--- a/prio/PrioGDef.thy Fri Feb 10 11:30:47 2012 +0000
+++ b/prio/PrioGDef.thy Fri Feb 10 21:01:03 2012 +0000
@@ -192,13 +192,27 @@
definition cpreced :: "(cs \<Rightarrow> thread list) \<Rightarrow> state \<Rightarrow> thread \<Rightarrow> precedence"
where "cpreced wq s = (\<lambda> th. Max ((\<lambda> th. preced th s) ` ({th} \<union> dependents wq th)))"
+(*<*)
lemma
cpreced_def2:
- "cpreced wq s th = Max ({preced th s} \<union> {preced th' s | th'. th' \<in> dependents wq th})"
+ "cpreced wq s th \<equiv> Max ({preced th s} \<union> {preced th' s | th'. th' \<in> dependents wq th})"
unfolding cpreced_def image_def
+ apply(rule eq_reflection)
apply(rule arg_cong)
back
by (auto)
+(*>*)
+
+abbreviation
+ "all_unlocked \<equiv> \<lambda>_::cs. ([]::thread list)"
+
+abbreviation
+ "initial_cprec \<equiv> \<lambda>_::thread. Prc 0 0"
+
+abbreviation
+ "release qs \<equiv> case qs of
+ [] => []
+ | (_#qs) => (SOME q. distinct q \<and> set q = set qs)"
text {* \noindent
The following function @{text "schs"} is used to calculate the schedule state @{text "schs s"}.
@@ -206,14 +220,14 @@
*}
fun schs :: "state \<Rightarrow> schedule_state"
where
- "schs [] = (| waiting_queue = \<lambda> cs. [], cur_preced = cpreced (\<lambda> cs. []) [] |)" |
+ "schs [] = (| waiting_queue = \<lambda> cs. [], cur_preced = (\<lambda>_. Prc 0 0) |)" |
-- {*
\begin{minipage}{0.9\textwidth}
\begin{enumerate}
\item @{text "ps"} is the schedule state of last moment.
\item @{text "pwq"} is the waiting queue function of last moment.
- \item @{text "pcp"} is the precedence function of last moment.
+ \item @{text "pcp"} is the precedence function of last moment (NOT USED).
\item @{text "nwq"} is the new waiting queue function. It is calculated using a @{text "case"} statement:
\begin{enumerate}
\item If the happening event is @{text "P thread cs"}, @{text "thread"} is added to
@@ -233,9 +247,34 @@
\end{enumerate}
\end{minipage}
*}
- "schs (e#s) = (let ps = schs s in
+ "schs (Create th prio # s) =
+ (let wq = waiting_queue (schs s) in
+ (|waiting_queue = wq, cur_preced = cpreced wq (Create th prio # s)|))"
+| "schs (Exit th # s) =
+ (let wq = waiting_queue (schs s) in
+ (|waiting_queue = wq, cur_preced = cpreced wq (Exit th # s)|))"
+| "schs (Set th prio # s) =
+ (let wq = waiting_queue (schs s) in
+ (|waiting_queue = wq, cur_preced = cpreced wq (Set th prio # s)|))"
+| "schs (P th cs # s) =
+ (let wq = waiting_queue (schs s) in
+ let new_wq = wq(cs := (wq cs @ [th])) in
+ (|waiting_queue = new_wq, cur_preced = cpreced new_wq (P th cs # s)|))"
+| "schs (V th cs # s) =
+ (let wq = waiting_queue (schs s) in
+ let new_wq = wq(cs := release (wq cs)) in
+ (|waiting_queue = new_wq, cur_preced = cpreced new_wq (V th cs # s)|))"
+
+lemma cpreced_initial:
+ "cpreced (\<lambda> cs. []) [] = (\<lambda>_. (Prc 0 0))"
+apply(simp add: cpreced_def)
+apply(simp add: cs_dependents_def cs_depend_def cs_waiting_def cs_holding_def)
+apply(simp add: preced_def)
+done
+
+lemma sch_old_def:
+ "schs (e#s) = (let ps = schs s in
let pwq = waiting_queue ps in
- let pcp = cur_preced ps in
let nwq = case e of
P th cs \<Rightarrow> pwq(cs:=(pwq cs @ [th])) |
V th cs \<Rightarrow> let nq = case (pwq cs) of
@@ -246,6 +285,10 @@
in let ncp = cpreced nwq (e#s) in
\<lparr>waiting_queue = nwq, cur_preced = ncp\<rparr>
)"
+apply(cases e)
+apply(simp_all)
+done
+
text {*
\noindent