \<subseteq> lhss ?B"
-    proof-
-      have "lhss ?B = lhss ES" by (auto simp add:lhss_def Subst_all_def)
-      moreover have "rhss xrhs' \<subseteq> lhss ES"
-      proof-
-        have "rhss xrhs' \<subseteq>  rhss xrhs \<union> rhss (Arden Y yrhs) - {Y}"
-        proof-
-          have "Y \<notin> rhss (Arden Y yrhs)" 
-            using Arden_removes_cl by simp
-          thus ?thesis using xrhs_xrhs' by (auto simp:Subst_updates_cls)
-        qed
-        moreover have "rhss xrhs \<subseteq> lhss ES \<union> {Y}" using X_in sc
-          apply (simp only:validity_def lhss_union_distrib)
-          by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lhss_def)
-        moreover have "rhss (Arden Y yrhs) \<subseteq> lhss ES \<union> {Y}" 
-          using sc 
-          by (auto simp add:Arden_removes_cl validity_def lhss_def)
-        ultimately show ?thesis by auto
-      qed
-      ultimately show ?thesis by simp
-    qed
-  } thus ?thesis by (auto simp only:Subst_all_def validity_def)
-qed
-
-lemma Subst_all_satisfies_invariant:
-  assumes invariant_ES: "invariant (ES \<union> {(Y, yrhs)})"
-  shows "invariant (Subst_all ES Y (Arden Y yrhs))"
-proof (rule invariantI)
-  have Y_eq_yrhs: "Y = L yrhs" 
-    using invariant_ES by (simp only:invariant_def soundness_def, blast)
-   have finite_yrhs: "finite yrhs" 
-    using invariant_ES by (auto simp:invariant_def finite_rhs_def)
-  have nonempty_yrhs: "ardenable yrhs" 
-    using invariant_ES by (auto simp:invariant_def ardenable_all_def)
-  show "soundness (Subst_all ES Y (Arden Y yrhs))"
-  proof -
-    have "Y = L (Arden Y yrhs)" 
-      using Y_eq_yrhs invariant_ES finite_yrhs
-      using finite_Trn[OF finite_yrhs]
-      apply(rule_tac Arden_keeps_eq)
-      apply(simp_all)
-      unfolding invariant_def ardenable_all_def ardenable_def
-      apply(auto)
-      done
-    thus ?thesis using invariant_ES
-      unfolding invariant_def finite_rhs_def2 soundness_def Subst_all_def
-      by (auto simp add: Subst_keeps_eq simp del: L_rhs.simps)
-  qed
-  show "finite (Subst_all ES Y (Arden Y yrhs))" 
-    using invariant_ES by (simp add:invariant_def Subst_all_keeps_finite)
-  show "distinctness (Subst_all ES Y (Arden Y yrhs))" 
-    using invariant_ES 
-    unfolding distinctness_def Subst_all_def invariant_def by auto
-  show "ardenable_all (Subst_all ES Y (Arden Y yrhs))"
-  proof - 
-    { fix X rhs
-      assume "(X, rhs) \<in> ES"
-      hence "ardenable rhs"  using invariant_ES  
-        by (auto simp add:invariant_def ardenable_all_def)
-      with nonempty_yrhs 
-      have "ardenable (Subst rhs Y (Arden Y yrhs))"
-        by (simp add:nonempty_yrhs 
-               Subst_keeps_nonempty Arden_keeps_nonempty)
-    } thus ?thesis by (auto simp add:ardenable_all_def Subst_all_def)
-  qed
-  show "finite_rhs (Subst_all ES Y (Arden Y yrhs))"
-  proof-
-    have "finite_rhs ES" using invariant_ES 
-      by (simp add:invariant_def finite_rhs_def)
-    moreover have "finite (Arden Y yrhs)"
-    proof -
-      have "finite yrhs" using invariant_ES 
-        by (auto simp:invariant_def finite_rhs_def)
-      thus ?thesis using Arden_keeps_finite by simp
-    qed
-    ultimately show ?thesis 
-      by (simp add:Subst_all_keeps_finite_rhs)
-  qed
-  show "validity (Subst_all ES Y (Arden Y yrhs))"
-    using invariant_ES Subst_all_keeps_validity by (simp add:invariant_def)
-qed
-
-lemma Remove_in_card_measure:
-  assumes finite: "finite ES"
-  and     in_ES: "(X, rhs) \<in> ES"
-  shows "(Remove ES X rhs, ES) \<in> measure card"
-proof -
-  def f \<equiv> "\<lambda> x. ((fst x)::lang, Subst (snd x) X (Arden X rhs))"
-  def ES' \<equiv> "ES - {(X, rhs)}"
-  have "Subst_all ES' X (Arden X rhs) = f ` ES'" 
-    apply (auto simp: Subst_all_def f_def image_def)
-    by (rule_tac x = "(Y, yrhs)" in bexI, simp+)
-  then have "card (Subst_all ES' X (Arden X rhs)) \<le> card ES'"
-    unfolding ES'_def using finite by (auto intro: card_image_le)
-  also have "\<dots> < card ES" unfolding ES'_def 
-    using in_ES finite by (rule_tac card_Diff1_less)
-  finally show "(Remove ES X rhs, ES) \<in> measure card" 
-    unfolding Remove_def ES'_def by simp
-qed
-    
-
-lemma Subst_all_cls_remains: 
-  "(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (Subst_all ES Y yrhs)"
-by (auto simp: Subst_all_def)
-
-lemma card_noteq_1_has_more:
-  assumes card:"Cond ES"
-  and e_in: "(X, xrhs) \<in> ES"
-  and finite: "finite ES"
-  shows "\<exists>(Y, yrhs) \<in> ES. (X, xrhs) \<noteq> (Y, yrhs)"
-proof-
-  have "card ES > 1" using card e_in finite 
-    by (cases "card ES") (auto) 
-  then have "card (ES - {(X, xrhs)}) > 0"
-    using finite e_in by auto
-  then have "(ES - {(X, xrhs)}) \<noteq> {}" using finite by (rule_tac notI, simp)
-  then show "\<exists>(Y, yrhs) \<in> ES. (X, xrhs) \<noteq> (Y, yrhs)"
-    by auto
-qed
-
-lemma iteration_step_measure:
-  assumes Inv_ES: "invariant ES"
-  and    X_in_ES: "(X, xrhs) \<in> ES"
-  and    Cnd:     "Cond ES "
-  shows "(Iter X ES, ES) \<in> measure card"
-proof -
-  have fin: "finite ES" using Inv_ES unfolding invariant_def by simp
-  then obtain Y yrhs 
-    where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" 
-    using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto)
-  then have "(Y, yrhs) \<in> ES " "X \<noteq> Y"  
-    using X_in_ES Inv_ES unfolding invariant_def distinctness_def
-    by auto
-  then show "(Iter X ES, ES) \<in> measure card" 
-  apply(rule IterI2)
-  apply(rule Remove_in_card_measure)
-  apply(simp_all add: fin)
-  done
-qed
-
-lemma iteration_step_invariant:
-  assumes Inv_ES: "invariant ES"
-  and    X_in_ES: "(X, xrhs) \<in> ES"
-  and    Cnd: "Cond ES"
-  shows "invariant (Iter X ES)"
-proof -
-  have finite_ES: "finite ES" using Inv_ES by (simp add: invariant_def)
-  then obtain Y yrhs 
-    where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" 
-    using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto)
-  then have "(Y, yrhs) \<in> ES" "X \<noteq> Y" 
-    using X_in_ES Inv_ES unfolding invariant_def distinctness_def
-    by auto
-  then show "invariant (Iter X ES)" 
-  proof(rule IterI2)
-    fix Y yrhs
-    assume h: "(Y, yrhs) \<in> ES" "X \<noteq> Y"
-    then have "ES - {(Y, yrhs)} \<union> {(Y, yrhs)} = ES" by auto
-    then show "invariant (Remove ES Y yrhs)" unfolding Remove_def
-      using Inv_ES
-      by (rule_tac Subst_all_satisfies_invariant) (simp) 
-  qed
-qed
-
-lemma iteration_step_ex:
-  assumes Inv_ES: "invariant ES"
-  and    X_in_ES: "(X, xrhs) \<in> ES"
-  and    Cnd: "Cond ES"
-  shows "\<exists>xrhs'. (X, xrhs') \<in> (Iter X ES)"
-proof -
-  have finite_ES: "finite ES" using Inv_ES by (simp add: invariant_def)
-  then obtain Y yrhs 
-    where "(Y, yrhs) \<in> ES" "(X, xrhs) \<noteq> (Y, yrhs)" 
-    using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto)
-  then have "(Y, yrhs) \<in> ES " "X \<noteq> Y"  
-    using X_in_ES Inv_ES unfolding invariant_def distinctness_def
-    by auto
-  then show "\<exists>xrhs'. (X, xrhs') \<in> (Iter X ES)" 
-  apply(rule IterI2)
-  unfolding Remove_def
-  apply(rule Subst_all_cls_remains)
-  using X_in_ES
-  apply(auto)
-  done
-qed
-
-
-subsubsection {* Conclusion of the proof *}
-
-lemma Solve:
-  assumes fin: "finite (UNIV // \<approx>A)"
-  and     X_in: "X \<in> (UNIV // \<approx>A)"
-  shows "\<exists>rhs. Solve X (Init (UNIV // \<approx>A)) = {(X, rhs)} \<and> invariant {(X, rhs)}"
-proof -
-  def Inv \<equiv> "\<lambda>ES. invariant ES \<and> (\<exists>rhs. (X, rhs) \<in> ES)"
-  have "Inv (Init (UNIV // \<approx>A))" unfolding Inv_def
-      using fin X_in by (simp add: Init_ES_satisfies_invariant, simp add: Init_def)
-  moreover
-  { fix ES
-    assume inv: "Inv ES" and crd: "Cond ES"
-    then have "Inv (Iter X ES)"
-      unfolding Inv_def
-      by (auto simp add: iteration_step_invariant iteration_step_ex) }
-  moreover
-  { fix ES
-    assume inv: "Inv ES" and not_crd: "\<not>Cond ES"
-    from inv obtain rhs where "(X, rhs) \<in> ES" unfolding Inv_def by auto
-    moreover
-    from not_crd have "card ES = 1" by simp
-    ultimately 
-    have "ES = {(X, rhs)}" by (auto simp add: card_Suc_eq) 
-    then have "\<exists>rhs'. ES = {(X, rhs')} \<and> invariant {(X, rhs')}" using inv
-      unfolding Inv_def by auto }
-  moreover
-    have "wf (measure card)" by simp
-  moreover
-  { fix ES
-    assume inv: "Inv ES" and crd: "Cond ES"
-    then have "(Iter X ES, ES) \<in> measure card"
-      unfolding Inv_def
-      apply(clarify)
-      apply(rule_tac iteration_step_measure)
-      apply(auto)
-      done }
-  ultimately 
-  show "\<exists>rhs. Solve X (Init (UNIV // \<approx>A)) = {(X, rhs)} \<and> invariant {(X, rhs)}" 
-    unfolding Solve_def by (rule while_rule)
-qed
-
-lemma every_eqcl_has_reg:
-  assumes finite_CS: "finite (UNIV // \<approx>A)"
-  and X_in_CS: "X \<in> (UNIV // \<approx>A)"
-  shows "\<exists>r::rexp. X = L r" 
-proof -
-  from finite_CS X_in_CS 
-  obtain xrhs where Inv_ES: "invariant {(X, xrhs)}"
-    using Solve by metis
-
-  def A \<equiv> "Arden X xrhs"
-  have "rhss xrhs \<subseteq> {X}" using Inv_ES 
-    unfolding validity_def invariant_def rhss_def lhss_def
-    by auto
-  then have "rhss A = {}" unfolding A_def 
-    by (simp add: Arden_removes_cl)
-  then have eq: "{Lam r | r. Lam r \<in> A} = A" unfolding rhss_def
-    by (auto, case_tac x, auto)
-  
-  have "finite A" using Inv_ES unfolding A_def invariant_def finite_rhs_def
-    using Arden_keeps_finite by auto
-  then have fin: "finite {r. Lam r \<in> A}" by (rule finite_Lam)
-
-  have "X = L xrhs" using Inv_ES unfolding invariant_def soundness_def
-    by simp
-  then have "X = L A" using Inv_ES 
-    unfolding A_def invariant_def ardenable_all_def finite_rhs_def 
-    by (rule_tac Arden_keeps_eq) (simp_all add: finite_Trn)
-  then have "X = L {Lam r | r. Lam r \<in> A}" using eq by simp
-  then have "X = L (\<Uplus>{r. Lam r \<in> A})" using fin by auto
-  then show "\<exists>r::rexp. X = L r" by blast
-qed
-
-lemma bchoice_finite_set:
-  assumes a: "\<forall>x \<in> S. \<exists>y. x = f y" 
-  and     b: "finite S"
-  shows "\<exists>ys. (\<Union> S) = \<Union>(f ` ys) \<and> finite ys"
-using bchoice[OF a] b
-apply(erule_tac exE)
-apply(rule_tac x="fa ` S" in exI)
-apply(auto)
-done
-
-theorem Myhill_Nerode1:
-  assumes finite_CS: "finite (UNIV // \<approx>A)"
-  shows   "\<exists>r::rexp. A = L r"
-proof -
-  have fin: "finite (finals A)" 
-    using finals_in_partitions finite_CS by (rule finite_subset)
-  have "\<forall>X \<in> (UNIV // \<approx>A). \<exists>r::rexp. X = L r" 
-    using finite_CS every_eqcl_has_reg by blast
-  then have a: "\<forall>X \<in> finals A. \<exists>r::rexp. X = L r"
-    using finals_in_partitions by auto
-  then obtain rs::"rexp set" where "\<Union> (finals A) = \<Union>(L ` rs)" "finite rs"
-    using fin by (auto dest: bchoice_finite_set)
-  then have "A = L (\<Uplus>rs)" 
-    unfolding lang_is_union_of_finals[symmetric] by simp
-  then show "\<exists>r::rexp. A = L r" by blast
-qed 
-
-
-end
\ No newline at end of file