|
1 theory Myhill_1 |
|
2 imports Main List_Prefix Prefix_subtract |
|
3 begin |
|
4 |
|
5 (* |
|
6 text {* |
|
7 \begin{figure} |
|
8 \centering |
|
9 \scalebox{0.95}{ |
|
10 \begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=1.2cm, semithick] |
|
11 \node[state,initial] (n1) {$1$}; |
|
12 \node[state,accepting] (n2) [right = 10em of n1] {$2$}; |
|
13 |
|
14 \path (n1) edge [bend left] node {$0$} (n2) |
|
15 (n1) edge [loop above] node{$1$} (n1) |
|
16 (n2) edge [loop above] node{$0$} (n2) |
|
17 (n2) edge [bend left] node {$1$} (n1) |
|
18 ; |
|
19 \end{tikzpicture}} |
|
20 \caption{An example automaton (or partition)}\label{fig:example_automata} |
|
21 \end{figure} |
|
22 *} |
|
23 |
|
24 *) |
|
25 |
|
26 |
|
27 section {* Preliminary definitions *} |
|
28 |
|
29 text {* Sequential composition of two languages @{text "L1"} and @{text "L2"} *} |
|
30 definition Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
31 where |
|
32 "L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}" |
|
33 |
|
34 text {* Transitive closure of language @{text "L"}. *} |
|
35 inductive_set |
|
36 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
37 for L :: "string set" |
|
38 where |
|
39 start[intro]: "[] \<in> L\<star>" |
|
40 | step[intro]: "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>" |
|
41 |
|
42 text {* Some properties of operator @{text ";;"}.*} |
|
43 |
|
44 lemma seq_union_distrib: |
|
45 "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)" |
|
46 by (auto simp:Seq_def) |
|
47 |
|
48 lemma seq_intro: |
|
49 "\<lbrakk>x \<in> A; y \<in> B\<rbrakk> \<Longrightarrow> x @ y \<in> A ;; B " |
|
50 by (auto simp:Seq_def) |
|
51 |
|
52 lemma seq_assoc: |
|
53 "(A ;; B) ;; C = A ;; (B ;; C)" |
|
54 apply(auto simp:Seq_def) |
|
55 apply blast |
|
56 by (metis append_assoc) |
|
57 |
|
58 lemma star_intro1[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>" |
|
59 by (erule Star.induct, auto) |
|
60 |
|
61 lemma star_intro2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>" |
|
62 by (drule step[of y lang "[]"], auto simp:start) |
|
63 |
|
64 lemma star_intro3[rule_format]: |
|
65 "x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>" |
|
66 by (erule Star.induct, auto intro:star_intro2) |
|
67 |
|
68 lemma star_decom: |
|
69 "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> lang \<and> b \<in> lang\<star>)" |
|
70 by (induct x rule: Star.induct, simp, blast) |
|
71 |
|
72 lemma star_decom': |
|
73 "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow> \<exists>a b. x = a @ b \<and> a \<in> lang\<star> \<and> b \<in> lang" |
|
74 apply (induct x rule:Star.induct, simp) |
|
75 apply (case_tac "s2 = []") |
|
76 apply (rule_tac x = "[]" in exI, rule_tac x = s1 in exI, simp add:start) |
|
77 apply (simp, (erule exE| erule conjE)+) |
|
78 by (rule_tac x = "s1 @ a" in exI, rule_tac x = b in exI, simp add:step) |
|
79 |
|
80 text {* Ardens lemma expressed at the level of language, rather than the level of regular expression. *} |
|
81 |
|
82 theorem ardens_revised: |
|
83 assumes nemp: "[] \<notin> A" |
|
84 shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)" |
|
85 proof |
|
86 assume eq: "X = B ;; A\<star>" |
|
87 have "A\<star> = {[]} \<union> A\<star> ;; A" |
|
88 by (auto simp:Seq_def star_intro3 star_decom') |
|
89 then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" |
|
90 unfolding Seq_def by simp |
|
91 also have "\<dots> = B \<union> B ;; (A\<star> ;; A)" |
|
92 unfolding Seq_def by auto |
|
93 also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" |
|
94 by (simp only:seq_assoc) |
|
95 finally show "X = X ;; A \<union> B" |
|
96 using eq by blast |
|
97 next |
|
98 assume eq': "X = X ;; A \<union> B" |
|
99 hence c1': "\<And> x. x \<in> B \<Longrightarrow> x \<in> X" |
|
100 and c2': "\<And> x y. \<lbrakk>x \<in> X; y \<in> A\<rbrakk> \<Longrightarrow> x @ y \<in> X" |
|
101 using Seq_def by auto |
|
102 show "X = B ;; A\<star>" |
|
103 proof |
|
104 show "B ;; A\<star> \<subseteq> X" |
|
105 proof- |
|
106 { fix x y |
|
107 have "\<lbrakk>y \<in> A\<star>; x \<in> X\<rbrakk> \<Longrightarrow> x @ y \<in> X " |
|
108 apply (induct arbitrary:x rule:Star.induct, simp) |
|
109 by (auto simp only:append_assoc[THEN sym] dest:c2') |
|
110 } thus ?thesis using c1' by (auto simp:Seq_def) |
|
111 qed |
|
112 next |
|
113 show "X \<subseteq> B ;; A\<star>" |
|
114 proof- |
|
115 { fix x |
|
116 have "x \<in> X \<Longrightarrow> x \<in> B ;; A\<star>" |
|
117 proof (induct x taking:length rule:measure_induct) |
|
118 fix z |
|
119 assume hyps: |
|
120 "\<forall>y. length y < length z \<longrightarrow> y \<in> X \<longrightarrow> y \<in> B ;; A\<star>" |
|
121 and z_in: "z \<in> X" |
|
122 show "z \<in> B ;; A\<star>" |
|
123 proof (cases "z \<in> B") |
|
124 case True thus ?thesis by (auto simp:Seq_def start) |
|
125 next |
|
126 case False hence "z \<in> X ;; A" using eq' z_in by auto |
|
127 then obtain za zb where za_in: "za \<in> X" |
|
128 and zab: "z = za @ zb \<and> zb \<in> A" and zbne: "zb \<noteq> []" |
|
129 using nemp unfolding Seq_def by blast |
|
130 from zbne zab have "length za < length z" by auto |
|
131 with za_in hyps have "za \<in> B ;; A\<star>" by blast |
|
132 hence "za @ zb \<in> B ;; A\<star>" using zab |
|
133 by (clarsimp simp:Seq_def, blast dest:star_intro3) |
|
134 thus ?thesis using zab by simp |
|
135 qed |
|
136 qed |
|
137 } thus ?thesis by blast |
|
138 qed |
|
139 qed |
|
140 qed |
|
141 |
|
142 |
|
143 text {* The syntax of regular expressions is defined by the datatype @{text "rexp"}. *} |
|
144 datatype rexp = |
|
145 NULL |
|
146 | EMPTY |
|
147 | CHAR char |
|
148 | SEQ rexp rexp |
|
149 | ALT rexp rexp |
|
150 | STAR rexp |
|
151 |
|
152 |
|
153 text {* |
|
154 The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to |
|
155 the language represented by the syntactic object @{text "x"}. |
|
156 *} |
|
157 consts L:: "'a \<Rightarrow> string set" |
|
158 |
|
159 |
|
160 text {* |
|
161 The @{text "L(rexp)"} for regular expression @{text "rexp"} is defined by the |
|
162 following overloading function @{text "L_rexp"}. |
|
163 *} |
|
164 overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> string set" |
|
165 begin |
|
166 fun |
|
167 L_rexp :: "rexp \<Rightarrow> string set" |
|
168 where |
|
169 "L_rexp (NULL) = {}" |
|
170 | "L_rexp (EMPTY) = {[]}" |
|
171 | "L_rexp (CHAR c) = {[c]}" |
|
172 | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)" |
|
173 | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)" |
|
174 | "L_rexp (STAR r) = (L_rexp r)\<star>" |
|
175 end |
|
176 |
|
177 text {* |
|
178 To obtain equational system out of finite set of equivalent classes, a fold operation |
|
179 on finite set @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "fold"} |
|
180 more robust than the @{text "fold"} in Isabelle library. The expression @{text "folds f"} |
|
181 makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"}, |
|
182 while @{text "fold f"} does not. |
|
183 *} |
|
184 |
|
185 definition |
|
186 folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" |
|
187 where |
|
188 "folds f z S \<equiv> SOME x. fold_graph f z S x" |
|
189 |
|
190 text {* |
|
191 The following lemma assures that the arbitrary choice made by the @{text "SOME"} in @{text "folds"} |
|
192 does not affect the @{text "L"}-value of the resultant regular expression. |
|
193 *} |
|
194 lemma folds_alt_simp [simp]: |
|
195 "finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)" |
|
196 apply (rule set_ext, simp add:folds_def) |
|
197 apply (rule someI2_ex, erule finite_imp_fold_graph) |
|
198 by (erule fold_graph.induct, auto) |
|
199 |
|
200 (* Just a technical lemma. *) |
|
201 lemma [simp]: |
|
202 shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
|
203 by simp |
|
204 |
|
205 text {* |
|
206 @{text "\<approx>L"} is an equivalent class defined by language @{text "Lang"}. |
|
207 *} |
|
208 definition |
|
209 str_eq_rel ("\<approx>_") |
|
210 where |
|
211 "\<approx>Lang \<equiv> {(x, y). (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)}" |
|
212 |
|
213 text {* |
|
214 Among equivlant clases of @{text "\<approx>Lang"}, the set @{text "finals(Lang)"} singles out |
|
215 those which contains strings from @{text "Lang"}. |
|
216 *} |
|
217 |
|
218 definition |
|
219 "finals Lang \<equiv> {\<approx>Lang `` {x} | x . x \<in> Lang}" |
|
220 |
|
221 text {* |
|
222 The following lemma show the relationshipt between @{text "finals(Lang)"} and @{text "Lang"}. |
|
223 *} |
|
224 lemma lang_is_union_of_finals: |
|
225 "Lang = \<Union> finals(Lang)" |
|
226 proof |
|
227 show "Lang \<subseteq> \<Union> (finals Lang)" |
|
228 proof |
|
229 fix x |
|
230 assume "x \<in> Lang" |
|
231 thus "x \<in> \<Union> (finals Lang)" |
|
232 apply (simp add:finals_def, rule_tac x = "(\<approx>Lang) `` {x}" in exI) |
|
233 by (auto simp:Image_def str_eq_rel_def) |
|
234 qed |
|
235 next |
|
236 show "\<Union> (finals Lang) \<subseteq> Lang" |
|
237 apply (clarsimp simp:finals_def str_eq_rel_def) |
|
238 by (drule_tac x = "[]" in spec, auto) |
|
239 qed |
|
240 |
|
241 section {* Direction @{text "finite partition \<Rightarrow> regular language"}*} |
|
242 |
|
243 text {* |
|
244 The relationship between equivalent classes can be described by an |
|
245 equational system. |
|
246 For example, in equational system \eqref{example_eqns}, $X_0, X_1$ are equivalent |
|
247 classes. The first equation says every string in $X_0$ is obtained either by |
|
248 appending one $b$ to a string in $X_0$ or by appending one $a$ to a string in |
|
249 $X_1$ or just be an empty string (represented by the regular expression $\lambda$). Similary, |
|
250 the second equation tells how the strings inside $X_1$ are composed. |
|
251 \begin{equation}\label{example_eqns} |
|
252 \begin{aligned} |
|
253 X_0 & = X_0 b + X_1 a + \lambda \\ |
|
254 X_1 & = X_0 a + X_1 b |
|
255 \end{aligned} |
|
256 \end{equation} |
|
257 The summands on the right hand side is represented by the following data type |
|
258 @{text "rhs_item"}, mnemonic for 'right hand side item'. |
|
259 Generally, there are two kinds of right hand side items, one kind corresponds to |
|
260 pure regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other kind corresponds to |
|
261 transitions from one one equivalent class to another, like the $X_0 b, X_1 a$ etc. |
|
262 *} |
|
263 |
|
264 datatype rhs_item = |
|
265 Lam "rexp" (* Lambda *) |
|
266 | Trn "(string set)" "rexp" (* Transition *) |
|
267 |
|
268 text {* |
|
269 In this formalization, pure regular expressions like $\lambda$ is |
|
270 repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is represented by $Trn~X_0~(CHAR~a)$. |
|
271 *} |
|
272 |
|
273 text {* |
|
274 The functions @{text "the_r"} and @{text "the_Trn"} are used to extract |
|
275 subcomponents from right hand side items. |
|
276 *} |
|
277 |
|
278 fun the_r :: "rhs_item \<Rightarrow> rexp" |
|
279 where "the_r (Lam r) = r" |
|
280 |
|
281 fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)" |
|
282 where "the_Trn (Trn Y r) = (Y, r)" |
|
283 |
|
284 text {* |
|
285 Every right hand side item @{text "itm"} defines a string set given |
|
286 @{text "L(itm)"}, defined as: |
|
287 *} |
|
288 overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set" |
|
289 begin |
|
290 fun L_rhs_e:: "rhs_item \<Rightarrow> string set" |
|
291 where |
|
292 "L_rhs_e (Lam r) = L r" | |
|
293 "L_rhs_e (Trn X r) = X ;; L r" |
|
294 end |
|
295 |
|
296 text {* |
|
297 The right hand side of every equation is represented by a set of |
|
298 items. The string set defined by such a set @{text "itms"} is given |
|
299 by @{text "L(itms)"}, defined as: |
|
300 *} |
|
301 |
|
302 overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set" |
|
303 begin |
|
304 fun L_rhs:: "rhs_item set \<Rightarrow> string set" |
|
305 where "L_rhs rhs = \<Union> (L ` rhs)" |
|
306 end |
|
307 |
|
308 text {* |
|
309 Given a set of equivalent classses @{text "CS"} and one equivalent class @{text "X"} among |
|
310 @{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of |
|
311 the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"} |
|
312 is: |
|
313 *} |
|
314 |
|
315 definition |
|
316 "init_rhs CS X \<equiv> |
|
317 if ([] \<in> X) then |
|
318 {Lam(EMPTY)} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X} |
|
319 else |
|
320 {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" |
|
321 |
|
322 text {* |
|
323 In the definition of @{text "init_rhs"}, the term |
|
324 @{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches |
|
325 describes the formation of strings in @{text "X"} out of transitions, while |
|
326 the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in |
|
327 @{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to |
|
328 the $\lambda$ in \eqref{example_eqns}. |
|
329 |
|
330 With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every |
|
331 equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}. |
|
332 *} |
|
333 |
|
334 definition "eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}" |
|
335 (************ arden's lemma variation ********************) |
|
336 |
|
337 text {* |
|
338 The following @{text "items_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}. |
|
339 *} |
|
340 definition |
|
341 "items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}" |
|
342 |
|
343 text {* |
|
344 The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items |
|
345 using @{text "ALT"} to form a single regular expression. |
|
346 It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}. |
|
347 *} |
|
348 |
|
349 definition |
|
350 "rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)" |
|
351 |
|
352 text {* |
|
353 The following @{text "lam_of rhs"} returns all pure regular expression items in @{text "rhs"}. |
|
354 *} |
|
355 |
|
356 definition |
|
357 "lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}" |
|
358 |
|
359 text {* |
|
360 The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"} |
|
361 using @{text "ALT"} to form a single regular expression. |
|
362 When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"} |
|
363 is used to compute compute the regular expression corresponds to @{text "rhs"}. |
|
364 *} |
|
365 |
|
366 definition |
|
367 "rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)" |
|
368 |
|
369 text {* |
|
370 The following @{text "attach_rexp rexp' itm"} attach |
|
371 the regular expression @{text "rexp'"} to |
|
372 the right of right hand side item @{text "itm"}. |
|
373 *} |
|
374 |
|
375 fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item" |
|
376 where |
|
377 "attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')" |
|
378 | "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')" |
|
379 |
|
380 text {* |
|
381 The following @{text "append_rhs_rexp rhs rexp"} attaches |
|
382 @{text "rexp"} to every item in @{text "rhs"}. |
|
383 *} |
|
384 |
|
385 definition |
|
386 "append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs" |
|
387 |
|
388 text {* |
|
389 With the help of the two functions immediately above, Ardens' |
|
390 transformation on right hand side @{text "rhs"} is implemented |
|
391 by the following function @{text "arden_variate X rhs"}. |
|
392 After this transformation, the recursive occurent of @{text "X"} |
|
393 in @{text "rhs"} will be eliminated, while the |
|
394 string set defined by @{text "rhs"} is kept unchanged. |
|
395 *} |
|
396 definition |
|
397 "arden_variate X rhs \<equiv> |
|
398 append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))" |
|
399 |
|
400 |
|
401 (*********** substitution of ES *************) |
|
402 |
|
403 text {* |
|
404 Suppose the equation defining @{text "X"} is $X = xrhs$, |
|
405 the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in |
|
406 @{text "rhs"} by @{text "xrhs"}. |
|
407 A litte thought may reveal that the final result |
|
408 should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then |
|
409 union the result with all non-@{text "X"}-items of @{text "rhs"}. |
|
410 *} |
|
411 definition |
|
412 "rhs_subst rhs X xrhs \<equiv> |
|
413 (rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))" |
|
414 |
|
415 text {* |
|
416 Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing |
|
417 @{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation |
|
418 of the equational system @{text "ES"}. |
|
419 *} |
|
420 |
|
421 definition |
|
422 "eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
|
423 |
|
424 text {* |
|
425 The computation of regular expressions for equivalent classes is accomplished |
|
426 using a iteration principle given by the following lemma. |
|
427 *} |
|
428 |
|
429 lemma wf_iter [rule_format]: |
|
430 fixes f |
|
431 assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)" |
|
432 shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')" |
|
433 proof(induct e rule: wf_induct |
|
434 [OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify) |
|
435 fix x |
|
436 assume h [rule_format]: |
|
437 "\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')" |
|
438 and px: "P x" |
|
439 show "\<exists>e'. P e' \<and> Q e'" |
|
440 proof(cases "Q x") |
|
441 assume "Q x" with px show ?thesis by blast |
|
442 next |
|
443 assume nq: "\<not> Q x" |
|
444 from step [OF px nq] |
|
445 obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto |
|
446 show ?thesis |
|
447 proof(rule h) |
|
448 from ltf show "(e', x) \<in> inv_image less_than f" |
|
449 by (simp add:inv_image_def) |
|
450 next |
|
451 from pe' show "P e'" . |
|
452 qed |
|
453 qed |
|
454 qed |
|
455 |
|
456 text {* |
|
457 The @{text "P"} in lemma @{text "wf_iter"} is an invaiant kept throughout the iteration procedure. |
|
458 The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"}, |
|
459 an invariant over equal system @{text "ES"}. |
|
460 Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}. |
|
461 *} |
|
462 |
|
463 text {* |
|
464 Every variable is defined at most onece in @{text "ES"}. |
|
465 *} |
|
466 definition |
|
467 "distinct_equas ES \<equiv> |
|
468 \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
|
469 text {* |
|
470 Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}. |
|
471 *} |
|
472 definition |
|
473 "valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)" |
|
474 |
|
475 text {* |
|
476 The following @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional |
|
477 items of @{text "rhs"} does not contain empty string. This is necessary for |
|
478 the application of Arden's transformation to @{text "rhs"}. |
|
479 *} |
|
480 definition |
|
481 "rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)" |
|
482 |
|
483 text {* |
|
484 The following @{text "ardenable ES"} requires that Arden's transformation is applicable |
|
485 to every equation of equational system @{text "ES"}. |
|
486 *} |
|
487 definition |
|
488 "ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs" |
|
489 |
|
490 (* The following non_empty seems useless. *) |
|
491 definition |
|
492 "non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}" |
|
493 |
|
494 text {* |
|
495 The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite. |
|
496 *} |
|
497 definition |
|
498 "finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs" |
|
499 |
|
500 text {* |
|
501 The following @{text "classes_of rhs"} returns all variables (or equivalent classes) |
|
502 occuring in @{text "rhs"}. |
|
503 *} |
|
504 definition |
|
505 "classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}" |
|
506 |
|
507 text {* |
|
508 The following @{text "lefts_of ES"} returns all variables |
|
509 defined by equational system @{text "ES"}. |
|
510 *} |
|
511 definition |
|
512 "lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}" |
|
513 |
|
514 text {* |
|
515 The following @{text "self_contained ES"} requires that every |
|
516 variable occuring on the right hand side of equations is already defined by some |
|
517 equation in @{text "ES"}. |
|
518 *} |
|
519 definition |
|
520 "self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES" |
|
521 |
|
522 |
|
523 text {* |
|
524 The invariant @{text "Inv(ES)"} is a conjunction of all the previously defined constaints. |
|
525 *} |
|
526 definition |
|
527 "Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> |
|
528 non_empty ES \<and> finite_rhs ES \<and> self_contained ES" |
|
529 |
|
530 subsection {* The proof of this direction *} |
|
531 |
|
532 subsubsection {* Basic properties *} |
|
533 |
|
534 text {* |
|
535 The following are some basic properties of the above definitions. |
|
536 *} |
|
537 |
|
538 lemma L_rhs_union_distrib: |
|
539 " L (A::rhs_item set) \<union> L B = L (A \<union> B)" |
|
540 by simp |
|
541 |
|
542 lemma finite_snd_Trn: |
|
543 assumes finite:"finite rhs" |
|
544 shows "finite {r\<^isub>2. Trn Y r\<^isub>2 \<in> rhs}" (is "finite ?B") |
|
545 proof- |
|
546 def rhs' \<equiv> "{e \<in> rhs. \<exists> r. e = Trn Y r}" |
|
547 have "?B = (snd o the_Trn) ` rhs'" using rhs'_def by (auto simp:image_def) |
|
548 moreover have "finite rhs'" using finite rhs'_def by auto |
|
549 ultimately show ?thesis by simp |
|
550 qed |
|
551 |
|
552 lemma rexp_of_empty: |
|
553 assumes finite:"finite rhs" |
|
554 and nonempty:"rhs_nonempty rhs" |
|
555 shows "[] \<notin> L (rexp_of rhs X)" |
|
556 using finite nonempty rhs_nonempty_def |
|
557 by (drule_tac finite_snd_Trn[where Y = X], auto simp:rexp_of_def items_of_def) |
|
558 |
|
559 lemma [intro!]: |
|
560 "P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto |
|
561 |
|
562 lemma finite_items_of: |
|
563 "finite rhs \<Longrightarrow> finite (items_of rhs X)" |
|
564 by (auto simp:items_of_def intro:finite_subset) |
|
565 |
|
566 lemma lang_of_rexp_of: |
|
567 assumes finite:"finite rhs" |
|
568 shows "L (items_of rhs X) = X ;; (L (rexp_of rhs X))" |
|
569 proof - |
|
570 have "finite ((snd \<circ> the_Trn) ` items_of rhs X)" using finite_items_of[OF finite] by auto |
|
571 thus ?thesis |
|
572 apply (auto simp:rexp_of_def Seq_def items_of_def) |
|
573 apply (rule_tac x = s1 in exI, rule_tac x = s2 in exI, auto) |
|
574 by (rule_tac x= "Trn X r" in exI, auto simp:Seq_def) |
|
575 qed |
|
576 |
|
577 lemma rexp_of_lam_eq_lam_set: |
|
578 assumes finite: "finite rhs" |
|
579 shows "L (rexp_of_lam rhs) = L (lam_of rhs)" |
|
580 proof - |
|
581 have "finite (the_r ` {Lam r |r. Lam r \<in> rhs})" using finite |
|
582 by (rule_tac finite_imageI, auto intro:finite_subset) |
|
583 thus ?thesis by (auto simp:rexp_of_lam_def lam_of_def) |
|
584 qed |
|
585 |
|
586 lemma [simp]: |
|
587 " L (attach_rexp r xb) = L xb ;; L r" |
|
588 apply (cases xb, auto simp:Seq_def) |
|
589 by (rule_tac x = "s1 @ s1a" in exI, rule_tac x = s2a in exI,auto simp:Seq_def) |
|
590 |
|
591 lemma lang_of_append_rhs: |
|
592 "L (append_rhs_rexp rhs r) = L rhs ;; L r" |
|
593 apply (auto simp:append_rhs_rexp_def image_def) |
|
594 apply (auto simp:Seq_def) |
|
595 apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def) |
|
596 by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def) |
|
597 |
|
598 lemma classes_of_union_distrib: |
|
599 "classes_of A \<union> classes_of B = classes_of (A \<union> B)" |
|
600 by (auto simp add:classes_of_def) |
|
601 |
|
602 lemma lefts_of_union_distrib: |
|
603 "lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)" |
|
604 by (auto simp:lefts_of_def) |
|
605 |
|
606 |
|
607 subsubsection {* Intialization *} |
|
608 |
|
609 text {* |
|
610 The following several lemmas until @{text "init_ES_satisfy_Inv"} shows that |
|
611 the initial equational system satisfies invariant @{text "Inv"}. |
|
612 *} |
|
613 |
|
614 lemma defined_by_str: |
|
615 "\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}" |
|
616 by (auto simp:quotient_def Image_def str_eq_rel_def) |
|
617 |
|
618 lemma every_eqclass_has_transition: |
|
619 assumes has_str: "s @ [c] \<in> X" |
|
620 and in_CS: "X \<in> UNIV // (\<approx>Lang)" |
|
621 obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y" |
|
622 proof - |
|
623 def Y \<equiv> "(\<approx>Lang) `` {s}" |
|
624 have "Y \<in> UNIV // (\<approx>Lang)" |
|
625 unfolding Y_def quotient_def by auto |
|
626 moreover |
|
627 have "X = (\<approx>Lang) `` {s @ [c]}" |
|
628 using has_str in_CS defined_by_str by blast |
|
629 then have "Y ;; {[c]} \<subseteq> X" |
|
630 unfolding Y_def Image_def Seq_def |
|
631 unfolding str_eq_rel_def |
|
632 by clarsimp |
|
633 moreover |
|
634 have "s \<in> Y" unfolding Y_def |
|
635 unfolding Image_def str_eq_rel_def by simp |
|
636 ultimately show thesis by (blast intro: that) |
|
637 qed |
|
638 |
|
639 lemma l_eq_r_in_eqs: |
|
640 assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))" |
|
641 shows "X = L xrhs" |
|
642 proof |
|
643 show "X \<subseteq> L xrhs" |
|
644 proof |
|
645 fix x |
|
646 assume "(1)": "x \<in> X" |
|
647 show "x \<in> L xrhs" |
|
648 proof (cases "x = []") |
|
649 assume empty: "x = []" |
|
650 thus ?thesis using X_in_eqs "(1)" |
|
651 by (auto simp:eqs_def init_rhs_def) |
|
652 next |
|
653 assume not_empty: "x \<noteq> []" |
|
654 then obtain clist c where decom: "x = clist @ [c]" |
|
655 by (case_tac x rule:rev_cases, auto) |
|
656 have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def) |
|
657 then obtain Y |
|
658 where "Y \<in> UNIV // (\<approx>Lang)" |
|
659 and "Y ;; {[c]} \<subseteq> X" |
|
660 and "clist \<in> Y" |
|
661 using decom "(1)" every_eqclass_has_transition by blast |
|
662 hence |
|
663 "x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y ;; {[c]} \<subseteq> X}" |
|
664 using "(1)" decom |
|
665 by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def) |
|
666 thus ?thesis using X_in_eqs "(1)" |
|
667 by (simp add:eqs_def init_rhs_def) |
|
668 qed |
|
669 qed |
|
670 next |
|
671 show "L xrhs \<subseteq> X" using X_in_eqs |
|
672 by (auto simp:eqs_def init_rhs_def) |
|
673 qed |
|
674 |
|
675 lemma finite_init_rhs: |
|
676 assumes finite: "finite CS" |
|
677 shows "finite (init_rhs CS X)" |
|
678 proof- |
|
679 have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A") |
|
680 proof - |
|
681 def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" |
|
682 def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)" |
|
683 have "finite (CS \<times> (UNIV::char set))" using finite by auto |
|
684 hence "finite S" using S_def |
|
685 by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto) |
|
686 moreover have "?A = h ` S" by (auto simp: S_def h_def image_def) |
|
687 ultimately show ?thesis |
|
688 by auto |
|
689 qed |
|
690 thus ?thesis by (simp add:init_rhs_def) |
|
691 qed |
|
692 |
|
693 lemma init_ES_satisfy_Inv: |
|
694 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
695 shows "Inv (eqs (UNIV // (\<approx>Lang)))" |
|
696 proof - |
|
697 have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS |
|
698 by (simp add:eqs_def) |
|
699 moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))" |
|
700 by (simp add:distinct_equas_def eqs_def) |
|
701 moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))" |
|
702 by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps) |
|
703 moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))" |
|
704 using l_eq_r_in_eqs by (simp add:valid_eqns_def) |
|
705 moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))" |
|
706 by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def) |
|
707 moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))" |
|
708 using finite_init_rhs[OF finite_CS] |
|
709 by (auto simp:finite_rhs_def eqs_def) |
|
710 moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))" |
|
711 by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def) |
|
712 ultimately show ?thesis by (simp add:Inv_def) |
|
713 qed |
|
714 |
|
715 subsubsection {* |
|
716 Interation step |
|
717 *} |
|
718 |
|
719 text {* |
|
720 From this point until @{text "iteration_step"}, it is proved |
|
721 that there exists iteration steps which keep @{text "Inv(ES)"} while |
|
722 decreasing the size of @{text "ES"}. |
|
723 *} |
|
724 lemma arden_variate_keeps_eq: |
|
725 assumes l_eq_r: "X = L rhs" |
|
726 and not_empty: "[] \<notin> L (rexp_of rhs X)" |
|
727 and finite: "finite rhs" |
|
728 shows "X = L (arden_variate X rhs)" |
|
729 proof - |
|
730 def A \<equiv> "L (rexp_of rhs X)" |
|
731 def b \<equiv> "rhs - items_of rhs X" |
|
732 def B \<equiv> "L b" |
|
733 have "X = B ;; A\<star>" |
|
734 proof- |
|
735 have "rhs = items_of rhs X \<union> b" by (auto simp:b_def items_of_def) |
|
736 hence "L rhs = L(items_of rhs X \<union> b)" by simp |
|
737 hence "L rhs = L(items_of rhs X) \<union> B" by (simp only:L_rhs_union_distrib B_def) |
|
738 with lang_of_rexp_of |
|
739 have "L rhs = X ;; A \<union> B " using finite by (simp only:B_def b_def A_def) |
|
740 thus ?thesis |
|
741 using l_eq_r not_empty |
|
742 apply (drule_tac B = B and X = X in ardens_revised) |
|
743 by (auto simp:A_def simp del:L_rhs.simps) |
|
744 qed |
|
745 moreover have "L (arden_variate X rhs) = (B ;; A\<star>)" (is "?L = ?R") |
|
746 by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs |
|
747 B_def A_def b_def L_rexp.simps seq_union_distrib) |
|
748 ultimately show ?thesis by simp |
|
749 qed |
|
750 |
|
751 lemma append_keeps_finite: |
|
752 "finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)" |
|
753 by (auto simp:append_rhs_rexp_def) |
|
754 |
|
755 lemma arden_variate_keeps_finite: |
|
756 "finite rhs \<Longrightarrow> finite (arden_variate X rhs)" |
|
757 by (auto simp:arden_variate_def append_keeps_finite) |
|
758 |
|
759 lemma append_keeps_nonempty: |
|
760 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)" |
|
761 apply (auto simp:rhs_nonempty_def append_rhs_rexp_def) |
|
762 by (case_tac x, auto simp:Seq_def) |
|
763 |
|
764 lemma nonempty_set_sub: |
|
765 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)" |
|
766 by (auto simp:rhs_nonempty_def) |
|
767 |
|
768 lemma nonempty_set_union: |
|
769 "\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')" |
|
770 by (auto simp:rhs_nonempty_def) |
|
771 |
|
772 lemma arden_variate_keeps_nonempty: |
|
773 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)" |
|
774 by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub) |
|
775 |
|
776 |
|
777 lemma rhs_subst_keeps_nonempty: |
|
778 "\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)" |
|
779 by (simp only:rhs_subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub) |
|
780 |
|
781 lemma rhs_subst_keeps_eq: |
|
782 assumes substor: "X = L xrhs" |
|
783 and finite: "finite rhs" |
|
784 shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right") |
|
785 proof- |
|
786 def A \<equiv> "L (rhs - items_of rhs X)" |
|
787 have "?Left = A \<union> L (append_rhs_rexp xrhs (rexp_of rhs X))" |
|
788 by (simp only:rhs_subst_def L_rhs_union_distrib A_def) |
|
789 moreover have "?Right = A \<union> L (items_of rhs X)" |
|
790 proof- |
|
791 have "rhs = (rhs - items_of rhs X) \<union> (items_of rhs X)" by (auto simp:items_of_def) |
|
792 thus ?thesis by (simp only:L_rhs_union_distrib A_def) |
|
793 qed |
|
794 moreover have "L (append_rhs_rexp xrhs (rexp_of rhs X)) = L (items_of rhs X)" |
|
795 using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of) |
|
796 ultimately show ?thesis by simp |
|
797 qed |
|
798 |
|
799 lemma rhs_subst_keeps_finite_rhs: |
|
800 "\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)" |
|
801 by (auto simp:rhs_subst_def append_keeps_finite) |
|
802 |
|
803 lemma eqs_subst_keeps_finite: |
|
804 assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)" |
|
805 shows "finite (eqs_subst ES Y yrhs)" |
|
806 proof - |
|
807 have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}" |
|
808 (is "finite ?A") |
|
809 proof- |
|
810 def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}" |
|
811 def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)" |
|
812 have "finite (h ` eqns')" using finite h_def eqns'_def by auto |
|
813 moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def) |
|
814 ultimately show ?thesis by auto |
|
815 qed |
|
816 thus ?thesis by (simp add:eqs_subst_def) |
|
817 qed |
|
818 |
|
819 lemma eqs_subst_keeps_finite_rhs: |
|
820 "\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)" |
|
821 by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def) |
|
822 |
|
823 lemma append_rhs_keeps_cls: |
|
824 "classes_of (append_rhs_rexp rhs r) = classes_of rhs" |
|
825 apply (auto simp:classes_of_def append_rhs_rexp_def) |
|
826 apply (case_tac xa, auto simp:image_def) |
|
827 by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+) |
|
828 |
|
829 lemma arden_variate_removes_cl: |
|
830 "classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}" |
|
831 apply (simp add:arden_variate_def append_rhs_keeps_cls items_of_def) |
|
832 by (auto simp:classes_of_def) |
|
833 |
|
834 lemma lefts_of_keeps_cls: |
|
835 "lefts_of (eqs_subst ES Y yrhs) = lefts_of ES" |
|
836 by (auto simp:lefts_of_def eqs_subst_def) |
|
837 |
|
838 lemma rhs_subst_updates_cls: |
|
839 "X \<notin> classes_of xrhs \<Longrightarrow> |
|
840 classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}" |
|
841 apply (simp only:rhs_subst_def append_rhs_keeps_cls |
|
842 classes_of_union_distrib[THEN sym]) |
|
843 by (auto simp:classes_of_def items_of_def) |
|
844 |
|
845 lemma eqs_subst_keeps_self_contained: |
|
846 fixes Y |
|
847 assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A") |
|
848 shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" |
|
849 (is "self_contained ?B") |
|
850 proof- |
|
851 { fix X xrhs' |
|
852 assume "(X, xrhs') \<in> ?B" |
|
853 then obtain xrhs |
|
854 where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)" |
|
855 and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast) |
|
856 have "classes_of xrhs' \<subseteq> lefts_of ?B" |
|
857 proof- |
|
858 have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def) |
|
859 moreover have "classes_of xrhs' \<subseteq> lefts_of ES" |
|
860 proof- |
|
861 have "classes_of xrhs' \<subseteq> |
|
862 classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}" |
|
863 proof- |
|
864 have "Y \<notin> classes_of (arden_variate Y yrhs)" |
|
865 using arden_variate_removes_cl by simp |
|
866 thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls) |
|
867 qed |
|
868 moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc |
|
869 apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym]) |
|
870 by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def) |
|
871 moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}" |
|
872 using sc |
|
873 by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def) |
|
874 ultimately show ?thesis by auto |
|
875 qed |
|
876 ultimately show ?thesis by simp |
|
877 qed |
|
878 } thus ?thesis by (auto simp only:eqs_subst_def self_contained_def) |
|
879 qed |
|
880 |
|
881 lemma eqs_subst_satisfy_Inv: |
|
882 assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})" |
|
883 shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))" |
|
884 proof - |
|
885 have finite_yrhs: "finite yrhs" |
|
886 using Inv_ES by (auto simp:Inv_def finite_rhs_def) |
|
887 have nonempty_yrhs: "rhs_nonempty yrhs" |
|
888 using Inv_ES by (auto simp:Inv_def ardenable_def) |
|
889 have Y_eq_yrhs: "Y = L yrhs" |
|
890 using Inv_ES by (simp only:Inv_def valid_eqns_def, blast) |
|
891 have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" |
|
892 using Inv_ES |
|
893 by (auto simp:distinct_equas_def eqs_subst_def Inv_def) |
|
894 moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" |
|
895 using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite) |
|
896 moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))" |
|
897 proof- |
|
898 have "finite_rhs ES" using Inv_ES |
|
899 by (simp add:Inv_def finite_rhs_def) |
|
900 moreover have "finite (arden_variate Y yrhs)" |
|
901 proof - |
|
902 have "finite yrhs" using Inv_ES |
|
903 by (auto simp:Inv_def finite_rhs_def) |
|
904 thus ?thesis using arden_variate_keeps_finite by simp |
|
905 qed |
|
906 ultimately show ?thesis |
|
907 by (simp add:eqs_subst_keeps_finite_rhs) |
|
908 qed |
|
909 moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))" |
|
910 proof - |
|
911 { fix X rhs |
|
912 assume "(X, rhs) \<in> ES" |
|
913 hence "rhs_nonempty rhs" using prems Inv_ES |
|
914 by (simp add:Inv_def ardenable_def) |
|
915 with nonempty_yrhs |
|
916 have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))" |
|
917 by (simp add:nonempty_yrhs |
|
918 rhs_subst_keeps_nonempty arden_variate_keeps_nonempty) |
|
919 } thus ?thesis by (auto simp add:ardenable_def eqs_subst_def) |
|
920 qed |
|
921 moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))" |
|
922 proof- |
|
923 have "Y = L (arden_variate Y yrhs)" |
|
924 using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs |
|
925 by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+) |
|
926 thus ?thesis using Inv_ES |
|
927 by (clarsimp simp add:valid_eqns_def |
|
928 eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def |
|
929 simp del:L_rhs.simps) |
|
930 qed |
|
931 moreover have |
|
932 non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))" |
|
933 using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def) |
|
934 moreover |
|
935 have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" |
|
936 using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def) |
|
937 ultimately show ?thesis using Inv_ES by (simp add:Inv_def) |
|
938 qed |
|
939 |
|
940 lemma eqs_subst_card_le: |
|
941 assumes finite: "finite (ES::(string set \<times> rhs_item set) set)" |
|
942 shows "card (eqs_subst ES Y yrhs) <= card ES" |
|
943 proof- |
|
944 def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)" |
|
945 have "eqs_subst ES Y yrhs = f ` ES" |
|
946 apply (auto simp:eqs_subst_def f_def image_def) |
|
947 by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+) |
|
948 thus ?thesis using finite by (auto intro:card_image_le) |
|
949 qed |
|
950 |
|
951 lemma eqs_subst_cls_remains: |
|
952 "(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)" |
|
953 by (auto simp:eqs_subst_def) |
|
954 |
|
955 lemma card_noteq_1_has_more: |
|
956 assumes card:"card S \<noteq> 1" |
|
957 and e_in: "e \<in> S" |
|
958 and finite: "finite S" |
|
959 obtains e' where "e' \<in> S \<and> e \<noteq> e'" |
|
960 proof- |
|
961 have "card (S - {e}) > 0" |
|
962 proof - |
|
963 have "card S > 1" using card e_in finite |
|
964 by (case_tac "card S", auto) |
|
965 thus ?thesis using finite e_in by auto |
|
966 qed |
|
967 hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp) |
|
968 thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto |
|
969 qed |
|
970 |
|
971 lemma iteration_step: |
|
972 assumes Inv_ES: "Inv ES" |
|
973 and X_in_ES: "(X, xrhs) \<in> ES" |
|
974 and not_T: "card ES \<noteq> 1" |
|
975 shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and> |
|
976 (card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'") |
|
977 proof - |
|
978 have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def) |
|
979 then obtain Y yrhs |
|
980 where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" |
|
981 using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto) |
|
982 def ES' == "ES - {(Y, yrhs)}" |
|
983 let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)" |
|
984 have "?P ?ES''" |
|
985 proof - |
|
986 have "Inv ?ES''" using Y_in_ES Inv_ES |
|
987 by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb) |
|
988 moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''" using not_eq X_in_ES |
|
989 by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def) |
|
990 moreover have "(card ?ES'', card ES) \<in> less_than" |
|
991 proof - |
|
992 have "finite ES'" using finite_ES ES'_def by auto |
|
993 moreover have "card ES' < card ES" using finite_ES Y_in_ES |
|
994 by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less) |
|
995 ultimately show ?thesis |
|
996 by (auto dest:eqs_subst_card_le elim:le_less_trans) |
|
997 qed |
|
998 ultimately show ?thesis by simp |
|
999 qed |
|
1000 thus ?thesis by blast |
|
1001 qed |
|
1002 |
|
1003 subsubsection {* |
|
1004 Conclusion of the proof |
|
1005 *} |
|
1006 |
|
1007 text {* |
|
1008 From this point until @{text "hard_direction"}, the hard direction is proved |
|
1009 through a simple application of the iteration principle. |
|
1010 *} |
|
1011 |
|
1012 lemma iteration_conc: |
|
1013 assumes history: "Inv ES" |
|
1014 and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES" |
|
1015 shows |
|
1016 "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1" |
|
1017 (is "\<exists> ES'. ?P ES'") |
|
1018 proof (cases "card ES = 1") |
|
1019 case True |
|
1020 thus ?thesis using history X_in_ES |
|
1021 by blast |
|
1022 next |
|
1023 case False |
|
1024 thus ?thesis using history iteration_step X_in_ES |
|
1025 by (rule_tac f = card in wf_iter, auto) |
|
1026 qed |
|
1027 |
|
1028 lemma last_cl_exists_rexp: |
|
1029 assumes ES_single: "ES = {(X, xrhs)}" |
|
1030 and Inv_ES: "Inv ES" |
|
1031 shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r") |
|
1032 proof- |
|
1033 let ?A = "arden_variate X xrhs" |
|
1034 have "?P (rexp_of_lam ?A)" |
|
1035 proof - |
|
1036 have "L (rexp_of_lam ?A) = L (lam_of ?A)" |
|
1037 proof(rule rexp_of_lam_eq_lam_set) |
|
1038 show "finite (arden_variate X xrhs)" using Inv_ES ES_single |
|
1039 by (rule_tac arden_variate_keeps_finite, |
|
1040 auto simp add:Inv_def finite_rhs_def) |
|
1041 qed |
|
1042 also have "\<dots> = L ?A" |
|
1043 proof- |
|
1044 have "lam_of ?A = ?A" |
|
1045 proof- |
|
1046 have "classes_of ?A = {}" using Inv_ES ES_single |
|
1047 by (simp add:arden_variate_removes_cl |
|
1048 self_contained_def Inv_def lefts_of_def) |
|
1049 thus ?thesis |
|
1050 by (auto simp only:lam_of_def classes_of_def, case_tac x, auto) |
|
1051 qed |
|
1052 thus ?thesis by simp |
|
1053 qed |
|
1054 also have "\<dots> = X" |
|
1055 proof(rule arden_variate_keeps_eq [THEN sym]) |
|
1056 show "X = L xrhs" using Inv_ES ES_single |
|
1057 by (auto simp only:Inv_def valid_eqns_def) |
|
1058 next |
|
1059 from Inv_ES ES_single show "[] \<notin> L (rexp_of xrhs X)" |
|
1060 by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def) |
|
1061 next |
|
1062 from Inv_ES ES_single show "finite xrhs" |
|
1063 by (simp add:Inv_def finite_rhs_def) |
|
1064 qed |
|
1065 finally show ?thesis by simp |
|
1066 qed |
|
1067 thus ?thesis by auto |
|
1068 qed |
|
1069 |
|
1070 lemma every_eqcl_has_reg: |
|
1071 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
1072 and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))" |
|
1073 shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r") |
|
1074 proof - |
|
1075 from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))" |
|
1076 by (auto simp:eqs_def init_rhs_def) |
|
1077 then obtain ES xrhs where Inv_ES: "Inv ES" |
|
1078 and X_in_ES: "(X, xrhs) \<in> ES" |
|
1079 and card_ES: "card ES = 1" |
|
1080 using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc |
|
1081 by blast |
|
1082 hence ES_single_equa: "ES = {(X, xrhs)}" |
|
1083 by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff) |
|
1084 thus ?thesis using Inv_ES |
|
1085 by (rule last_cl_exists_rexp) |
|
1086 qed |
|
1087 |
|
1088 lemma finals_in_partitions: |
|
1089 "finals Lang \<subseteq> (UNIV // (\<approx>Lang))" |
|
1090 by (auto simp:finals_def quotient_def) |
|
1091 |
|
1092 theorem hard_direction: |
|
1093 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
1094 shows "\<exists> (reg::rexp). Lang = L reg" |
|
1095 proof - |
|
1096 have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg" |
|
1097 using finite_CS every_eqcl_has_reg by blast |
|
1098 then obtain f |
|
1099 where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)" |
|
1100 by (auto dest:bchoice) |
|
1101 def rs \<equiv> "f ` (finals Lang)" |
|
1102 have "Lang = \<Union> (finals Lang)" using lang_is_union_of_finals by auto |
|
1103 also have "\<dots> = L (folds ALT NULL rs)" |
|
1104 proof - |
|
1105 have "finite rs" |
|
1106 proof - |
|
1107 have "finite (finals Lang)" |
|
1108 using finite_CS finals_in_partitions[of "Lang"] |
|
1109 by (erule_tac finite_subset, simp) |
|
1110 thus ?thesis using rs_def by auto |
|
1111 qed |
|
1112 thus ?thesis |
|
1113 using f_prop rs_def finals_in_partitions[of "Lang"] by auto |
|
1114 qed |
|
1115 finally show ?thesis by blast |
|
1116 qed |
|
1117 |
|
1118 end |