--- a/Paper/Paper.thy Thu Feb 10 13:10:16 2011 +0000
+++ b/Paper/Paper.thy Thu Feb 10 21:00:40 2011 +0000
@@ -373,7 +373,7 @@
the language is regular. In our setting we therefore have to show:
\begin{theorem}\label{myhillnerodeone}
- @{thm[mode=IfThen] hard_direction}
+ @{thm[mode=IfThen] Myhill_Nerode1}
\end{theorem}
\noindent
@@ -534,6 +534,19 @@
regular expression to @{text "xrhs"} and union it up with @{text rhs'}. When we use
the substitution operation we will arrange it so that @{text "xrhs"} does not contain
any occurence of @{text X}.
+
+ We lift these two operation to work over equational systems @{text ES}: @{const Subst_all}
+ substitutes an equation @{text "X = xrhs"} throughout an equational system @{text ES};
+ @{const Remove} completely removes such an equaution from @{text ES} by substituting
+ it to the rest of the equational system, but first removing all recursive occurences
+ of @{text X} by applying @{const Arden} to @{text "xrhs"}.
+
+ \begin{center}
+ \begin{tabular}{rcl}
+ @{thm (lhs) Subst_all_def} & @{text "\<equiv>"} & @{thm (rhs) Subst_all_def}\\
+ @{thm (lhs) Remove_def} & @{text "\<equiv>"} & @{thm (rhs) Remove_def}
+ \end{tabular}
+ \end{center}
*}
section {* Regular Expressions Generate Finitely Many Partitions *}