Paper/document/root.tex
changeset 24 f72c82bf59e5
child 52 4a517c6ac07d
equal deleted inserted replaced
23:e31b733ace44 24:f72c82bf59e5
       
     1 \documentclass{llncs}
       
     2 \usepackage{isabelle}
       
     3 \usepackage{isabellesym}
       
     4 \usepackage{amsmath}
       
     5 \usepackage{amssymb}
       
     6 \usepackage{tikz}
       
     7 \usepackage{pgf}
       
     8 \usepackage{pdfsetup}
       
     9 \usepackage{ot1patch}
       
    10 \usepackage{times}
       
    11 \usepackage{proof}
       
    12 
       
    13 
       
    14 \urlstyle{rm}
       
    15 \isabellestyle{it}
       
    16 \renewcommand{\isastyleminor}{\it}%
       
    17 \renewcommand{\isastyle}{\normalsize\it}%
       
    18 
       
    19 
       
    20 \def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
       
    21 \renewcommand{\isasymequiv}{$\dn$}
       
    22 \renewcommand{\isasymemptyset}{$\varnothing$}
       
    23 \renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
       
    24 
       
    25 \begin{document}
       
    26 
       
    27 \title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular Expressions}
       
    28 \author{Chunhan Wu\inst{1} \and Xingjuan Zhang\inst{1} \and Christian Urban\inst{2}}
       
    29 \institute{PLA University, China \and TU Munich, Germany}
       
    30 \maketitle
       
    31 
       
    32 \begin{abstract} 
       
    33 There are numerous textbooks on regular languages. Nearly all of them 
       
    34 introduce the subject by describing finite automata and 
       
    35 only mentioning on the side a connection with regular expressions. 
       
    36 Unfortunately, automata are a hassle for formalisations in HOL-based
       
    37 theorem provers. The reason is they need to be represented as graphs 
       
    38 or matrices, neither of which can be easily defined as datatype. Also 
       
    39 operations, such as disjoint union of graphs, are not easily formalisiable 
       
    40 in HOL. In contrast, regular expressions can be defined easily 
       
    41 as datatype and a corresponding reasoning infrastructure comes for 
       
    42 free. We show in this paper that a central result from formal 
       
    43 language theory---the Myhill-Nerode theorem---can be recreated 
       
    44 using only regular expressions. 
       
    45 \end{abstract}
       
    46 
       
    47 \input{session}
       
    48 
       
    49 \bibliographystyle{plain}
       
    50 \bibliography{root}
       
    51 
       
    52 \end{document}
       
    53 
       
    54 %%% Local Variables:
       
    55 %%% mode: latex
       
    56 %%% TeX-master: t
       
    57 %%% End: