--- a/More_Regular_Set.thy Fri Aug 19 20:39:07 2011 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,151 +0,0 @@
-(* Author: Christian Urban, Xingyuan Zhang, Chunhan Wu *)
-theory More_Regular_Set
-imports "Regular_Exp" "Folds"
-begin
-
-text {* Some properties of operator @{text "@@"}. *}
-
-notation
- conc (infixr "\<cdot>" 100) and
- star ("_\<star>" [101] 102)
-
-lemma star_decom:
- assumes a: "x \<in> A\<star>" "x \<noteq> []"
- shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>"
-using a
-by (induct rule: star_induct) (blast)+
-
-lemma conc_pow_comm:
- shows "A \<cdot> (A ^^ n) = (A ^^ n) \<cdot> A"
-by (induct n) (simp_all add: conc_assoc[symmetric])
-
-lemma conc_star_comm:
- shows "A \<cdot> A\<star> = A\<star> \<cdot> A"
-unfolding star_def conc_pow_comm conc_UNION_distrib
-by simp
-
-
-text {* Two lemmas about the length of strings in @{text "A \<up> n"} *}
-
-lemma pow_length:
- assumes a: "[] \<notin> A"
- and b: "s \<in> A ^^ Suc n"
- shows "n < length s"
-using b
-proof (induct n arbitrary: s)
- case 0
- have "s \<in> A ^^ Suc 0" by fact
- with a have "s \<noteq> []" by auto
- then show "0 < length s" by auto
-next
- case (Suc n)
- have ih: "\<And>s. s \<in> A ^^ Suc n \<Longrightarrow> n < length s" by fact
- have "s \<in> A ^^ Suc (Suc n)" by fact
- then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A ^^ Suc n"
- by (auto simp add: conc_def)
- from ih ** have "n < length s2" by simp
- moreover have "0 < length s1" using * a by auto
- ultimately show "Suc n < length s" unfolding eq
- by (simp only: length_append)
-qed
-
-lemma conc_pow_length:
- assumes a: "[] \<notin> A"
- and b: "s \<in> B \<cdot> (A ^^ Suc n)"
- shows "n < length s"
-proof -
- from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A ^^ Suc n"
- by auto
- from * have " n < length s2" by (rule pow_length[OF a])
- then show "n < length s" using eq by simp
-qed
-
-
-section {* A modified version of Arden's lemma *}
-
-text {* A helper lemma for Arden *}
-
-lemma arden_helper:
- assumes eq: "X = X \<cdot> A \<union> B"
- shows "X = X \<cdot> (A ^^ Suc n) \<union> (\<Union>m\<in>{0..n}. B \<cdot> (A ^^ m))"
-proof (induct n)
- case 0
- show "X = X \<cdot> (A ^^ Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B \<cdot> (A ^^ m))"
- using eq by simp
-next
- case (Suc n)
- have ih: "X = X \<cdot> (A ^^ Suc n) \<union> (\<Union>m\<in>{0..n}. B \<cdot> (A ^^ m))" by fact
- also have "\<dots> = (X \<cdot> A \<union> B) \<cdot> (A ^^ Suc n) \<union> (\<Union>m\<in>{0..n}. B \<cdot> (A ^^ m))" using eq by simp
- also have "\<dots> = X \<cdot> (A ^^ Suc (Suc n)) \<union> (B \<cdot> (A ^^ Suc n)) \<union> (\<Union>m\<in>{0..n}. B \<cdot> (A ^^ m))"
- by (simp add: conc_Un_distrib conc_assoc)
- also have "\<dots> = X \<cdot> (A ^^ Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B \<cdot> (A ^^ m))"
- by (auto simp add: le_Suc_eq)
- finally show "X = X \<cdot> (A ^^ Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B \<cdot> (A ^^ m))" .
-qed
-
-theorem arden:
- assumes nemp: "[] \<notin> A"
- shows "X = X \<cdot> A \<union> B \<longleftrightarrow> X = B \<cdot> A\<star>"
-proof
- assume eq: "X = B \<cdot> A\<star>"
- have "A\<star> = {[]} \<union> A\<star> \<cdot> A"
- unfolding conc_star_comm[symmetric]
- by(metis Un_commute star_unfold_left)
- then have "B \<cdot> A\<star> = B \<cdot> ({[]} \<union> A\<star> \<cdot> A)"
- by metis
- also have "\<dots> = B \<union> B \<cdot> (A\<star> \<cdot> A)"
- unfolding conc_Un_distrib by simp
- also have "\<dots> = B \<union> (B \<cdot> A\<star>) \<cdot> A"
- by (simp only: conc_assoc)
- finally show "X = X \<cdot> A \<union> B"
- using eq by blast
-next
- assume eq: "X = X \<cdot> A \<union> B"
- { fix n::nat
- have "B \<cdot> (A ^^ n) \<subseteq> X" using arden_helper[OF eq, of "n"] by auto }
- then have "B \<cdot> A\<star> \<subseteq> X"
- unfolding conc_def star_def UNION_def by auto
- moreover
- { fix s::"'a list"
- obtain k where "k = length s" by auto
- then have not_in: "s \<notin> X \<cdot> (A ^^ Suc k)"
- using conc_pow_length[OF nemp] by blast
- assume "s \<in> X"
- then have "s \<in> X \<cdot> (A ^^ Suc k) \<union> (\<Union>m\<in>{0..k}. B \<cdot> (A ^^ m))"
- using arden_helper[OF eq, of "k"] by auto
- then have "s \<in> (\<Union>m\<in>{0..k}. B \<cdot> (A ^^ m))" using not_in by auto
- moreover
- have "(\<Union>m\<in>{0..k}. B \<cdot> (A ^^ m)) \<subseteq> (\<Union>n. B \<cdot> (A ^^ n))" by auto
- ultimately
- have "s \<in> B \<cdot> A\<star>"
- unfolding conc_Un_distrib star_def by auto }
- then have "X \<subseteq> B \<cdot> A\<star>" by auto
- ultimately
- show "X = B \<cdot> A\<star>" by simp
-qed
-
-
-text {* Plus-combination for a set of regular expressions *}
-
-abbreviation
- Setalt ("\<Uplus>_" [1000] 999)
-where
- "\<Uplus>A \<equiv> folds Plus Zero A"
-
-text {*
- For finite sets, @{term Setalt} is preserved under @{term lang}.
-*}
-
-lemma folds_alt_simp [simp]:
- fixes rs::"('a rexp) set"
- assumes a: "finite rs"
- shows "lang (\<Uplus>rs) = \<Union> (lang ` rs)"
-unfolding folds_def
-apply(rule set_eqI)
-apply(rule someI2_ex)
-apply(rule_tac finite_imp_fold_graph[OF a])
-apply(erule fold_graph.induct)
-apply(auto)
-done
-
-end
\ No newline at end of file