--- a/Myhill.thy Thu Jan 27 00:51:46 2011 +0000
+++ b/Myhill.thy Thu Jan 27 05:39:19 2011 +0000
@@ -1279,14 +1279,9 @@
subsection {* The case for @{const "SEQ"}*}
definition
- "tag_str_SEQ L\<^isub>1 L\<^isub>2 x \<equiv>
- ((\<approx>L\<^isub>1) `` {x}, {(\<approx>L\<^isub>2) `` {x - xa}| xa. xa \<le> x \<and> xa \<in> L\<^isub>1})"
-
-lemma tag_str_seq_range_finite:
- "\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk>
- \<Longrightarrow> finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))"
-apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (Pow (UNIV // \<approx>L\<^isub>2))" in finite_subset)
-by (auto simp:tag_str_SEQ_def Image_def quotient_def split:if_splits)
+ tag_str_SEQ :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang set)"
+where
+ "tag_str_SEQ L1 L2 = (\<lambda>x. (\<approx>L1 `` {x}, {(\<approx>L2 `` {x - xa}) | xa. xa \<le> x \<and> xa \<in> L1}))"
lemma append_seq_elim:
assumes "x @ y \<in> L\<^isub>1 ;; L\<^isub>2"
@@ -1357,10 +1352,22 @@
qed
lemma quot_seq_finiteI [intro]:
- "\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk>
- \<Longrightarrow> finite (UNIV // \<approx>(L\<^isub>1 ;; L\<^isub>2))"
- apply (rule_tac tag = "tag_str_SEQ L\<^isub>1 L\<^isub>2" in tag_finite_imageD)
- by (auto intro:tag_str_SEQ_injI elim:tag_str_seq_range_finite)
+ fixes L1 L2::"lang"
+ assumes fin1: "finite (UNIV // \<approx>L1)"
+ and fin2: "finite (UNIV // \<approx>L2)"
+ shows "finite (UNIV // \<approx>(L1 ;; L2))"
+proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD)
+ show "\<And>x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \<Longrightarrow> x \<approx>(L1 ;; L2) y"
+ by (rule tag_str_SEQ_injI)
+next
+ have *: "finite ((UNIV // \<approx>L1) \<times> (Pow (UNIV // \<approx>L2)))"
+ using fin1 fin2 by auto
+ show "finite (range (tag_str_SEQ L1 L2))"
+ unfolding tag_str_SEQ_def
+ apply(rule finite_subset[OF _ *])
+ unfolding quotient_def
+ by auto
+qed
subsection {* The case for @{const "ALT"} *}
@@ -1384,7 +1391,8 @@
unfolding str_eq_rel_def
by auto
next
- have *: "finite ((UNIV // \<approx>L1) \<times> (UNIV // \<approx>L2))" using finite1 finite2 by auto
+ have *: "finite ((UNIV // \<approx>L1) \<times> (UNIV // \<approx>L2))"
+ using finite1 finite2 by auto
show "finite (range (tag_str_ALT L1 L2))"
unfolding tag_str_ALT_def
apply(rule finite_subset[OF _ *])
@@ -1400,7 +1408,9 @@
*} (* I will make some illustrations for it. *)
definition
- "tag_str_STAR L\<^isub>1 x \<equiv> {(\<approx>L\<^isub>1) `` {x - xa} | xa. xa < x \<and> xa \<in> L\<^isub>1\<star>}"
+ tag_str_STAR :: "lang \<Rightarrow> string \<Rightarrow> lang set"
+where
+ "tag_str_STAR L1 = (\<lambda>x. {\<approx>L1 `` {x - xa} | xa. xa < x \<and> xa \<in> L1\<star>})"
lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow>
(\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))"
@@ -1432,13 +1442,6 @@
apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}")
by (auto simp:strict_prefix_def)
-
-lemma tag_str_star_range_finite:
- "finite (UNIV // \<approx>L\<^isub>1) \<Longrightarrow> finite (range (tag_str_STAR L\<^isub>1))"
-apply (rule_tac B = "Pow (UNIV // \<approx>L\<^isub>1)" in finite_subset)
-by (auto simp:tag_str_STAR_def Image_def
- quotient_def split:if_splits)
-
lemma tag_str_STAR_injI:
"tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \<Longrightarrow> m \<approx>(L\<^isub>1\<star>) n"
proof-
@@ -1523,10 +1526,23 @@
by (auto simp add:str_eq_def str_eq_rel_def)
qed
+
lemma quot_star_finiteI [intro]:
- "finite (UNIV // \<approx>L\<^isub>1) \<Longrightarrow> finite (UNIV // \<approx>(L\<^isub>1\<star>))"
- apply (rule_tac tag = "tag_str_STAR L\<^isub>1" in tag_finite_imageD)
- by (auto intro:tag_str_STAR_injI elim:tag_str_star_range_finite)
+ fixes L1::"lang"
+ assumes finite1: "finite (UNIV // \<approx>L1)"
+ shows "finite (UNIV // \<approx>(L1\<star>))"
+proof (rule_tac tag = "tag_str_STAR L1" in tag_finite_imageD)
+ show "\<And>x y. tag_str_STAR L1 x = tag_str_STAR L1 y \<Longrightarrow> x \<approx>(L1\<star>) y"
+ by (rule tag_str_STAR_injI)
+next
+ have *: "finite (Pow (UNIV // \<approx>L1))"
+ using finite1 by auto
+ show "finite (range (tag_str_STAR L1))"
+ unfolding tag_str_STAR_def
+ apply(rule finite_subset[OF _ *])
+ unfolding quotient_def
+ by auto
+qed
subsection {* The main lemma *}