--- a/Paper/Paper.thy Sun Jan 30 12:22:07 2011 +0000
+++ b/Paper/Paper.thy Sun Jan 30 16:59:57 2011 +0000
@@ -6,7 +6,11 @@
declare [[show_question_marks = false]]
notation (latex output)
- str_eq_rel ("\<approx>\<^bsub>_\<^esub>")
+ str_eq_rel ("\<approx>\<^bsub>_\<^esub>") and
+ Seq (infixr "\<cdot>" 100) and
+ Star ("_\<^bsup>\<star>\<^esup>") and
+ pow ("_\<^bsup>_\<^esup>" [100, 100] 100) and
+ Suc ("_+1" [100] 100)
(*>*)
@@ -16,6 +20,45 @@
*}
+section {* Preliminaries *}
+
+text {*
+ A central technique in our proof is the solution of equational systems
+ involving regular expressions. For this we will use the following ``reverse''
+ version of Arden's lemma.
+
+ \begin{lemma}[Reverse Arden's Lemma]\mbox{}\\
+ If @{thm (prem 1) ardens_revised} then
+ @{thm (lhs) ardens_revised} has the unique solution
+ @{thm (rhs) ardens_revised}.
+ \end{lemma}
+
+ \begin{proof}
+ For right-to-left direction we assume @{thm (rhs) ardens_revised} and show
+ @{thm (lhs) ardens_revised}. From Lemma ??? we have @{term "A\<star> = {[]} \<union> A ;; A\<star>"},
+ which is equal to @{term "A\<star> = {[]} \<union> A\<star> ;; A"}. Adding @{text B} to both
+ sides gives @{term "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"}, whose right-hand side
+ is @{term "B \<union> (B ;; A\<star>) ;; A"}. This completes this direction.
+
+ For the other direction we assume @{thm (lhs) ardens_revised}. By a simple induction
+ on @{text n}, we can show the property
+
+ \begin{center}
+ @{text "(*)"}\hspace{5mm} @{thm (concl) ardens_helper}
+ \end{center}
+
+ \noindent
+ Using this property we can show that @{term "B ;; (A \<up> n) \<subseteq> X"} holds for
+ all @{text n}. From this we can infer @{term "B ;; A\<star> \<subseteq> X"} using Lemma ???.
+ The inclusion in the other direction we establishing by assuming a string @{text s}
+ with length @{text k} is element in @{text X}. Since @{thm (prem 1) ardens_revised}
+ we know that @{term "s \<notin> X ;; (A \<up> Suc k)"} as its length is only @{text k}.
+ From @{text "(*)"} it follows that
+ @{term s} must be element in @{term "(\<Union>m\<in>{0..k}. B ;; (A \<up> m))"}. This in turn
+ implies that @{term s} is in @{term "(\<Union>n. B ;; (A \<up> n))"}. Using Lemma ??? this
+ is equal to @{term "B ;; A\<star>"}, as we needed to show.\qed
+ \end{proof}
+*}
section {* Regular expressions have finitely many partitions *}
@@ -27,7 +70,7 @@
\begin{proof}
By induction on the structure of @{text r}. The cases for @{const NULL}, @{const EMPTY}
- and @{const CHAR} are starightforward, because we can easily establish
+ and @{const CHAR} are straightforward, because we can easily establish
\begin{center}
\begin{tabular}{l}