--- a/Journal/document/root.tex Thu Jun 02 16:44:35 2011 +0000
+++ b/Journal/document/root.tex Thu Jun 02 20:02:16 2011 +0000
@@ -1,4 +1,4 @@
-\documentclass[runningheads]{llncs}
+\documentclass{ita}
\usepackage{isabelle}
\usepackage{isabellesym}
\usepackage{amsmath}
@@ -16,8 +16,6 @@
%%\usepackage{mathabx}
\usepackage{stmaryrd}
-\titlerunning{Myhill-Nerode using Regular Expressions}
-
\urlstyle{rm}
\isabellestyle{it}
@@ -36,13 +34,13 @@
\newcommand{\bigplus}{\mbox{\Large\bf$+$}}
\begin{document}
-\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular
- Expressions (Proof Pearl)}
-\author{Chunhan Wu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}}
-\institute{PLA University of Science and Technology, China \and TU Munich, Germany}
-\maketitle
+\title{A Formalisation of the Myhill-Nerode Theorem based on Regular
+ Expressions}
+\author{Chunhan Wu}\address{PLA University of Science and Technology, China}
+\author{Xingyuan Zhang}\sameaddress{1}
+\author{Christian Urban}\address{TU Munich,
+ Germany}\secondaddress{corresponding author}
-%\mbox{}\\[-10mm]
\begin{abstract}
There are numerous textbooks on regular languages. Nearly all of them
introduce the subject by describing finite automata and only mentioning on the
@@ -55,9 +53,8 @@
reasoning infrastructure comes for free. We show in this paper that a central
result from formal language theory---the Myhill-Nerode theorem---can be
recreated using only regular expressions.
-
\end{abstract}
-
+\maketitle
\input{session}