Journal/Paper.thy
changeset 167 61d0a412a3ae
parent 162 e93760534354
child 170 b1258b7d2789
--- a/Journal/Paper.thy	Thu Jun 02 16:44:35 2011 +0000
+++ b/Journal/Paper.thy	Thu Jun 02 20:02:16 2011 +0000
@@ -1,6 +1,6 @@
 (*<*)
 theory Paper
-imports "../Derivs" "~~/src/HOL/Library/LaTeXsugar" 
+imports "../Closure" 
 begin
 
 declare [[show_question_marks = false]]
@@ -26,7 +26,7 @@
   quotient ("_ \<^raw:\ensuremath{\!\sslash\!}> _" [90, 90] 90) and
   REL ("\<approx>") and
   UPLUS ("_ \<^raw:\ensuremath{\uplus}> _" [90, 90] 90) and
-  L ("\<^raw:\ensuremath{\cal{L}}>'(_')" [0] 101) and
+  L_rexp ("\<^raw:\ensuremath{\cal{L}}>'(_')" [0] 101) and
   Lam ("\<lambda>'(_')" [100] 100) and 
   Trn ("'(_, _')" [100, 100] 100) and 
   EClass ("\<lbrakk>_\<rbrakk>\<^bsub>_\<^esub>" [100, 100] 100) and
@@ -41,16 +41,52 @@
   tag_str_SEQ ("tag\<^isub>S\<^isub>E\<^isub>Q _ _ _" [100, 100, 100] 100) and
   tag_str_STAR ("tag\<^isub>S\<^isub>T\<^isub>A\<^isub>R _" [100] 100) and
   tag_str_STAR ("tag\<^isub>S\<^isub>T\<^isub>A\<^isub>R _ _" [100, 100] 100)
+
 lemma meta_eq_app:
   shows "f \<equiv> \<lambda>x. g x \<Longrightarrow> f x \<equiv> g x"
   by auto
 
+(* THEOREMS *)
+
+notation (Rule output)
+  "==>"  ("\<^raw:\mbox{}\inferrule{\mbox{>_\<^raw:}}>\<^raw:{\mbox{>_\<^raw:}}>")
+
+syntax (Rule output)
+  "_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
+  ("\<^raw:\mbox{}\inferrule{>_\<^raw:}>\<^raw:{\mbox{>_\<^raw:}}>")
+
+  "_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms" 
+  ("\<^raw:\mbox{>_\<^raw:}\\>/ _")
+
+  "_asm" :: "prop \<Rightarrow> asms" ("\<^raw:\mbox{>_\<^raw:}>")
+
+notation (Axiom output)
+  "Trueprop"  ("\<^raw:\mbox{}\inferrule{\mbox{}}{\mbox{>_\<^raw:}}>")
+
+notation (IfThen output)
+  "==>"  ("\<^raw:{\normalsize{}>If\<^raw:\,}> _/ \<^raw:{\normalsize \,>then\<^raw:\,}>/ _.")
+syntax (IfThen output)
+  "_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
+  ("\<^raw:{\normalsize{}>If\<^raw:\,}> _ /\<^raw:{\normalsize \,>then\<^raw:\,}>/ _.")
+  "_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms" ("\<^raw:\mbox{>_\<^raw:}> /\<^raw:{\normalsize \,>and\<^raw:\,}>/ _")
+  "_asm" :: "prop \<Rightarrow> asms" ("\<^raw:\mbox{>_\<^raw:}>")
+
+notation (IfThenNoBox output)
+  "==>"  ("\<^raw:{\normalsize{}>If\<^raw:\,}> _/ \<^raw:{\normalsize \,>then\<^raw:\,}>/ _.")
+syntax (IfThenNoBox output)
+  "_bigimpl" :: "asms \<Rightarrow> prop \<Rightarrow> prop"
+  ("\<^raw:{\normalsize{}>If\<^raw:\,}> _ /\<^raw:{\normalsize \,>then\<^raw:\,}>/ _.")
+  "_asms" :: "prop \<Rightarrow> asms \<Rightarrow> asms" ("_ /\<^raw:{\normalsize \,>and\<^raw:\,}>/ _")
+  "_asm" :: "prop \<Rightarrow> asms" ("_")
+
+
 (*>*)
 
 
 section {* Introduction *}
 
 text {*
+  \noindent
   Regular languages are an important and well-understood subject in Computer
   Science, with many beautiful theorems and many useful algorithms. There is a
   wide range of textbooks on this subject, many of which are aimed at students
@@ -76,7 +112,7 @@
   HOLlight support them with libraries. Even worse, reasoning about graphs and
   matrices can be a real hassle in HOL-based theorem provers.  Consider for
   example the operation of sequencing two automata, say $A_1$ and $A_2$, by
-  connecting the accepting states of $A_1$ to the initial state of $A_2$:\\[-5.5mm]  
+  connecting the accepting states of $A_1$ to the initial state of $A_2$:
   %  
   \begin{center}
   \begin{tabular}{ccc}
@@ -206,10 +242,10 @@
   an automaton that recognises all strings of the language, we define a
   regular language as:
 
-  \begin{definition}
+  \begin{dfntn}
   A language @{text A} is \emph{regular}, provided there is a regular expression that matches all
   strings of @{text "A"}.
-  \end{definition}
+  \end{dfntn}
   
   \noindent
   The reason is that regular expressions, unlike graphs, matrices and functions, can
@@ -241,7 +277,7 @@
   being represented by the empty list, written @{term "[]"}.  \emph{Languages}
   are sets of strings. The language containing all strings is written in
   Isabelle/HOL as @{term "UNIV::string set"}. The concatenation of two languages 
-  is written @{term "A ;; B"} and a language raised to the power @{text n} is written 
+  is written @{term "A \<cdot> B"} and a language raised to the power @{text n} is written 
   @{term "A \<up> n"}. They are defined as usual
 
   \begin{center}
@@ -257,13 +293,13 @@
   is defined as the union over all powers, namely @{thm Star_def}. In the paper
   we will make use of the following properties of these constructions.
   
-  \begin{proposition}\label{langprops}\mbox{}\\
+  \begin{prpstn}\label{langprops}\mbox{}\\
   \begin{tabular}{@ {}ll}
   (i)   & @{thm star_cases}     \\ 
   (ii)  & @{thm[mode=IfThen] pow_length}\\
   (iii) & @{thm seq_Union_left} \\ 
   \end{tabular}
-  \end{proposition}
+  \end{prpstn}
 
   \noindent
   In @{text "(ii)"} we use the notation @{term "length s"} for the length of a
@@ -280,24 +316,24 @@
 
   Central to our proof will be the solution of equational systems
   involving equivalence classes of languages. For this we will use Arden's Lemma \cite{Brzozowski64},
-  which solves equations of the form @{term "X = A ;; X \<union> B"} provided
+  which solves equations of the form @{term "X = A \<cdot> X \<union> B"} provided
   @{term "[] \<notin> A"}. However we will need the following `reverse' 
-  version of Arden's Lemma (`reverse' in the sense of changing the order of @{term "A ;; X"} to
-  \mbox{@{term "X ;; A"}}).
+  version of Arden's Lemma (`reverse' in the sense of changing the order of @{term "A \<cdot> X"} to
+  \mbox{@{term "X \<cdot> A"}}).
 
-  \begin{lemma}[Reverse Arden's Lemma]\label{arden}\mbox{}\\
+  \begin{lmm}[Reverse Arden's Lemma]\label{arden}\mbox{}\\
   If @{thm (prem 1) arden} then
   @{thm (lhs) arden} if and only if
   @{thm (rhs) arden}.
-  \end{lemma}
+  \end{lmm}
 
   \begin{proof}
   For the right-to-left direction we assume @{thm (rhs) arden} and show
   that @{thm (lhs) arden} holds. From Prop.~\ref{langprops}@{text "(i)"} 
-  we have @{term "A\<star> = {[]} \<union> A ;; A\<star>"},
-  which is equal to @{term "A\<star> = {[]} \<union> A\<star> ;; A"}. Adding @{text B} to both 
-  sides gives @{term "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"}, whose right-hand side
-  is equal to @{term "(B ;; A\<star>) ;; A \<union> B"}. This completes this direction. 
+  we have @{term "A\<star> = {[]} \<union> A \<cdot> A\<star>"},
+  which is equal to @{term "A\<star> = {[]} \<union> A\<star> \<cdot> A"}. Adding @{text B} to both 
+  sides gives @{term "B \<cdot> A\<star> = B \<cdot> ({[]} \<union> A\<star> \<cdot> A)"}, whose right-hand side
+  is equal to @{term "(B \<cdot> A\<star>) \<cdot> A \<union> B"}. This completes this direction. 
 
   For the other direction we assume @{thm (lhs) arden}. By a simple induction
   on @{text n}, we can establish the property
@@ -307,18 +343,18 @@
   \end{center}
   
   \noindent
-  Using this property we can show that @{term "B ;; (A \<up> n) \<subseteq> X"} holds for
-  all @{text n}. From this we can infer @{term "B ;; A\<star> \<subseteq> X"} using the definition
+  Using this property we can show that @{term "B \<cdot> (A \<up> n) \<subseteq> X"} holds for
+  all @{text n}. From this we can infer @{term "B \<cdot> A\<star> \<subseteq> X"} using the definition
   of @{text "\<star>"}.
   For the inclusion in the other direction we assume a string @{text s}
   with length @{text k} is an element in @{text X}. Since @{thm (prem 1) arden}
   we know by Prop.~\ref{langprops}@{text "(ii)"} that 
-  @{term "s \<notin> X ;; (A \<up> Suc k)"} since its length is only @{text k}
-  (the strings in @{term "X ;; (A \<up> Suc k)"} are all longer). 
+  @{term "s \<notin> X \<cdot> (A \<up> Suc k)"} since its length is only @{text k}
+  (the strings in @{term "X \<cdot> (A \<up> Suc k)"} are all longer). 
   From @{text "(*)"} it follows then that
-  @{term s} must be an element in @{term "(\<Union>m\<in>{0..k}. B ;; (A \<up> m))"}. This in turn
-  implies that @{term s} is in @{term "(\<Union>n. B ;; (A \<up> n))"}. Using Prop.~\ref{langprops}@{text "(iii)"} 
-  this is equal to @{term "B ;; A\<star>"}, as we needed to show.\qed
+  @{term s} must be an element in @{term "(\<Union>m\<in>{0..k}. B \<cdot> (A \<up> m))"}. This in turn
+  implies that @{term s} is in @{term "(\<Union>n. B \<cdot> (A \<up> n))"}. Using Prop.~\ref{langprops}@{text "(iii)"} 
+  this is equal to @{term "B \<cdot> A\<star>"}, as we needed to show.\qed
   \end{proof}
 
   \noindent
@@ -381,12 +417,12 @@
   strings are related, provided there is no distinguishing extension in this
   language. This can be defined as a tertiary relation.
 
-  \begin{definition}[Myhill-Nerode Relation] Given a language @{text A}, two strings @{text x} and
+  \begin{dfntn}[Myhill-Nerode Relation] Given a language @{text A}, two strings @{text x} and
   @{text y} are Myhill-Nerode related provided
   \begin{center}
   @{thm str_eq_def[simplified str_eq_rel_def Pair_Collect]}
   \end{center}
-  \end{definition}
+  \end{dfntn}
 
   \noindent
   It is easy to see that @{term "\<approx>A"} is an equivalence relation, which
@@ -407,9 +443,9 @@
   that if there are finitely many equivalence classes, like in the example above, then 
   the language is regular. In our setting we therefore have to show:
   
-  \begin{theorem}\label{myhillnerodeone}
+  \begin{thrm}\label{myhillnerodeone}
   @{thm[mode=IfThen] Myhill_Nerode1}
-  \end{theorem}
+  \end{thrm}
 
   \noindent
   To prove this theorem, we first define the set @{term "finals A"} as those equivalence
@@ -496,8 +532,8 @@
   
   \begin{center}
   @{text "\<calL>(Y, r) \<equiv>"} %
-  @{thm (rhs) L_rhs_trm.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm}
-  @{thm L_rhs_trm.simps(1)[where r="r", THEN eq_reflection]}
+  @{thm (rhs) L_trm.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm}
+  @{thm L_trm.simps(1)[where r="r", THEN eq_reflection]}
   \end{center}
 
   \noindent
@@ -544,9 +580,9 @@
   for representing the right-hand sides of equations, we can 
   prove \eqref{inv1} and \eqref{inv2} more concisely as
   %
-  \begin{lemma}\label{inv}
+  \begin{lmm}\label{inv}
   If @{thm (prem 1) test} then @{text "X = \<Union> \<calL> ` rhs"}.
-  \end{lemma}
+  \end{lmm}
 
   \noindent
   Our proof of Thm.~\ref{myhillnerodeone} will proceed by transforming the
@@ -597,13 +633,13 @@
   \noindent
   This allows us to prove a version of Arden's Lemma on the level of equations.
 
-  \begin{lemma}\label{ardenable}
+  \begin{lmm}\label{ardenable}
   Given an equation @{text "X = rhs"}.
   If @{text "X = \<Union>\<calL> ` rhs"},
   @{thm (prem 2) Arden_keeps_eq}, and
   @{thm (prem 3) Arden_keeps_eq}, then
   @{text "X = \<Union>\<calL> ` (Arden X rhs)"}.
-  \end{lemma}
+  \end{lmm}
   
   \noindent
   Our @{text ardenable} condition is slightly stronger than needed for applying Arden's Lemma,
@@ -739,9 +775,9 @@
   It is straightforward to prove that the initial equational system satisfies the
   invariant.
 
-  \begin{lemma}\label{invzero}
+  \begin{lmm}\label{invzero}
   @{thm[mode=IfThen] Init_ES_satisfies_invariant}
-  \end{lemma}
+  \end{lmm}
 
   \begin{proof}
   Finiteness is given by the assumption and the way how we set up the 
@@ -754,9 +790,9 @@
   \noindent
   Next we show that @{text Iter} preserves the invariant.
 
-  \begin{lemma}\label{iterone}
+  \begin{lmm}\label{iterone}
   @{thm[mode=IfThen] iteration_step_invariant[where xrhs="rhs"]}
-  \end{lemma}
+  \end{lmm}
 
   \begin{proof} 
   The argument boils down to choosing an equation @{text "Y = yrhs"} to be eliminated
@@ -786,9 +822,9 @@
   \noindent
   We also need the fact that @{text Iter} decreases the termination measure.
 
-  \begin{lemma}\label{itertwo}
+  \begin{lmm}\label{itertwo}
   @{thm[mode=IfThen] iteration_step_measure[simplified (no_asm), where xrhs="rhs"]}
-  \end{lemma}
+  \end{lmm}
 
   \begin{proof}
   By assumption we know that @{text "ES"} is finite and has more than one element.
@@ -803,11 +839,11 @@
   This brings us to our property we want to establish for @{text Solve}.
 
 
-  \begin{lemma}
+  \begin{lmm}
   If @{thm (prem 1) Solve} and @{thm (prem 2) Solve} then there exists
   a @{text rhs} such that  @{term "Solve X (Init (UNIV // \<approx>A)) = {(X, rhs)}"}
   and @{term "invariant {(X, rhs)}"}.
-  \end{lemma}
+  \end{lmm}
 
   \begin{proof} 
   In order to prove this lemma using \eqref{whileprinciple}, we have to use a slightly
@@ -835,9 +871,9 @@
   With this lemma in place we can show that for every equivalence class in @{term "UNIV // \<approx>A"}
   there exists a regular expression.
 
-  \begin{lemma}\label{every_eqcl_has_reg}
+  \begin{lmm}\label{every_eqcl_has_reg}
   @{thm[mode=IfThen] every_eqcl_has_reg}
-  \end{lemma}
+  \end{lmm}
 
   \begin{proof}
   By the preceding lemma, we know that there exists a @{text "rhs"} such
@@ -879,9 +915,9 @@
   We will prove in this section the second part of the Myhill-Nerode
   theorem. It can be formulated in our setting as follows:
 
-  \begin{theorem}
+  \begin{thrm}
   Given @{text "r"} is a regular expression, then @{thm Myhill_Nerode2}.
-  \end{theorem}  
+  \end{thrm}  
 
   \noindent
   The proof will be by induction on the structure of @{text r}. It turns out
@@ -919,12 +955,12 @@
   is said to \emph{refine} @{text "R\<^isub>2"} provided @{text "R\<^isub>1 \<subseteq> R\<^isub>2"}).
   We formally define the notion of a \emph{tagging-relation} as follows.
 
-  \begin{definition}[Tagging-Relation] Given a tagging-function @{text tag}, then two strings @{text x}
+  \begin{dfntn}[Tagging-Relation] Given a tagging-function @{text tag}, then two strings @{text x}
   and @{text y} are \emph{tag-related} provided
   \begin{center}
   @{text "x =tag= y \<equiv> tag x = tag y"}\;.
   \end{center}
-  \end{definition}
+  \end{dfntn}
 
 
   In order to establish finiteness of a set @{text A}, we shall use the following powerful
@@ -939,9 +975,9 @@
   is finite, then the set @{text A} itself must be finite. We can use it to establish the following 
   two lemmas.
 
-  \begin{lemma}\label{finone}
+  \begin{lmm}\label{finone}
   @{thm[mode=IfThen] finite_eq_tag_rel}
-  \end{lemma}
+  \end{lmm}
 
   \begin{proof}
   We set in \eqref{finiteimageD}, @{text f} to be @{text "X \<mapsto> tag ` X"}. We have
@@ -955,12 +991,12 @@
   and @{text Y} must be equal.\qed
   \end{proof}
 
-  \begin{lemma}\label{fintwo} 
+  \begin{lmm}\label{fintwo} 
   Given two equivalence relations @{text "R\<^isub>1"} and @{text "R\<^isub>2"}, whereby
   @{text "R\<^isub>1"} refines @{text "R\<^isub>2"}.
   If @{thm (prem 1) refined_partition_finite[where ?R1.0="R\<^isub>1" and ?R2.0="R\<^isub>2"]}
   then @{thm (concl) refined_partition_finite[where ?R1.0="R\<^isub>1" and ?R2.0="R\<^isub>2"]}.
-  \end{lemma}
+  \end{lmm}
 
   \begin{proof}
   We prove this lemma again using \eqref{finiteimageD}. This time we set @{text f} to
@@ -1028,12 +1064,12 @@
   to be able to infer that 
   %
   \begin{center}
-  @{text "\<dots>"}@{term "x @ z \<in> A ;; B \<longrightarrow> y @ z \<in> A ;; B"}
+  @{text "\<dots>"}@{term "x @ z \<in> A \<cdot> B \<longrightarrow> y @ z \<in> A \<cdot> B"}
   \end{center}
   %
   \noindent
   using the information given by the appropriate tagging-function. The complication 
-  is to find out what the possible splits of @{text "x @ z"} are to be in @{term "A ;; B"}
+  is to find out what the possible splits of @{text "x @ z"} are to be in @{term "A \<cdot> B"}
   (this was easy in case of @{term "A \<union> B"}). To deal with this complication we define the
   notions of \emph{string prefixes} 
   %
@@ -1054,8 +1090,8 @@
   \noindent
   where @{text c} and @{text d} are characters, and @{text x} and @{text y} are strings. 
   
-  Now assuming  @{term "x @ z \<in> A ;; B"} there are only two possible ways of how to `split' 
-  this string to be in @{term "A ;; B"}:
+  Now assuming  @{term "x @ z \<in> A \<cdot> B"} there are only two possible ways of how to `split' 
+  this string to be in @{term "A \<cdot> B"}:
   %
   \begin{center}
   \begin{tabular}{@ {}c@ {\hspace{10mm}}c@ {}}
@@ -1075,7 +1111,7 @@
 
     \draw[decoration={brace,transform={yscale=3}},decorate]
            ($(xa.north west)+(0em,3ex)$) -- ($(z.north east)+(0em,3ex)$)
-               node[midway, above=0.8em]{@{term "x @ z \<in> A ;; B"}};
+               node[midway, above=0.8em]{@{term "x @ z \<in> A \<cdot> B"}};
 
     \draw[decoration={brace,transform={yscale=3}},decorate]
            ($(z.south east)+(0em,0ex)$) -- ($(xxa.south west)+(0em,0ex)$)
@@ -1102,7 +1138,7 @@
 
     \draw[decoration={brace,transform={yscale=3}},decorate]
            ($(x.north west)+(0em,3ex)$) -- ($(zza.north east)+(0em,3ex)$)
-               node[midway, above=0.8em]{@{term "x @ z \<in> A ;; B"}};
+               node[midway, above=0.8em]{@{term "x @ z \<in> A \<cdot> B"}};
 
     \draw[decoration={brace,transform={yscale=3}},decorate]
            ($(za.south east)+(0em,0ex)$) -- ($(x.south west)+(0em,0ex)$)
@@ -1118,7 +1154,7 @@
   \noindent
   Either there is a prefix of @{text x} in @{text A} and the rest is in @{text B} (first picture),
   or @{text x} and a prefix of @{text "z"} is in @{text A} and the rest in @{text B} (second picture).
-  In both cases we have to show that @{term "y @ z \<in> A ;; B"}. For this we use the 
+  In both cases we have to show that @{term "y @ z \<in> A \<cdot> B"}. For this we use the 
   following tagging-function
   %
   \begin{center}
@@ -1136,7 +1172,7 @@
   We have to show injectivity of this tagging-function as
   %
   \begin{center}
-  @{term "\<forall>z. tag_str_SEQ A B x = tag_str_SEQ A B y \<and> x @ z \<in> A ;; B \<longrightarrow> y @ z \<in> A ;; B"}
+  @{term "\<forall>z. tag_str_SEQ A B x = tag_str_SEQ A B y \<and> x @ z \<in> A \<cdot> B \<longrightarrow> y @ z \<in> A \<cdot> B"}
   \end{center}
   %
   \noindent
@@ -1161,13 +1197,13 @@
   @{term "(x - x') \<approx>B (y - y')"} holds. Unfolding the Myhill-Nerode
   relation and together with the fact that @{text "(x - x') @ z \<in> B"}, we
   have @{text "(y - y') @ z \<in> B"}. We already know @{text "y' \<in> A"}, therefore
-  @{term "y @ z \<in> A ;; B"}, as needed in this case.
+  @{term "y @ z \<in> A \<cdot> B"}, as needed in this case.
 
   Second, there exists a @{text "z'"} such that @{term "x @ z' \<in> A"} and @{text "z - z' \<in> B"}.
   By the assumption about @{term "tag_str_SEQ A B"} we have
   @{term "\<approx>A `` {x} = \<approx>A `` {y}"} and thus @{term "x \<approx>A y"}. Which means by the Myhill-Nerode
   relation that @{term "y @ z' \<in> A"} holds. Using @{text "z - z' \<in> B"}, we can conclude also in this case
-  with @{term "y @ z \<in> A ;; B"}. We again can complete the @{const SEQ}-case
+  with @{term "y @ z \<in> A \<cdot> B"}. We again can complete the @{const SEQ}-case
   by setting @{text A} to @{term "L r\<^isub>1"} and @{text B} to @{term "L r\<^isub>2"}.\qed 
   \end{proof}
   
@@ -1309,9 +1345,9 @@
   this point of view. We have established in Isabelle/HOL both directions 
   of the Myhill-Nerode theorem.
   %
-  \begin{theorem}[The Myhill-Nerode Theorem]\mbox{}\\
+  \begin{thrm}[The Myhill-Nerode Theorem]\mbox{}\\
   A language @{text A} is regular if and only if @{thm (rhs) Myhill_Nerode}.
-  \end{theorem}
+  \end{thrm}
   %
   \noindent
   Having formalised this theorem means we