1 theory Myhill |
1 theory Myhill |
2 imports Main List_Prefix Prefix_subtract Prelude |
2 imports Myhill_1 |
3 begin |
3 begin |
4 |
4 |
5 (* |
5 section {* Direction: @{text "regular language \<Rightarrow>finite partition"} *} |
6 text {* |
|
7 \begin{figure} |
|
8 \centering |
|
9 \scalebox{0.95}{ |
|
10 \begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=1.2cm, semithick] |
|
11 \node[state,initial] (n1) {$1$}; |
|
12 \node[state,accepting] (n2) [right = 10em of n1] {$2$}; |
|
13 |
|
14 \path (n1) edge [bend left] node {$0$} (n2) |
|
15 (n1) edge [loop above] node{$1$} (n1) |
|
16 (n2) edge [loop above] node{$0$} (n2) |
|
17 (n2) edge [bend left] node {$1$} (n1) |
|
18 ; |
|
19 \end{tikzpicture}} |
|
20 \caption{An example automaton (or partition)}\label{fig:example_automata} |
|
21 \end{figure} |
|
22 *} |
|
23 |
|
24 *) |
|
25 |
|
26 section {* Preliminary definitions *} |
|
27 |
|
28 types lang = "string set" |
|
29 |
|
30 text {* |
|
31 Sequential composition of two languages @{text "L1"} and @{text "L2"} |
|
32 *} |
|
33 |
|
34 |
|
35 definition Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" ("_ ;; _" [100,100] 100) |
|
36 where |
|
37 "L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}" |
|
38 |
|
39 text {* Transitive closure of language @{text "L"}. *} |
|
40 inductive_set |
|
41 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
42 for L :: "string set" |
|
43 where |
|
44 start[intro]: "[] \<in> L\<star>" |
|
45 | step[intro]: "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>" |
|
46 |
|
47 text {* Some properties of operator @{text ";;"}.*} |
|
48 |
|
49 lemma seq_union_distrib: |
|
50 "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)" |
|
51 by (auto simp:Seq_def) |
|
52 |
|
53 lemma seq_intro: |
|
54 "\<lbrakk>x \<in> A; y \<in> B\<rbrakk> \<Longrightarrow> x @ y \<in> A ;; B " |
|
55 by (auto simp:Seq_def) |
|
56 |
|
57 lemma seq_assoc: |
|
58 "(A ;; B) ;; C = A ;; (B ;; C)" |
|
59 apply(auto simp:Seq_def) |
|
60 apply blast |
|
61 by (metis append_assoc) |
|
62 |
|
63 lemma star_intro1[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>" |
|
64 by (erule Star.induct, auto) |
|
65 |
|
66 lemma star_intro2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>" |
|
67 by (drule step[of y lang "[]"], auto simp:start) |
|
68 |
|
69 lemma star_intro3[rule_format]: |
|
70 "x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>" |
|
71 by (erule Star.induct, auto intro:star_intro2) |
|
72 |
|
73 lemma star_decom: |
|
74 "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> lang \<and> b \<in> lang\<star>)" |
|
75 by (induct x rule: Star.induct, simp, blast) |
|
76 |
|
77 lemma star_decom': |
|
78 "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow> \<exists>a b. x = a @ b \<and> a \<in> lang\<star> \<and> b \<in> lang" |
|
79 apply (induct x rule:Star.induct, simp) |
|
80 apply (case_tac "s2 = []") |
|
81 apply (rule_tac x = "[]" in exI, rule_tac x = s1 in exI, simp add:start) |
|
82 apply (simp, (erule exE| erule conjE)+) |
|
83 by (rule_tac x = "s1 @ a" in exI, rule_tac x = b in exI, simp add:step) |
|
84 |
|
85 text {* Ardens lemma expressed at the level of language, rather than the level of regular expression. *} |
|
86 |
|
87 theorem ardens_revised: |
|
88 assumes nemp: "[] \<notin> A" |
|
89 shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)" |
|
90 proof |
|
91 assume eq: "X = B ;; A\<star>" |
|
92 have "A\<star> = {[]} \<union> A\<star> ;; A" |
|
93 by (auto simp:Seq_def star_intro3 star_decom') |
|
94 then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" |
|
95 unfolding Seq_def by simp |
|
96 also have "\<dots> = B \<union> B ;; (A\<star> ;; A)" |
|
97 unfolding Seq_def by auto |
|
98 also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" |
|
99 by (simp only:seq_assoc) |
|
100 finally show "X = X ;; A \<union> B" |
|
101 using eq by blast |
|
102 next |
|
103 assume eq': "X = X ;; A \<union> B" |
|
104 hence c1': "\<And> x. x \<in> B \<Longrightarrow> x \<in> X" |
|
105 and c2': "\<And> x y. \<lbrakk>x \<in> X; y \<in> A\<rbrakk> \<Longrightarrow> x @ y \<in> X" |
|
106 using Seq_def by auto |
|
107 show "X = B ;; A\<star>" |
|
108 proof |
|
109 show "B ;; A\<star> \<subseteq> X" |
|
110 proof- |
|
111 { fix x y |
|
112 have "\<lbrakk>y \<in> A\<star>; x \<in> X\<rbrakk> \<Longrightarrow> x @ y \<in> X " |
|
113 apply (induct arbitrary:x rule:Star.induct, simp) |
|
114 by (auto simp only:append_assoc[THEN sym] dest:c2') |
|
115 } thus ?thesis using c1' by (auto simp:Seq_def) |
|
116 qed |
|
117 next |
|
118 show "X \<subseteq> B ;; A\<star>" |
|
119 proof- |
|
120 { fix x |
|
121 have "x \<in> X \<Longrightarrow> x \<in> B ;; A\<star>" |
|
122 proof (induct x taking:length rule:measure_induct) |
|
123 fix z |
|
124 assume hyps: |
|
125 "\<forall>y. length y < length z \<longrightarrow> y \<in> X \<longrightarrow> y \<in> B ;; A\<star>" |
|
126 and z_in: "z \<in> X" |
|
127 show "z \<in> B ;; A\<star>" |
|
128 proof (cases "z \<in> B") |
|
129 case True thus ?thesis by (auto simp:Seq_def start) |
|
130 next |
|
131 case False hence "z \<in> X ;; A" using eq' z_in by auto |
|
132 then obtain za zb where za_in: "za \<in> X" |
|
133 and zab: "z = za @ zb \<and> zb \<in> A" and zbne: "zb \<noteq> []" |
|
134 using nemp unfolding Seq_def by blast |
|
135 from zbne zab have "length za < length z" by auto |
|
136 with za_in hyps have "za \<in> B ;; A\<star>" by blast |
|
137 hence "za @ zb \<in> B ;; A\<star>" using zab |
|
138 by (clarsimp simp:Seq_def, blast dest:star_intro3) |
|
139 thus ?thesis using zab by simp |
|
140 qed |
|
141 qed |
|
142 } thus ?thesis by blast |
|
143 qed |
|
144 qed |
|
145 qed |
|
146 |
|
147 |
|
148 text {* The syntax of regular expressions is defined by the datatype @{text "rexp"}. *} |
|
149 datatype rexp = |
|
150 NULL |
|
151 | EMPTY |
|
152 | CHAR char |
|
153 | SEQ rexp rexp |
|
154 | ALT rexp rexp |
|
155 | STAR rexp |
|
156 |
|
157 |
|
158 text {* |
|
159 The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to |
|
160 the language represented by the syntactic object @{text "x"}. |
|
161 *} |
|
162 consts L:: "'a \<Rightarrow> string set" |
|
163 |
|
164 |
|
165 text {* |
|
166 The @{text "L(rexp)"} for regular expression @{text "rexp"} is defined by the |
|
167 following overloading function @{text "L_rexp"}. |
|
168 *} |
|
169 overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> string set" |
|
170 begin |
|
171 fun |
|
172 L_rexp :: "rexp \<Rightarrow> string set" |
|
173 where |
|
174 "L_rexp (NULL) = {}" |
|
175 | "L_rexp (EMPTY) = {[]}" |
|
176 | "L_rexp (CHAR c) = {[c]}" |
|
177 | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)" |
|
178 | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)" |
|
179 | "L_rexp (STAR r) = (L_rexp r)\<star>" |
|
180 end |
|
181 |
|
182 text {* |
|
183 To obtain equational system out of finite set of equivalent classes, a fold operation |
|
184 on finite set @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "fold"} |
|
185 more robust than the @{text "fold"} in Isabelle library. The expression @{text "folds f"} |
|
186 makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"}, |
|
187 while @{text "fold f"} does not. |
|
188 *} |
|
189 |
|
190 definition |
|
191 folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" |
|
192 where |
|
193 "folds f z S \<equiv> SOME x. fold_graph f z S x" |
|
194 |
|
195 text {* |
|
196 The following lemma assures that the arbitrary choice made by the @{text "SOME"} in @{text "folds"} |
|
197 does not affect the @{text "L"}-value of the resultant regular expression. |
|
198 *} |
|
199 lemma folds_alt_simp [simp]: |
|
200 "finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)" |
|
201 apply (rule set_eq_intro, simp add:folds_def) |
|
202 apply (rule someI2_ex, erule finite_imp_fold_graph) |
|
203 by (erule fold_graph.induct, auto) |
|
204 |
|
205 (* Just a technical lemma. *) |
|
206 lemma [simp]: |
|
207 shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
|
208 by simp |
|
209 |
|
210 text {* |
|
211 @{text "\<approx>L"} is an equivalent class defined by language @{text "Lang"}. |
|
212 *} |
|
213 |
|
214 definition |
|
215 str_eq_rel ("\<approx>_" [100] 100) |
|
216 where |
|
217 "\<approx>Lang \<equiv> {(x, y). (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)}" |
|
218 |
|
219 text {* |
|
220 Among equivlant clases of @{text "\<approx>Lang"}, the set @{text "finals(Lang)"} singles out |
|
221 those which contains strings from @{text "Lang"}. |
|
222 *} |
|
223 |
|
224 definition |
|
225 "finals Lang \<equiv> {\<approx>Lang `` {x} | x . x \<in> Lang}" |
|
226 |
|
227 text {* |
|
228 The following lemma show the relationshipt between @{text "finals(Lang)"} and @{text "Lang"}. |
|
229 *} |
|
230 lemma lang_is_union_of_finals: |
|
231 "Lang = \<Union> finals(Lang)" |
|
232 proof |
|
233 show "Lang \<subseteq> \<Union> (finals Lang)" |
|
234 proof |
|
235 fix x |
|
236 assume "x \<in> Lang" |
|
237 thus "x \<in> \<Union> (finals Lang)" |
|
238 apply (simp add:finals_def, rule_tac x = "(\<approx>Lang) `` {x}" in exI) |
|
239 by (auto simp:Image_def str_eq_rel_def) |
|
240 qed |
|
241 next |
|
242 show "\<Union> (finals Lang) \<subseteq> Lang" |
|
243 apply (clarsimp simp:finals_def str_eq_rel_def) |
|
244 by (drule_tac x = "[]" in spec, auto) |
|
245 qed |
|
246 |
|
247 |
|
248 |
|
249 |
|
250 section {* Direction @{text "finite partition \<Rightarrow> regular language"}*} |
|
251 |
|
252 text {* |
|
253 The relationship between equivalent classes can be described by an |
|
254 equational system. |
|
255 For example, in equational system \eqref{example_eqns}, $X_0, X_1$ are equivalent |
|
256 classes. The first equation says every string in $X_0$ is obtained either by |
|
257 appending one $b$ to a string in $X_0$ or by appending one $a$ to a string in |
|
258 $X_1$ or just be an empty string (represented by the regular expression $\lambda$). Similary, |
|
259 the second equation tells how the strings inside $X_1$ are composed. |
|
260 \begin{equation}\label{example_eqns} |
|
261 \begin{aligned} |
|
262 X_0 & = X_0 b + X_1 a + \lambda \\ |
|
263 X_1 & = X_0 a + X_1 b |
|
264 \end{aligned} |
|
265 \end{equation} |
|
266 The summands on the right hand side is represented by the following data type |
|
267 @{text "rhs_item"}, mnemonic for 'right hand side item'. |
|
268 Generally, there are two kinds of right hand side items, one kind corresponds to |
|
269 pure regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other kind corresponds to |
|
270 transitions from one one equivalent class to another, like the $X_0 b, X_1 a$ etc. |
|
271 *} |
|
272 |
|
273 datatype rhs_item = |
|
274 Lam "rexp" (* Lambda *) |
|
275 | Trn "(string set)" "rexp" (* Transition *) |
|
276 |
|
277 text {* |
|
278 In this formalization, pure regular expressions like $\lambda$ is |
|
279 repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is represented by $Trn~X_0~(CHAR~a)$. |
|
280 *} |
|
281 |
|
282 text {* |
|
283 The functions @{text "the_r"} and @{text "the_Trn"} are used to extract |
|
284 subcomponents from right hand side items. |
|
285 *} |
|
286 |
|
287 fun the_r :: "rhs_item \<Rightarrow> rexp" |
|
288 where "the_r (Lam r) = r" |
|
289 |
|
290 fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)" |
|
291 where "the_Trn (Trn Y r) = (Y, r)" |
|
292 |
|
293 text {* |
|
294 Every right hand side item @{text "itm"} defines a string set given |
|
295 @{text "L(itm)"}, defined as: |
|
296 *} |
|
297 overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set" |
|
298 begin |
|
299 fun L_rhs_e:: "rhs_item \<Rightarrow> string set" |
|
300 where |
|
301 "L_rhs_e (Lam r) = L r" | |
|
302 "L_rhs_e (Trn X r) = X ;; L r" |
|
303 end |
|
304 |
|
305 text {* |
|
306 The right hand side of every equation is represented by a set of |
|
307 items. The string set defined by such a set @{text "itms"} is given |
|
308 by @{text "L(itms)"}, defined as: |
|
309 *} |
|
310 |
|
311 overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set" |
|
312 begin |
|
313 fun L_rhs:: "rhs_item set \<Rightarrow> string set" |
|
314 where "L_rhs rhs = \<Union> (L ` rhs)" |
|
315 end |
|
316 |
|
317 text {* |
|
318 Given a set of equivalent classses @{text "CS"} and one equivalent class @{text "X"} among |
|
319 @{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of |
|
320 the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"} |
|
321 is: |
|
322 *} |
|
323 |
|
324 definition |
|
325 "init_rhs CS X \<equiv> |
|
326 if ([] \<in> X) then |
|
327 {Lam(EMPTY)} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X} |
|
328 else |
|
329 {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" |
|
330 |
|
331 text {* |
|
332 In the definition of @{text "init_rhs"}, the term |
|
333 @{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches |
|
334 describes the formation of strings in @{text "X"} out of transitions, while |
|
335 the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in |
|
336 @{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to |
|
337 the $\lambda$ in \eqref{example_eqns}. |
|
338 |
|
339 With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every |
|
340 equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}. |
|
341 *} |
|
342 |
|
343 definition "eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}" |
|
344 (************ arden's lemma variation ********************) |
|
345 |
|
346 text {* |
|
347 The following @{text "items_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}. |
|
348 *} |
|
349 definition |
|
350 "items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}" |
|
351 |
|
352 text {* |
|
353 The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items |
|
354 using @{text "ALT"} to form a single regular expression. |
|
355 It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}. |
|
356 *} |
|
357 |
|
358 definition |
|
359 "rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)" |
|
360 |
|
361 text {* |
|
362 The following @{text "lam_of rhs"} returns all pure regular expression items in @{text "rhs"}. |
|
363 *} |
|
364 |
|
365 definition |
|
366 "lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}" |
|
367 |
|
368 text {* |
|
369 The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"} |
|
370 using @{text "ALT"} to form a single regular expression. |
|
371 When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"} |
|
372 is used to compute compute the regular expression corresponds to @{text "rhs"}. |
|
373 *} |
|
374 |
|
375 definition |
|
376 "rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)" |
|
377 |
|
378 text {* |
|
379 The following @{text "attach_rexp rexp' itm"} attach |
|
380 the regular expression @{text "rexp'"} to |
|
381 the right of right hand side item @{text "itm"}. |
|
382 *} |
|
383 |
|
384 fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item" |
|
385 where |
|
386 "attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')" |
|
387 | "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')" |
|
388 |
|
389 text {* |
|
390 The following @{text "append_rhs_rexp rhs rexp"} attaches |
|
391 @{text "rexp"} to every item in @{text "rhs"}. |
|
392 *} |
|
393 |
|
394 definition |
|
395 "append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs" |
|
396 |
|
397 text {* |
|
398 With the help of the two functions immediately above, Ardens' |
|
399 transformation on right hand side @{text "rhs"} is implemented |
|
400 by the following function @{text "arden_variate X rhs"}. |
|
401 After this transformation, the recursive occurent of @{text "X"} |
|
402 in @{text "rhs"} will be eliminated, while the |
|
403 string set defined by @{text "rhs"} is kept unchanged. |
|
404 *} |
|
405 definition |
|
406 "arden_variate X rhs \<equiv> |
|
407 append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))" |
|
408 |
|
409 |
|
410 (*********** substitution of ES *************) |
|
411 |
|
412 text {* |
|
413 Suppose the equation defining @{text "X"} is $X = xrhs$, |
|
414 the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in |
|
415 @{text "rhs"} by @{text "xrhs"}. |
|
416 A litte thought may reveal that the final result |
|
417 should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then |
|
418 union the result with all non-@{text "X"}-items of @{text "rhs"}. |
|
419 *} |
|
420 definition |
|
421 "rhs_subst rhs X xrhs \<equiv> |
|
422 (rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))" |
|
423 |
|
424 text {* |
|
425 Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing |
|
426 @{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation |
|
427 of the equational system @{text "ES"}. |
|
428 *} |
|
429 |
|
430 definition |
|
431 "eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
|
432 |
|
433 text {* |
|
434 The computation of regular expressions for equivalent classes is accomplished |
|
435 using a iteration principle given by the following lemma. |
|
436 *} |
|
437 |
|
438 lemma wf_iter [rule_format]: |
|
439 fixes f |
|
440 assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)" |
|
441 shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')" |
|
442 proof(induct e rule: wf_induct |
|
443 [OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify) |
|
444 fix x |
|
445 assume h [rule_format]: |
|
446 "\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')" |
|
447 and px: "P x" |
|
448 show "\<exists>e'. P e' \<and> Q e'" |
|
449 proof(cases "Q x") |
|
450 assume "Q x" with px show ?thesis by blast |
|
451 next |
|
452 assume nq: "\<not> Q x" |
|
453 from step [OF px nq] |
|
454 obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto |
|
455 show ?thesis |
|
456 proof(rule h) |
|
457 from ltf show "(e', x) \<in> inv_image less_than f" |
|
458 by (simp add:inv_image_def) |
|
459 next |
|
460 from pe' show "P e'" . |
|
461 qed |
|
462 qed |
|
463 qed |
|
464 |
|
465 text {* |
|
466 The @{text "P"} in lemma @{text "wf_iter"} is an invaiant kept throughout the iteration procedure. |
|
467 The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"}, |
|
468 an invariant over equal system @{text "ES"}. |
|
469 Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}. |
|
470 *} |
|
471 |
|
472 text {* |
|
473 Every variable is defined at most onece in @{text "ES"}. |
|
474 *} |
|
475 definition |
|
476 "distinct_equas ES \<equiv> |
|
477 \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
|
478 text {* |
|
479 Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}. |
|
480 *} |
|
481 definition |
|
482 "valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)" |
|
483 |
|
484 text {* |
|
485 The following @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional |
|
486 items of @{text "rhs"} does not contain empty string. This is necessary for |
|
487 the application of Arden's transformation to @{text "rhs"}. |
|
488 *} |
|
489 definition |
|
490 "rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)" |
|
491 |
|
492 text {* |
|
493 The following @{text "ardenable ES"} requires that Arden's transformation is applicable |
|
494 to every equation of equational system @{text "ES"}. |
|
495 *} |
|
496 definition |
|
497 "ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs" |
|
498 |
|
499 (* The following non_empty seems useless. *) |
|
500 definition |
|
501 "non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}" |
|
502 |
|
503 text {* |
|
504 The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite. |
|
505 *} |
|
506 definition |
|
507 "finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs" |
|
508 |
|
509 text {* |
|
510 The following @{text "classes_of rhs"} returns all variables (or equivalent classes) |
|
511 occuring in @{text "rhs"}. |
|
512 *} |
|
513 definition |
|
514 "classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}" |
|
515 |
|
516 text {* |
|
517 The following @{text "lefts_of ES"} returns all variables |
|
518 defined by equational system @{text "ES"}. |
|
519 *} |
|
520 definition |
|
521 "lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}" |
|
522 |
|
523 text {* |
|
524 The following @{text "self_contained ES"} requires that every |
|
525 variable occuring on the right hand side of equations is already defined by some |
|
526 equation in @{text "ES"}. |
|
527 *} |
|
528 definition |
|
529 "self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES" |
|
530 |
|
531 |
|
532 text {* |
|
533 The invariant @{text "Inv(ES)"} is a conjunction of all the previously defined constaints. |
|
534 *} |
|
535 definition |
|
536 "Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> |
|
537 non_empty ES \<and> finite_rhs ES \<and> self_contained ES" |
|
538 |
|
539 subsection {* The proof of this direction *} |
|
540 |
|
541 subsubsection {* Basic properties *} |
|
542 |
|
543 text {* |
|
544 The following are some basic properties of the above definitions. |
|
545 *} |
|
546 |
|
547 lemma L_rhs_union_distrib: |
|
548 " L (A::rhs_item set) \<union> L B = L (A \<union> B)" |
|
549 by simp |
|
550 |
|
551 lemma finite_snd_Trn: |
|
552 assumes finite:"finite rhs" |
|
553 shows "finite {r\<^isub>2. Trn Y r\<^isub>2 \<in> rhs}" (is "finite ?B") |
|
554 proof- |
|
555 def rhs' \<equiv> "{e \<in> rhs. \<exists> r. e = Trn Y r}" |
|
556 have "?B = (snd o the_Trn) ` rhs'" using rhs'_def by (auto simp:image_def) |
|
557 moreover have "finite rhs'" using finite rhs'_def by auto |
|
558 ultimately show ?thesis by simp |
|
559 qed |
|
560 |
|
561 lemma rexp_of_empty: |
|
562 assumes finite:"finite rhs" |
|
563 and nonempty:"rhs_nonempty rhs" |
|
564 shows "[] \<notin> L (rexp_of rhs X)" |
|
565 using finite nonempty rhs_nonempty_def |
|
566 by (drule_tac finite_snd_Trn[where Y = X], auto simp:rexp_of_def items_of_def) |
|
567 |
|
568 lemma [intro!]: |
|
569 "P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto |
|
570 |
|
571 lemma finite_items_of: |
|
572 "finite rhs \<Longrightarrow> finite (items_of rhs X)" |
|
573 by (auto simp:items_of_def intro:finite_subset) |
|
574 |
|
575 lemma lang_of_rexp_of: |
|
576 assumes finite:"finite rhs" |
|
577 shows "L (items_of rhs X) = X ;; (L (rexp_of rhs X))" |
|
578 proof - |
|
579 have "finite ((snd \<circ> the_Trn) ` items_of rhs X)" using finite_items_of[OF finite] by auto |
|
580 thus ?thesis |
|
581 apply (auto simp:rexp_of_def Seq_def items_of_def) |
|
582 apply (rule_tac x = s1 in exI, rule_tac x = s2 in exI, auto) |
|
583 by (rule_tac x= "Trn X r" in exI, auto simp:Seq_def) |
|
584 qed |
|
585 |
|
586 lemma rexp_of_lam_eq_lam_set: |
|
587 assumes finite: "finite rhs" |
|
588 shows "L (rexp_of_lam rhs) = L (lam_of rhs)" |
|
589 proof - |
|
590 have "finite (the_r ` {Lam r |r. Lam r \<in> rhs})" using finite |
|
591 by (rule_tac finite_imageI, auto intro:finite_subset) |
|
592 thus ?thesis by (auto simp:rexp_of_lam_def lam_of_def) |
|
593 qed |
|
594 |
|
595 lemma [simp]: |
|
596 " L (attach_rexp r xb) = L xb ;; L r" |
|
597 apply (cases xb, auto simp:Seq_def) |
|
598 by (rule_tac x = "s1 @ s1a" in exI, rule_tac x = s2a in exI,auto simp:Seq_def) |
|
599 |
|
600 lemma lang_of_append_rhs: |
|
601 "L (append_rhs_rexp rhs r) = L rhs ;; L r" |
|
602 apply (auto simp:append_rhs_rexp_def image_def) |
|
603 apply (auto simp:Seq_def) |
|
604 apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def) |
|
605 by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def) |
|
606 |
|
607 lemma classes_of_union_distrib: |
|
608 "classes_of A \<union> classes_of B = classes_of (A \<union> B)" |
|
609 by (auto simp add:classes_of_def) |
|
610 |
|
611 lemma lefts_of_union_distrib: |
|
612 "lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)" |
|
613 by (auto simp:lefts_of_def) |
|
614 |
|
615 |
|
616 subsubsection {* Intialization *} |
|
617 |
|
618 text {* |
|
619 The following several lemmas until @{text "init_ES_satisfy_Inv"} shows that |
|
620 the initial equational system satisfies invariant @{text "Inv"}. |
|
621 *} |
|
622 |
|
623 lemma defined_by_str: |
|
624 "\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}" |
|
625 by (auto simp:quotient_def Image_def str_eq_rel_def) |
|
626 |
|
627 lemma every_eqclass_has_transition: |
|
628 assumes has_str: "s @ [c] \<in> X" |
|
629 and in_CS: "X \<in> UNIV // (\<approx>Lang)" |
|
630 obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y" |
|
631 proof - |
|
632 def Y \<equiv> "(\<approx>Lang) `` {s}" |
|
633 have "Y \<in> UNIV // (\<approx>Lang)" |
|
634 unfolding Y_def quotient_def by auto |
|
635 moreover |
|
636 have "X = (\<approx>Lang) `` {s @ [c]}" |
|
637 using has_str in_CS defined_by_str by blast |
|
638 then have "Y ;; {[c]} \<subseteq> X" |
|
639 unfolding Y_def Image_def Seq_def |
|
640 unfolding str_eq_rel_def |
|
641 by clarsimp |
|
642 moreover |
|
643 have "s \<in> Y" unfolding Y_def |
|
644 unfolding Image_def str_eq_rel_def by simp |
|
645 ultimately show thesis by (blast intro: that) |
|
646 qed |
|
647 |
|
648 lemma l_eq_r_in_eqs: |
|
649 assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))" |
|
650 shows "X = L xrhs" |
|
651 proof |
|
652 show "X \<subseteq> L xrhs" |
|
653 proof |
|
654 fix x |
|
655 assume "(1)": "x \<in> X" |
|
656 show "x \<in> L xrhs" |
|
657 proof (cases "x = []") |
|
658 assume empty: "x = []" |
|
659 thus ?thesis using X_in_eqs "(1)" |
|
660 by (auto simp:eqs_def init_rhs_def) |
|
661 next |
|
662 assume not_empty: "x \<noteq> []" |
|
663 then obtain clist c where decom: "x = clist @ [c]" |
|
664 by (case_tac x rule:rev_cases, auto) |
|
665 have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def) |
|
666 then obtain Y |
|
667 where "Y \<in> UNIV // (\<approx>Lang)" |
|
668 and "Y ;; {[c]} \<subseteq> X" |
|
669 and "clist \<in> Y" |
|
670 using decom "(1)" every_eqclass_has_transition by blast |
|
671 hence |
|
672 "x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y ;; {[c]} \<subseteq> X}" |
|
673 using "(1)" decom |
|
674 by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def) |
|
675 thus ?thesis using X_in_eqs "(1)" |
|
676 by (simp add:eqs_def init_rhs_def) |
|
677 qed |
|
678 qed |
|
679 next |
|
680 show "L xrhs \<subseteq> X" using X_in_eqs |
|
681 by (auto simp:eqs_def init_rhs_def) |
|
682 qed |
|
683 |
|
684 lemma finite_init_rhs: |
|
685 assumes finite: "finite CS" |
|
686 shows "finite (init_rhs CS X)" |
|
687 proof- |
|
688 have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A") |
|
689 proof - |
|
690 def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" |
|
691 def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)" |
|
692 have "finite (CS \<times> (UNIV::char set))" using finite by auto |
|
693 hence "finite S" using S_def |
|
694 by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto) |
|
695 moreover have "?A = h ` S" by (auto simp: S_def h_def image_def) |
|
696 ultimately show ?thesis |
|
697 by auto |
|
698 qed |
|
699 thus ?thesis by (simp add:init_rhs_def) |
|
700 qed |
|
701 |
|
702 lemma init_ES_satisfy_Inv: |
|
703 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
704 shows "Inv (eqs (UNIV // (\<approx>Lang)))" |
|
705 proof - |
|
706 have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS |
|
707 by (simp add:eqs_def) |
|
708 moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))" |
|
709 by (simp add:distinct_equas_def eqs_def) |
|
710 moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))" |
|
711 by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps) |
|
712 moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))" |
|
713 using l_eq_r_in_eqs by (simp add:valid_eqns_def) |
|
714 moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))" |
|
715 by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def) |
|
716 moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))" |
|
717 using finite_init_rhs[OF finite_CS] |
|
718 by (auto simp:finite_rhs_def eqs_def) |
|
719 moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))" |
|
720 by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def) |
|
721 ultimately show ?thesis by (simp add:Inv_def) |
|
722 qed |
|
723 |
|
724 subsubsection {* |
|
725 Interation step |
|
726 *} |
|
727 |
|
728 text {* |
|
729 From this point until @{text "iteration_step"}, it is proved |
|
730 that there exists iteration steps which keep @{text "Inv(ES)"} while |
|
731 decreasing the size of @{text "ES"}. |
|
732 *} |
|
733 lemma arden_variate_keeps_eq: |
|
734 assumes l_eq_r: "X = L rhs" |
|
735 and not_empty: "[] \<notin> L (rexp_of rhs X)" |
|
736 and finite: "finite rhs" |
|
737 shows "X = L (arden_variate X rhs)" |
|
738 proof - |
|
739 def A \<equiv> "L (rexp_of rhs X)" |
|
740 def b \<equiv> "rhs - items_of rhs X" |
|
741 def B \<equiv> "L b" |
|
742 have "X = B ;; A\<star>" |
|
743 proof- |
|
744 have "rhs = items_of rhs X \<union> b" by (auto simp:b_def items_of_def) |
|
745 hence "L rhs = L(items_of rhs X \<union> b)" by simp |
|
746 hence "L rhs = L(items_of rhs X) \<union> B" by (simp only:L_rhs_union_distrib B_def) |
|
747 with lang_of_rexp_of |
|
748 have "L rhs = X ;; A \<union> B " using finite by (simp only:B_def b_def A_def) |
|
749 thus ?thesis |
|
750 using l_eq_r not_empty |
|
751 apply (drule_tac B = B and X = X in ardens_revised) |
|
752 by (auto simp:A_def simp del:L_rhs.simps) |
|
753 qed |
|
754 moreover have "L (arden_variate X rhs) = (B ;; A\<star>)" (is "?L = ?R") |
|
755 by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs |
|
756 B_def A_def b_def L_rexp.simps seq_union_distrib) |
|
757 ultimately show ?thesis by simp |
|
758 qed |
|
759 |
|
760 lemma append_keeps_finite: |
|
761 "finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)" |
|
762 by (auto simp:append_rhs_rexp_def) |
|
763 |
|
764 lemma arden_variate_keeps_finite: |
|
765 "finite rhs \<Longrightarrow> finite (arden_variate X rhs)" |
|
766 by (auto simp:arden_variate_def append_keeps_finite) |
|
767 |
|
768 lemma append_keeps_nonempty: |
|
769 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)" |
|
770 apply (auto simp:rhs_nonempty_def append_rhs_rexp_def) |
|
771 by (case_tac x, auto simp:Seq_def) |
|
772 |
|
773 lemma nonempty_set_sub: |
|
774 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)" |
|
775 by (auto simp:rhs_nonempty_def) |
|
776 |
|
777 lemma nonempty_set_union: |
|
778 "\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')" |
|
779 by (auto simp:rhs_nonempty_def) |
|
780 |
|
781 lemma arden_variate_keeps_nonempty: |
|
782 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)" |
|
783 by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub) |
|
784 |
|
785 |
|
786 lemma rhs_subst_keeps_nonempty: |
|
787 "\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)" |
|
788 by (simp only:rhs_subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub) |
|
789 |
|
790 lemma rhs_subst_keeps_eq: |
|
791 assumes substor: "X = L xrhs" |
|
792 and finite: "finite rhs" |
|
793 shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right") |
|
794 proof- |
|
795 def A \<equiv> "L (rhs - items_of rhs X)" |
|
796 have "?Left = A \<union> L (append_rhs_rexp xrhs (rexp_of rhs X))" |
|
797 by (simp only:rhs_subst_def L_rhs_union_distrib A_def) |
|
798 moreover have "?Right = A \<union> L (items_of rhs X)" |
|
799 proof- |
|
800 have "rhs = (rhs - items_of rhs X) \<union> (items_of rhs X)" by (auto simp:items_of_def) |
|
801 thus ?thesis by (simp only:L_rhs_union_distrib A_def) |
|
802 qed |
|
803 moreover have "L (append_rhs_rexp xrhs (rexp_of rhs X)) = L (items_of rhs X)" |
|
804 using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of) |
|
805 ultimately show ?thesis by simp |
|
806 qed |
|
807 |
|
808 lemma rhs_subst_keeps_finite_rhs: |
|
809 "\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)" |
|
810 by (auto simp:rhs_subst_def append_keeps_finite) |
|
811 |
|
812 lemma eqs_subst_keeps_finite: |
|
813 assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)" |
|
814 shows "finite (eqs_subst ES Y yrhs)" |
|
815 proof - |
|
816 have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}" |
|
817 (is "finite ?A") |
|
818 proof- |
|
819 def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}" |
|
820 def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)" |
|
821 have "finite (h ` eqns')" using finite h_def eqns'_def by auto |
|
822 moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def) |
|
823 ultimately show ?thesis by auto |
|
824 qed |
|
825 thus ?thesis by (simp add:eqs_subst_def) |
|
826 qed |
|
827 |
|
828 lemma eqs_subst_keeps_finite_rhs: |
|
829 "\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)" |
|
830 by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def) |
|
831 |
|
832 lemma append_rhs_keeps_cls: |
|
833 "classes_of (append_rhs_rexp rhs r) = classes_of rhs" |
|
834 apply (auto simp:classes_of_def append_rhs_rexp_def) |
|
835 apply (case_tac xa, auto simp:image_def) |
|
836 by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+) |
|
837 |
|
838 lemma arden_variate_removes_cl: |
|
839 "classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}" |
|
840 apply (simp add:arden_variate_def append_rhs_keeps_cls items_of_def) |
|
841 by (auto simp:classes_of_def) |
|
842 |
|
843 lemma lefts_of_keeps_cls: |
|
844 "lefts_of (eqs_subst ES Y yrhs) = lefts_of ES" |
|
845 by (auto simp:lefts_of_def eqs_subst_def) |
|
846 |
|
847 lemma rhs_subst_updates_cls: |
|
848 "X \<notin> classes_of xrhs \<Longrightarrow> |
|
849 classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}" |
|
850 apply (simp only:rhs_subst_def append_rhs_keeps_cls |
|
851 classes_of_union_distrib[THEN sym]) |
|
852 by (auto simp:classes_of_def items_of_def) |
|
853 |
|
854 lemma eqs_subst_keeps_self_contained: |
|
855 fixes Y |
|
856 assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A") |
|
857 shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" |
|
858 (is "self_contained ?B") |
|
859 proof- |
|
860 { fix X xrhs' |
|
861 assume "(X, xrhs') \<in> ?B" |
|
862 then obtain xrhs |
|
863 where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)" |
|
864 and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast) |
|
865 have "classes_of xrhs' \<subseteq> lefts_of ?B" |
|
866 proof- |
|
867 have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def) |
|
868 moreover have "classes_of xrhs' \<subseteq> lefts_of ES" |
|
869 proof- |
|
870 have "classes_of xrhs' \<subseteq> |
|
871 classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}" |
|
872 proof- |
|
873 have "Y \<notin> classes_of (arden_variate Y yrhs)" |
|
874 using arden_variate_removes_cl by simp |
|
875 thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls) |
|
876 qed |
|
877 moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc |
|
878 apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym]) |
|
879 by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def) |
|
880 moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}" |
|
881 using sc |
|
882 by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def) |
|
883 ultimately show ?thesis by auto |
|
884 qed |
|
885 ultimately show ?thesis by simp |
|
886 qed |
|
887 } thus ?thesis by (auto simp only:eqs_subst_def self_contained_def) |
|
888 qed |
|
889 |
|
890 lemma eqs_subst_satisfy_Inv: |
|
891 assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})" |
|
892 shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))" |
|
893 proof - |
|
894 have finite_yrhs: "finite yrhs" |
|
895 using Inv_ES by (auto simp:Inv_def finite_rhs_def) |
|
896 have nonempty_yrhs: "rhs_nonempty yrhs" |
|
897 using Inv_ES by (auto simp:Inv_def ardenable_def) |
|
898 have Y_eq_yrhs: "Y = L yrhs" |
|
899 using Inv_ES by (simp only:Inv_def valid_eqns_def, blast) |
|
900 have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" |
|
901 using Inv_ES |
|
902 by (auto simp:distinct_equas_def eqs_subst_def Inv_def) |
|
903 moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" |
|
904 using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite) |
|
905 moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))" |
|
906 proof- |
|
907 have "finite_rhs ES" using Inv_ES |
|
908 by (simp add:Inv_def finite_rhs_def) |
|
909 moreover have "finite (arden_variate Y yrhs)" |
|
910 proof - |
|
911 have "finite yrhs" using Inv_ES |
|
912 by (auto simp:Inv_def finite_rhs_def) |
|
913 thus ?thesis using arden_variate_keeps_finite by simp |
|
914 qed |
|
915 ultimately show ?thesis |
|
916 by (simp add:eqs_subst_keeps_finite_rhs) |
|
917 qed |
|
918 moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))" |
|
919 proof - |
|
920 { fix X rhs |
|
921 assume "(X, rhs) \<in> ES" |
|
922 hence "rhs_nonempty rhs" using prems Inv_ES |
|
923 by (simp add:Inv_def ardenable_def) |
|
924 with nonempty_yrhs |
|
925 have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))" |
|
926 by (simp add:nonempty_yrhs |
|
927 rhs_subst_keeps_nonempty arden_variate_keeps_nonempty) |
|
928 } thus ?thesis by (auto simp add:ardenable_def eqs_subst_def) |
|
929 qed |
|
930 moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))" |
|
931 proof- |
|
932 have "Y = L (arden_variate Y yrhs)" |
|
933 using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs |
|
934 by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+) |
|
935 thus ?thesis using Inv_ES |
|
936 by (clarsimp simp add:valid_eqns_def |
|
937 eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def |
|
938 simp del:L_rhs.simps) |
|
939 qed |
|
940 moreover have |
|
941 non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))" |
|
942 using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def) |
|
943 moreover |
|
944 have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" |
|
945 using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def) |
|
946 ultimately show ?thesis using Inv_ES by (simp add:Inv_def) |
|
947 qed |
|
948 |
|
949 lemma eqs_subst_card_le: |
|
950 assumes finite: "finite (ES::(string set \<times> rhs_item set) set)" |
|
951 shows "card (eqs_subst ES Y yrhs) <= card ES" |
|
952 proof- |
|
953 def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)" |
|
954 have "eqs_subst ES Y yrhs = f ` ES" |
|
955 apply (auto simp:eqs_subst_def f_def image_def) |
|
956 by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+) |
|
957 thus ?thesis using finite by (auto intro:card_image_le) |
|
958 qed |
|
959 |
|
960 lemma eqs_subst_cls_remains: |
|
961 "(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)" |
|
962 by (auto simp:eqs_subst_def) |
|
963 |
|
964 lemma card_noteq_1_has_more: |
|
965 assumes card:"card S \<noteq> 1" |
|
966 and e_in: "e \<in> S" |
|
967 and finite: "finite S" |
|
968 obtains e' where "e' \<in> S \<and> e \<noteq> e'" |
|
969 proof- |
|
970 have "card (S - {e}) > 0" |
|
971 proof - |
|
972 have "card S > 1" using card e_in finite |
|
973 by (case_tac "card S", auto) |
|
974 thus ?thesis using finite e_in by auto |
|
975 qed |
|
976 hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp) |
|
977 thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto |
|
978 qed |
|
979 |
|
980 lemma iteration_step: |
|
981 assumes Inv_ES: "Inv ES" |
|
982 and X_in_ES: "(X, xrhs) \<in> ES" |
|
983 and not_T: "card ES \<noteq> 1" |
|
984 shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and> |
|
985 (card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'") |
|
986 proof - |
|
987 have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def) |
|
988 then obtain Y yrhs |
|
989 where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" |
|
990 using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto) |
|
991 def ES' == "ES - {(Y, yrhs)}" |
|
992 let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)" |
|
993 have "?P ?ES''" |
|
994 proof - |
|
995 have "Inv ?ES''" using Y_in_ES Inv_ES |
|
996 by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb) |
|
997 moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''" using not_eq X_in_ES |
|
998 by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def) |
|
999 moreover have "(card ?ES'', card ES) \<in> less_than" |
|
1000 proof - |
|
1001 have "finite ES'" using finite_ES ES'_def by auto |
|
1002 moreover have "card ES' < card ES" using finite_ES Y_in_ES |
|
1003 by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less) |
|
1004 ultimately show ?thesis |
|
1005 by (auto dest:eqs_subst_card_le elim:le_less_trans) |
|
1006 qed |
|
1007 ultimately show ?thesis by simp |
|
1008 qed |
|
1009 thus ?thesis by blast |
|
1010 qed |
|
1011 |
|
1012 subsubsection {* |
|
1013 Conclusion of the proof |
|
1014 *} |
|
1015 |
|
1016 text {* |
|
1017 From this point until @{text "hard_direction"}, the hard direction is proved |
|
1018 through a simple application of the iteration principle. |
|
1019 *} |
|
1020 |
|
1021 lemma iteration_conc: |
|
1022 assumes history: "Inv ES" |
|
1023 and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES" |
|
1024 shows |
|
1025 "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1" |
|
1026 (is "\<exists> ES'. ?P ES'") |
|
1027 proof (cases "card ES = 1") |
|
1028 case True |
|
1029 thus ?thesis using history X_in_ES |
|
1030 by blast |
|
1031 next |
|
1032 case False |
|
1033 thus ?thesis using history iteration_step X_in_ES |
|
1034 by (rule_tac f = card in wf_iter, auto) |
|
1035 qed |
|
1036 |
|
1037 lemma last_cl_exists_rexp: |
|
1038 assumes ES_single: "ES = {(X, xrhs)}" |
|
1039 and Inv_ES: "Inv ES" |
|
1040 shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r") |
|
1041 proof- |
|
1042 let ?A = "arden_variate X xrhs" |
|
1043 have "?P (rexp_of_lam ?A)" |
|
1044 proof - |
|
1045 have "L (rexp_of_lam ?A) = L (lam_of ?A)" |
|
1046 proof(rule rexp_of_lam_eq_lam_set) |
|
1047 show "finite (arden_variate X xrhs)" using Inv_ES ES_single |
|
1048 by (rule_tac arden_variate_keeps_finite, |
|
1049 auto simp add:Inv_def finite_rhs_def) |
|
1050 qed |
|
1051 also have "\<dots> = L ?A" |
|
1052 proof- |
|
1053 have "lam_of ?A = ?A" |
|
1054 proof- |
|
1055 have "classes_of ?A = {}" using Inv_ES ES_single |
|
1056 by (simp add:arden_variate_removes_cl |
|
1057 self_contained_def Inv_def lefts_of_def) |
|
1058 thus ?thesis |
|
1059 by (auto simp only:lam_of_def classes_of_def, case_tac x, auto) |
|
1060 qed |
|
1061 thus ?thesis by simp |
|
1062 qed |
|
1063 also have "\<dots> = X" |
|
1064 proof(rule arden_variate_keeps_eq [THEN sym]) |
|
1065 show "X = L xrhs" using Inv_ES ES_single |
|
1066 by (auto simp only:Inv_def valid_eqns_def) |
|
1067 next |
|
1068 from Inv_ES ES_single show "[] \<notin> L (rexp_of xrhs X)" |
|
1069 by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def) |
|
1070 next |
|
1071 from Inv_ES ES_single show "finite xrhs" |
|
1072 by (simp add:Inv_def finite_rhs_def) |
|
1073 qed |
|
1074 finally show ?thesis by simp |
|
1075 qed |
|
1076 thus ?thesis by auto |
|
1077 qed |
|
1078 |
|
1079 lemma every_eqcl_has_reg: |
|
1080 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
1081 and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))" |
|
1082 shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r") |
|
1083 proof - |
|
1084 from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))" |
|
1085 by (auto simp:eqs_def init_rhs_def) |
|
1086 then obtain ES xrhs where Inv_ES: "Inv ES" |
|
1087 and X_in_ES: "(X, xrhs) \<in> ES" |
|
1088 and card_ES: "card ES = 1" |
|
1089 using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc |
|
1090 by blast |
|
1091 hence ES_single_equa: "ES = {(X, xrhs)}" |
|
1092 by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff) |
|
1093 thus ?thesis using Inv_ES |
|
1094 by (rule last_cl_exists_rexp) |
|
1095 qed |
|
1096 |
|
1097 lemma finals_in_partitions: |
|
1098 "finals Lang \<subseteq> (UNIV // (\<approx>Lang))" |
|
1099 by (auto simp:finals_def quotient_def) |
|
1100 |
|
1101 theorem hard_direction: |
|
1102 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
1103 shows "\<exists> (reg::rexp). Lang = L reg" |
|
1104 proof - |
|
1105 have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg" |
|
1106 using finite_CS every_eqcl_has_reg by blast |
|
1107 then obtain f |
|
1108 where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)" |
|
1109 by (auto dest:bchoice) |
|
1110 def rs \<equiv> "f ` (finals Lang)" |
|
1111 have "Lang = \<Union> (finals Lang)" using lang_is_union_of_finals by auto |
|
1112 also have "\<dots> = L (folds ALT NULL rs)" |
|
1113 proof - |
|
1114 have "finite rs" |
|
1115 proof - |
|
1116 have "finite (finals Lang)" |
|
1117 using finite_CS finals_in_partitions[of "Lang"] |
|
1118 by (erule_tac finite_subset, simp) |
|
1119 thus ?thesis using rs_def by auto |
|
1120 qed |
|
1121 thus ?thesis |
|
1122 using f_prop rs_def finals_in_partitions[of "Lang"] by auto |
|
1123 qed |
|
1124 finally show ?thesis by blast |
|
1125 qed |
|
1126 |
|
1127 |
|
1128 |
|
1129 section {* Direction: @{text "regular language \<Rightarrow> finite partitions"} *} |
|
1130 |
6 |
1131 subsection {* The scheme for this direction *} |
7 subsection {* The scheme for this direction *} |
1132 |
8 |
1133 text {* |
9 text {* |
1134 The following convenient notation @{text "x \<approx>Lang y"} means: |
10 The following convenient notation @{text "x \<approx>Lang y"} means: |
1140 str_eq ("_ \<approx>_ _") |
16 str_eq ("_ \<approx>_ _") |
1141 where |
17 where |
1142 "x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)" |
18 "x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)" |
1143 |
19 |
1144 text {* |
20 text {* |
1145 The very basic scheme to show the finiteness of the partion generated by a |
21 The very basic scheme to show the finiteness of the partion generated by a language @{text "Lang"} |
1146 language @{text "Lang"} is by attaching tags to every string. The set of |
22 is by attaching a tag to every string. The set of tags are carfully choosen to be finite so that |
1147 tags are carefully choosen to make it finite. If it can be proved that |
23 the range of tagging function is finite. If it can be proved that strings with the same tag |
1148 strings with the same tag are equivlent with respect @{text "Lang"}, then |
24 are equivlent with respect @{text "Lang"}, then the partition given rise by @{text "Lang"} must be finite. |
1149 the partition given rise by @{text "Lang"} must be finite. The reason for |
25 The detailed argjument for this is formalized by the following lemma @{text "tag_finite_imageD"}. |
1150 this is a lemma in standard library (@{text "finite_imageD"}), which says: |
26 The basic idea is using lemma @{thm [source] "finite_imageD"} |
1151 if the image of an injective function on a set @{text "A"} is finite, then |
27 from standard library: |
1152 @{text "A"} is finite. It can be shown that the function obtained by |
28 \[ |
1153 lifting @{text "tag"} to the level of equivalence classes (i.e. @{text "((op |
29 @{thm "finite_imageD" [no_vars]} |
1154 `) tag)"}) is injective (by lemma @{text "tag_image_injI"}) and the image of |
30 \] |
1155 this function is finite (with the help of lemma @{text |
31 which says: if the image of injective function @{text "f"} over set @{text "A"} is |
1156 "finite_tag_imageI"}). This argument is formalized by the following lemma |
32 finite, then @{text "A"} must be finte. |
1157 @{text "tag_finite_imageD"}. |
33 *} |
1158 |
34 |
1159 |
35 |
1160 {\bf |
36 (* |
1161 Theorems @{text "tag_image_injI"} and @{text |
37 |
1162 "finite_tag_imageI"} do not exist. Can this comment be deleted? |
38 (* I am trying to reduce the following proof to even simpler principles. But not yet succeed. *) |
1163 \marginpar{\bf COMMENT} |
39 definition |
1164 } |
40 f_eq_rel ("\<cong>_") |
1165 *} |
41 where |
|
42 "\<cong>(f::'a \<Rightarrow> 'b) = {(x, y) | x y. f x = f y}" |
|
43 |
|
44 thm finite.induct |
|
45 |
|
46 lemma finite_range_image: "finite (range f) \<Longrightarrow> finite (f ` A)" |
|
47 by (rule_tac B = "{y. \<exists>x. y = f x}" in finite_subset, auto simp:image_def) |
|
48 |
|
49 lemma "equiv UNIV (\<cong>f)" |
|
50 by (auto simp:equiv_def f_eq_rel_def refl_on_def sym_def trans_def) |
|
51 |
|
52 lemma |
|
53 assumes rng_fnt: "finite (range tag)" |
|
54 shows "finite (UNIV // (\<cong>tag))" |
|
55 proof - |
|
56 let "?f" = "op ` tag" and ?A = "(UNIV // (\<cong>tag))" |
|
57 show ?thesis |
|
58 proof (rule_tac f = "?f" and A = ?A in finite_imageD) |
|
59 -- {* |
|
60 The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}: |
|
61 *} |
|
62 show "finite (?f ` ?A)" |
|
63 proof - |
|
64 have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def) |
|
65 moreover from rng_fnt have "finite (Pow (range tag))" by simp |
|
66 ultimately have "finite (range ?f)" |
|
67 by (auto simp only:image_def intro:finite_subset) |
|
68 from finite_range_image [OF this] show ?thesis . |
|
69 qed |
|
70 next |
|
71 -- {* |
|
72 The injectivity of @{text "f"}-image is a consequence of the definition of @{text "\<cong>tag"} |
|
73 *} |
|
74 show "inj_on ?f ?A" |
|
75 proof- |
|
76 { fix X Y |
|
77 assume X_in: "X \<in> ?A" |
|
78 and Y_in: "Y \<in> ?A" |
|
79 and tag_eq: "?f X = ?f Y" |
|
80 have "X = Y" |
|
81 proof - |
|
82 from X_in Y_in tag_eq |
|
83 obtain x y where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y" |
|
84 unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def f_eq_rel_def |
|
85 apply simp by blast |
|
86 with X_in Y_in show ?thesis |
|
87 by (auto simp:quotient_def str_eq_rel_def str_eq_def f_eq_rel_def) |
|
88 qed |
|
89 } thus ?thesis unfolding inj_on_def by auto |
|
90 qed |
|
91 qed |
|
92 qed |
|
93 |
|
94 *) |
|
95 |
|
96 lemma finite_range_image: "finite (range f) \<Longrightarrow> finite (f ` A)" |
|
97 by (rule_tac B = "{y. \<exists>x. y = f x}" in finite_subset, auto simp:image_def) |
1166 |
98 |
1167 lemma tag_finite_imageD: |
99 lemma tag_finite_imageD: |
1168 fixes L1::"lang" |
100 fixes tag |
1169 assumes str_inj: "\<And> m n. tag m = tag n \<Longrightarrow> m \<approx>L1 n" |
101 assumes rng_fnt: "finite (range tag)" |
1170 and range: "finite (range tag)" |
102 -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *} |
1171 shows "finite (UNIV // \<approx>L1)" |
103 and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>lang n" |
1172 proof (rule_tac f = "(op `) tag" in finite_imageD) |
104 -- {* And strings with same tag are equivalent *} |
1173 show "finite (op ` tag ` UNIV // \<approx>L1)" using range |
105 shows "finite (UNIV // (\<approx>lang))" |
1174 apply (rule_tac B = "Pow (tag ` UNIV)" in finite_subset) |
106 -- {* Then the partition generated by @{text "(\<approx>lang)"} is finite. *} |
1175 by (auto simp add:image_def Pow_def) |
107 proof - |
1176 next |
108 -- {* The particular @{text "f"} and @{text "A"} used in @{thm [source] "finite_imageD"} are:*} |
1177 show "inj_on (op ` tag) (UNIV // \<approx>L1)" |
109 let "?f" = "op ` tag" and ?A = "(UNIV // \<approx>lang)" |
1178 proof- |
110 show ?thesis |
1179 { fix X Y |
111 proof (rule_tac f = "?f" and A = ?A in finite_imageD) |
1180 assume X_in: "X \<in> UNIV // \<approx>L1" |
112 -- {* |
1181 and Y_in: "Y \<in> UNIV // \<approx>L1" |
113 The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}: |
1182 and tag_eq: "tag ` X = tag ` Y" |
114 *} |
1183 then obtain x y where "x \<in> X" and "y \<in> Y" and "tag x = tag y" |
115 show "finite (?f ` ?A)" |
1184 unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def |
116 proof - |
1185 apply simp by blast |
117 have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def) |
1186 with X_in Y_in str_inj[of x y] |
118 moreover from rng_fnt have "finite (Pow (range tag))" by simp |
1187 have "X = Y" by (auto simp:quotient_def str_eq_rel_def str_eq_def) |
119 ultimately have "finite (range ?f)" |
1188 } thus ?thesis unfolding inj_on_def by auto |
120 by (auto simp only:image_def intro:finite_subset) |
|
121 from finite_range_image [OF this] show ?thesis . |
|
122 qed |
|
123 next |
|
124 -- {* |
|
125 The injectivity of @{text "f"} is the consequence of assumption @{text "same_tag_eqvt"}: |
|
126 *} |
|
127 show "inj_on ?f ?A" |
|
128 proof- |
|
129 { fix X Y |
|
130 assume X_in: "X \<in> ?A" |
|
131 and Y_in: "Y \<in> ?A" |
|
132 and tag_eq: "?f X = ?f Y" |
|
133 have "X = Y" |
|
134 proof - |
|
135 from X_in Y_in tag_eq |
|
136 obtain x y where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y" |
|
137 unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def |
|
138 apply simp by blast |
|
139 from same_tag_eqvt [OF eq_tg] have "x \<approx>lang y" . |
|
140 with X_in Y_in x_in y_in |
|
141 show ?thesis by (auto simp:quotient_def str_eq_rel_def str_eq_def) |
|
142 qed |
|
143 } thus ?thesis unfolding inj_on_def by auto |
|
144 qed |
1189 qed |
145 qed |
1190 qed |
146 qed |
1191 |
147 |
1192 subsection {* Lemmas for basic cases *} |
148 subsection {* Lemmas for basic cases *} |
1193 |
149 |
1194 text {* |
150 text {* |
1195 The the final result of this direction is in @{text "rexp_imp_finite"}, |
151 The the final result of this direction is in @{text "easier_direction"}, which |
1196 which is an induction on the structure of regular expressions. There is one |
152 is an induction on the structure of regular expressions. There is one case |
1197 case for each regular expression operator. For basic operators such as |
153 for each regular expression operator. For basic operators such as @{text "NULL, EMPTY, CHAR c"}, |
1198 @{const NULL}, @{const EMPTY}, @{const CHAR}, the finiteness of their |
154 the finiteness of their language partition can be established directly with no need |
1199 language partition can be established directly with no need of tagging. |
155 of taggiing. This section contains several technical lemma for these base cases. |
1200 This section contains several technical lemma for these base cases. |
156 |
1201 |
157 The inductive cases involve operators @{text "ALT, SEQ"} and @{text "STAR"}. |
1202 The inductive cases involve operators @{const ALT}, @{const SEQ} and @{const |
158 Tagging functions need to be defined individually for each of them. There will be one |
1203 STAR}. Tagging functions need to be defined individually for each of |
159 dedicated section for each of these cases, and each section goes virtually the same way: |
1204 them. There will be one dedicated section for each of these cases, and each |
160 gives definition of the tagging function and prove that strings |
1205 section goes virtually the same way: gives definition of the tagging |
161 with the same tag are equivalent. |
1206 function and prove that strings with the same tag are equivalent. |
162 *} |
1207 *} |
|
1208 |
|
1209 subsection {* The case for @{const "NULL"} *} |
|
1210 |
|
1211 lemma quot_null_eq: |
|
1212 shows "(UNIV // \<approx>{}) = ({UNIV}::lang set)" |
|
1213 unfolding quotient_def Image_def str_eq_rel_def by auto |
|
1214 |
|
1215 lemma quot_null_finiteI [intro]: |
|
1216 shows "finite ((UNIV // \<approx>{})::lang set)" |
|
1217 unfolding quot_null_eq by simp |
|
1218 |
|
1219 |
|
1220 subsection {* The case for @{const "EMPTY"} *} |
|
1221 |
|
1222 |
163 |
1223 lemma quot_empty_subset: |
164 lemma quot_empty_subset: |
1224 "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}" |
165 "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}" |
1225 proof |
166 proof |
1226 fix x |
167 fix x |
1227 assume "x \<in> UNIV // \<approx>{[]}" |
168 assume "x \<in> UNIV // \<approx>{[]}" |
1228 then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" |
169 then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" |
1229 unfolding quotient_def Image_def by blast |
170 unfolding quotient_def Image_def by blast |
1230 show "x \<in> {{[]}, UNIV - {[]}}" |
171 show "x \<in> {{[]}, UNIV - {[]}}" |
1231 proof (cases "y = []") |
172 proof (cases "y = []") |
1232 case True with h |
173 case True with h |
1233 have "x = {[]}" by (auto simp: str_eq_rel_def) |
174 have "x = {[]}" by (auto simp:str_eq_rel_def) |
1234 thus ?thesis by simp |
175 thus ?thesis by simp |
1235 next |
176 next |
1236 case False with h |
177 case False with h |
1237 have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def) |
178 have "x = UNIV - {[]}" by (auto simp:str_eq_rel_def) |
1238 thus ?thesis by simp |
179 thus ?thesis by simp |
1239 qed |
180 qed |
1240 qed |
181 qed |
1241 |
|
1242 lemma quot_empty_finiteI [intro]: |
|
1243 shows "finite (UNIV // (\<approx>{[]}))" |
|
1244 by (rule finite_subset[OF quot_empty_subset]) (simp) |
|
1245 |
|
1246 |
|
1247 subsection {* The case for @{const "CHAR"} *} |
|
1248 |
182 |
1249 lemma quot_char_subset: |
183 lemma quot_char_subset: |
1250 "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" |
184 "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" |
1251 proof |
185 proof |
1252 fix x |
186 fix x |