--- a/prio/ExtGG.thy Tue Apr 17 15:55:37 2012 +0000
+++ b/prio/ExtGG.thy Fri Apr 20 11:27:49 2012 +0000
@@ -546,7 +546,7 @@
by auto
qed
-lemma pv_blocked:
+lemma pv_blocked_pre:
fixes th'
assumes th'_in: "th' \<in> threads (t@s)"
and neq_th': "th' \<noteq> th"
@@ -584,6 +584,8 @@
qed
qed
+lemmas pv_blocked = pv_blocked_pre[folded detached_eq [OF vt_t]]
+
lemma runing_precond_pre:
fixes th'
assumes th'_in: "th' \<in> threads s"
@@ -695,6 +697,8 @@
qed
*)
+lemmas runing_precond_pre_dtc = runing_precond_pre[folded detached_eq[OF vt_t] detached_eq[OF vt_s]]
+
lemma runing_precond:
fixes th'
assumes th'_in: "th' \<in> threads s"
@@ -708,7 +712,7 @@
from runing_precond_pre[OF th'_in eq_pv neq_th']
have h1: "th' \<in> threads (t @ s)"
and h2: "cntP (t @ s) th' = cntV (t @ s) th'" by auto
- from pv_blocked[OF h1 neq_th' h2] have " th' \<notin> runing (t @ s)" .
+ from pv_blocked_pre[OF h1 neq_th' h2] have " th' \<notin> runing (t @ s)" .
with is_runing show "False" by simp
qed
moreover from cnp_cnv_cncs[OF vt_s, of th']
@@ -812,7 +816,7 @@
from assms show ?case by auto
qed
-lemma moment_blocked:
+lemma moment_blocked_eqpv:
assumes neq_th': "th' \<noteq> th"
and th'_in: "th' \<in> threads ((moment i t)@s)"
and eq_pv: "cntP ((moment i t)@s) th' = cntV ((moment i t)@s) th'"
@@ -828,6 +832,24 @@
show ?thesis by auto
qed
+lemma moment_blocked:
+ assumes neq_th': "th' \<noteq> th"
+ and th'_in: "th' \<in> threads ((moment i t)@s)"
+ and dtc: "detached (moment i t @ s) th'"
+ and le_ij: "i \<le> j"
+ shows "detached (moment j t @ s) th' \<and>
+ th' \<in> threads ((moment j t)@s) \<and>
+ th' \<notin> runing ((moment j t)@s)"
+proof -
+ from vt_moment[OF vt_t, of "i+length s"] moment_prefix[of i t s]
+ have vt_i: "vt (moment i t @ s)" by auto
+ from vt_moment[OF vt_t, of "j+length s"] moment_prefix[of j t s]
+ have vt_j: "vt (moment j t @ s)" by auto
+ from moment_blocked_eqpv [OF neq_th' th'_in detached_elim [OF vt_i dtc] le_ij,
+ folded detached_eq[OF vt_j]]
+ show ?thesis .
+qed
+
lemma runing_inversion_1:
assumes neq_th': "th' \<noteq> th"
and runing': "th' \<in> runing (t@s)"
@@ -877,7 +899,7 @@
from eq_e have "th' \<in> threads ((e#moment i t)@s)" by simp
with eq_me [symmetric]
have h2: "th' \<in> threads (moment (Suc i) t @ s)" by simp
- from moment_blocked [OF neq_th' h2 h1, of "length t"] and lt_its
+ from moment_blocked_eqpv [OF neq_th' h2 h1, of "length t"] and lt_its
and moment_ge
have "th' \<notin> runing (t @ s)" by auto
with runing'
@@ -924,7 +946,6 @@
show ?thesis by auto
qed
-
lemma live: "runing (t@s) \<noteq> {}"
proof(cases "th \<in> runing (t@s)")
case True thus ?thesis by auto
@@ -1002,3 +1023,4 @@
end
+