|
1 theory Myhill_1 |
|
2 imports Main |
|
3 begin |
|
4 |
|
5 (* |
|
6 text {* |
|
7 \begin{figure} |
|
8 \centering |
|
9 \scalebox{0.95}{ |
|
10 \begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=1.2cm, semithick] |
|
11 \node[state,initial] (n1) {$1$}; |
|
12 \node[state,accepting] (n2) [right = 10em of n1] {$2$}; |
|
13 |
|
14 \path (n1) edge [bend left] node {$0$} (n2) |
|
15 (n1) edge [loop above] node{$1$} (n1) |
|
16 (n2) edge [loop above] node{$0$} (n2) |
|
17 (n2) edge [bend left] node {$1$} (n1) |
|
18 ; |
|
19 \end{tikzpicture}} |
|
20 \caption{An example automaton (or partition)}\label{fig:example_automata} |
|
21 \end{figure} |
|
22 *} |
|
23 |
|
24 *) |
|
25 |
|
26 |
|
27 section {* Preliminary definitions *} |
|
28 |
|
29 types lang = "string set" |
|
30 |
|
31 text {* Sequential composition of two languages *} |
|
32 |
|
33 definition |
|
34 Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" (infixr ";;" 100) |
|
35 where |
|
36 "A ;; B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}" |
|
37 |
|
38 |
|
39 text {* Some properties of operator @{text ";;"}. *} |
|
40 |
|
41 lemma seq_add_left: |
|
42 assumes a: "A = B" |
|
43 shows "C ;; A = C ;; B" |
|
44 using a by simp |
|
45 |
|
46 lemma seq_union_distrib_right: |
|
47 shows "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)" |
|
48 unfolding Seq_def by auto |
|
49 |
|
50 lemma seq_union_distrib_left: |
|
51 shows "C ;; (A \<union> B) = (C ;; A) \<union> (C ;; B)" |
|
52 unfolding Seq_def by auto |
|
53 |
|
54 lemma seq_intro: |
|
55 assumes a: "x \<in> A" "y \<in> B" |
|
56 shows "x @ y \<in> A ;; B " |
|
57 using a by (auto simp: Seq_def) |
|
58 |
|
59 lemma seq_assoc: |
|
60 shows "(A ;; B) ;; C = A ;; (B ;; C)" |
|
61 unfolding Seq_def |
|
62 apply(auto) |
|
63 apply(blast) |
|
64 by (metis append_assoc) |
|
65 |
|
66 lemma seq_empty [simp]: |
|
67 shows "A ;; {[]} = A" |
|
68 and "{[]} ;; A = A" |
|
69 by (simp_all add: Seq_def) |
|
70 |
|
71 |
|
72 text {* Power and Star of a language *} |
|
73 |
|
74 fun |
|
75 pow :: "lang \<Rightarrow> nat \<Rightarrow> lang" (infixl "\<up>" 100) |
|
76 where |
|
77 "A \<up> 0 = {[]}" |
|
78 | "A \<up> (Suc n) = A ;; (A \<up> n)" |
|
79 |
|
80 definition |
|
81 Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102) |
|
82 where |
|
83 "A\<star> \<equiv> (\<Union>n. A \<up> n)" |
|
84 |
|
85 |
|
86 lemma star_start[intro]: |
|
87 shows "[] \<in> A\<star>" |
|
88 proof - |
|
89 have "[] \<in> A \<up> 0" by auto |
|
90 then show "[] \<in> A\<star>" unfolding Star_def by blast |
|
91 qed |
|
92 |
|
93 lemma star_step [intro]: |
|
94 assumes a: "s1 \<in> A" |
|
95 and b: "s2 \<in> A\<star>" |
|
96 shows "s1 @ s2 \<in> A\<star>" |
|
97 proof - |
|
98 from b obtain n where "s2 \<in> A \<up> n" unfolding Star_def by auto |
|
99 then have "s1 @ s2 \<in> A \<up> (Suc n)" using a by (auto simp add: Seq_def) |
|
100 then show "s1 @ s2 \<in> A\<star>" unfolding Star_def by blast |
|
101 qed |
|
102 |
|
103 lemma star_induct[consumes 1, case_names start step]: |
|
104 assumes a: "x \<in> A\<star>" |
|
105 and b: "P []" |
|
106 and c: "\<And>s1 s2. \<lbrakk>s1 \<in> A; s2 \<in> A\<star>; P s2\<rbrakk> \<Longrightarrow> P (s1 @ s2)" |
|
107 shows "P x" |
|
108 proof - |
|
109 from a obtain n where "x \<in> A \<up> n" unfolding Star_def by auto |
|
110 then show "P x" |
|
111 by (induct n arbitrary: x) |
|
112 (auto intro!: b c simp add: Seq_def Star_def) |
|
113 qed |
|
114 |
|
115 lemma star_intro1: |
|
116 assumes a: "x \<in> A\<star>" |
|
117 and b: "y \<in> A\<star>" |
|
118 shows "x @ y \<in> A\<star>" |
|
119 using a b |
|
120 by (induct rule: star_induct) (auto) |
|
121 |
|
122 lemma star_intro2: |
|
123 assumes a: "y \<in> A" |
|
124 shows "y \<in> A\<star>" |
|
125 proof - |
|
126 from a have "y @ [] \<in> A\<star>" by blast |
|
127 then show "y \<in> A\<star>" by simp |
|
128 qed |
|
129 |
|
130 lemma star_intro3: |
|
131 assumes a: "x \<in> A\<star>" |
|
132 and b: "y \<in> A" |
|
133 shows "x @ y \<in> A\<star>" |
|
134 using a b by (blast intro: star_intro1 star_intro2) |
|
135 |
|
136 lemma star_cases: |
|
137 shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
138 proof |
|
139 { fix x |
|
140 have "x \<in> A\<star> \<Longrightarrow> x \<in> {[]} \<union> A ;; A\<star>" |
|
141 unfolding Seq_def |
|
142 by (induct rule: star_induct) (auto) |
|
143 } |
|
144 then show "A\<star> \<subseteq> {[]} \<union> A ;; A\<star>" by auto |
|
145 next |
|
146 show "{[]} \<union> A ;; A\<star> \<subseteq> A\<star>" |
|
147 unfolding Seq_def by auto |
|
148 qed |
|
149 |
|
150 lemma star_decom: |
|
151 assumes a: "x \<in> A\<star>" "x \<noteq> []" |
|
152 shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>" |
|
153 using a |
|
154 apply(induct rule: star_induct) |
|
155 apply(simp) |
|
156 apply(blast) |
|
157 done |
|
158 |
|
159 lemma |
|
160 shows seq_Union_left: "B ;; (\<Union>n. A \<up> n) = (\<Union>n. B ;; (A \<up> n))" |
|
161 and seq_Union_right: "(\<Union>n. A \<up> n) ;; B = (\<Union>n. (A \<up> n) ;; B)" |
|
162 unfolding Seq_def by auto |
|
163 |
|
164 lemma seq_pow_comm: |
|
165 shows "A ;; (A \<up> n) = (A \<up> n) ;; A" |
|
166 by (induct n) (simp_all add: seq_assoc[symmetric]) |
|
167 |
|
168 lemma seq_star_comm: |
|
169 shows "A ;; A\<star> = A\<star> ;; A" |
|
170 unfolding Star_def |
|
171 unfolding seq_Union_left |
|
172 unfolding seq_pow_comm |
|
173 unfolding seq_Union_right |
|
174 by simp |
|
175 |
|
176 text {* Two lemmas about the length of strings in @{text "A \<up> n"} *} |
|
177 |
|
178 lemma pow_length: |
|
179 assumes a: "[] \<notin> A" |
|
180 and b: "s \<in> A \<up> Suc n" |
|
181 shows "n < length s" |
|
182 using b |
|
183 proof (induct n arbitrary: s) |
|
184 case 0 |
|
185 have "s \<in> A \<up> Suc 0" by fact |
|
186 with a have "s \<noteq> []" by auto |
|
187 then show "0 < length s" by auto |
|
188 next |
|
189 case (Suc n) |
|
190 have ih: "\<And>s. s \<in> A \<up> Suc n \<Longrightarrow> n < length s" by fact |
|
191 have "s \<in> A \<up> Suc (Suc n)" by fact |
|
192 then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A \<up> Suc n" |
|
193 by (auto simp add: Seq_def) |
|
194 from ih ** have "n < length s2" by simp |
|
195 moreover have "0 < length s1" using * a by auto |
|
196 ultimately show "Suc n < length s" unfolding eq |
|
197 by (simp only: length_append) |
|
198 qed |
|
199 |
|
200 lemma seq_pow_length: |
|
201 assumes a: "[] \<notin> A" |
|
202 and b: "s \<in> B ;; (A \<up> Suc n)" |
|
203 shows "n < length s" |
|
204 proof - |
|
205 from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A \<up> Suc n" |
|
206 unfolding Seq_def by auto |
|
207 from * have " n < length s2" by (rule pow_length[OF a]) |
|
208 then show "n < length s" using eq by simp |
|
209 qed |
|
210 |
|
211 |
|
212 section {* A slightly modified version of Arden's lemma *} |
|
213 |
|
214 |
|
215 text {* A helper lemma for Arden *} |
|
216 |
|
217 lemma ardens_helper: |
|
218 assumes eq: "X = X ;; A \<union> B" |
|
219 shows "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" |
|
220 proof (induct n) |
|
221 case 0 |
|
222 show "X = X ;; (A \<up> Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B ;; (A \<up> m))" |
|
223 using eq by simp |
|
224 next |
|
225 case (Suc n) |
|
226 have ih: "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" by fact |
|
227 also have "\<dots> = (X ;; A \<union> B) ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" using eq by simp |
|
228 also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (B ;; (A \<up> Suc n)) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" |
|
229 by (simp add: seq_union_distrib_right seq_assoc) |
|
230 also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" |
|
231 by (auto simp add: le_Suc_eq) |
|
232 finally show "X = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" . |
|
233 qed |
|
234 |
|
235 theorem ardens_revised: |
|
236 assumes nemp: "[] \<notin> A" |
|
237 shows "X = X ;; A \<union> B \<longleftrightarrow> X = B ;; A\<star>" |
|
238 proof |
|
239 assume eq: "X = B ;; A\<star>" |
|
240 have "A\<star> = {[]} \<union> A\<star> ;; A" |
|
241 unfolding seq_star_comm[symmetric] |
|
242 by (rule star_cases) |
|
243 then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" |
|
244 by (rule seq_add_left) |
|
245 also have "\<dots> = B \<union> B ;; (A\<star> ;; A)" |
|
246 unfolding seq_union_distrib_left by simp |
|
247 also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" |
|
248 by (simp only: seq_assoc) |
|
249 finally show "X = X ;; A \<union> B" |
|
250 using eq by blast |
|
251 next |
|
252 assume eq: "X = X ;; A \<union> B" |
|
253 { fix n::nat |
|
254 have "B ;; (A \<up> n) \<subseteq> X" using ardens_helper[OF eq, of "n"] by auto } |
|
255 then have "B ;; A\<star> \<subseteq> X" |
|
256 unfolding Seq_def Star_def UNION_def |
|
257 by auto |
|
258 moreover |
|
259 { fix s::string |
|
260 obtain k where "k = length s" by auto |
|
261 then have not_in: "s \<notin> X ;; (A \<up> Suc k)" |
|
262 using seq_pow_length[OF nemp] by blast |
|
263 assume "s \<in> X" |
|
264 then have "s \<in> X ;; (A \<up> Suc k) \<union> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" |
|
265 using ardens_helper[OF eq, of "k"] by auto |
|
266 then have "s \<in> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" using not_in by auto |
|
267 moreover |
|
268 have "(\<Union>m\<in>{0..k}. B ;; (A \<up> m)) \<subseteq> (\<Union>n. B ;; (A \<up> n))" by auto |
|
269 ultimately |
|
270 have "s \<in> B ;; A\<star>" |
|
271 unfolding seq_Union_left Star_def |
|
272 by auto } |
|
273 then have "X \<subseteq> B ;; A\<star>" by auto |
|
274 ultimately |
|
275 show "X = B ;; A\<star>" by simp |
|
276 qed |
|
277 |
|
278 |
|
279 section {* Regular Expressions *} |
|
280 |
|
281 datatype rexp = |
|
282 NULL |
|
283 | EMPTY |
|
284 | CHAR char |
|
285 | SEQ rexp rexp |
|
286 | ALT rexp rexp |
|
287 | STAR rexp |
|
288 |
|
289 |
|
290 text {* |
|
291 The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to |
|
292 the language represented by the syntactic object @{text "x"}. |
|
293 *} |
|
294 |
|
295 consts L:: "'a \<Rightarrow> lang" |
|
296 |
|
297 text {* The @{text "L (rexp)"} for regular expressions. *} |
|
298 |
|
299 overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> lang" |
|
300 begin |
|
301 fun |
|
302 L_rexp :: "rexp \<Rightarrow> string set" |
|
303 where |
|
304 "L_rexp (NULL) = {}" |
|
305 | "L_rexp (EMPTY) = {[]}" |
|
306 | "L_rexp (CHAR c) = {[c]}" |
|
307 | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)" |
|
308 | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)" |
|
309 | "L_rexp (STAR r) = (L_rexp r)\<star>" |
|
310 end |
|
311 |
|
312 |
|
313 section {* Folds for Sets *} |
|
314 |
|
315 text {* |
|
316 To obtain equational system out of finite set of equivalence classes, a fold operation |
|
317 on finite sets @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "folds"} |
|
318 more robust than the @{text "fold"} in the Isabelle library. The expression @{text "folds f"} |
|
319 makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"}, |
|
320 while @{text "fold f"} does not. |
|
321 *} |
|
322 |
|
323 |
|
324 definition |
|
325 folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" |
|
326 where |
|
327 "folds f z S \<equiv> SOME x. fold_graph f z S x" |
|
328 |
|
329 abbreviation |
|
330 Setalt ("\<Uplus>_" [1000] 999) |
|
331 where |
|
332 "\<Uplus>A == folds ALT NULL A" |
|
333 |
|
334 text {* |
|
335 The following lemma ensures that the arbitrary choice made by the |
|
336 @{text "SOME"} in @{text "folds"} does not affect the @{text "L"}-value |
|
337 of the resultant regular expression. |
|
338 *} |
|
339 |
|
340 lemma folds_alt_simp [simp]: |
|
341 assumes a: "finite rs" |
|
342 shows "L (\<Uplus>rs) = \<Union> (L ` rs)" |
|
343 apply(rule set_eqI) |
|
344 apply(simp add: folds_def) |
|
345 apply(rule someI2_ex) |
|
346 apply(rule_tac finite_imp_fold_graph[OF a]) |
|
347 apply(erule fold_graph.induct) |
|
348 apply(auto) |
|
349 done |
|
350 |
|
351 |
|
352 text {* Just a technical lemma for collections and pairs *} |
|
353 |
|
354 lemma Pair_Collect[simp]: |
|
355 shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
|
356 by simp |
|
357 |
|
358 text {* |
|
359 @{text "\<approx>A"} is an equivalence class defined by language @{text "A"}. |
|
360 *} |
|
361 definition |
|
362 str_eq_rel :: "lang \<Rightarrow> (string \<times> string) set" ("\<approx>_" [100] 100) |
|
363 where |
|
364 "\<approx>A \<equiv> {(x, y). (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)}" |
|
365 |
|
366 text {* |
|
367 Among the equivalence clases of @{text "\<approx>A"}, the set @{text "finals A"} singles out |
|
368 those which contains the strings from @{text "A"}. |
|
369 *} |
|
370 |
|
371 definition |
|
372 finals :: "lang \<Rightarrow> lang set" |
|
373 where |
|
374 "finals A \<equiv> {\<approx>A `` {x} | x . x \<in> A}" |
|
375 |
|
376 text {* |
|
377 The following lemma establishes the relationshipt between |
|
378 @{text "finals A"} and @{text "A"}. |
|
379 *} |
|
380 |
|
381 lemma lang_is_union_of_finals: |
|
382 shows "A = \<Union> finals A" |
|
383 unfolding finals_def |
|
384 unfolding Image_def |
|
385 unfolding str_eq_rel_def |
|
386 apply(auto) |
|
387 apply(drule_tac x = "[]" in spec) |
|
388 apply(auto) |
|
389 done |
|
390 |
|
391 lemma finals_in_partitions: |
|
392 shows "finals A \<subseteq> (UNIV // \<approx>A)" |
|
393 unfolding finals_def |
|
394 unfolding quotient_def |
|
395 by auto |
|
396 |
|
397 section {* Direction @{text "finite partition \<Rightarrow> regular language"}*} |
|
398 |
|
399 text {* |
|
400 The relationship between equivalent classes can be described by an |
|
401 equational system. For example, in equational system \eqref{example_eqns}, |
|
402 $X_0, X_1$ are equivalent classes. The first equation says every string in |
|
403 $X_0$ is obtained either by appending one $b$ to a string in $X_0$ or by |
|
404 appending one $a$ to a string in $X_1$ or just be an empty string |
|
405 (represented by the regular expression $\lambda$). Similary, the second |
|
406 equation tells how the strings inside $X_1$ are composed. |
|
407 |
|
408 \begin{equation}\label{example_eqns} |
|
409 \begin{aligned} |
|
410 X_0 & = X_0 b + X_1 a + \lambda \\ |
|
411 X_1 & = X_0 a + X_1 b |
|
412 \end{aligned} |
|
413 \end{equation} |
|
414 |
|
415 \noindent |
|
416 The summands on the right hand side is represented by the following data |
|
417 type @{text "rhs_item"}, mnemonic for 'right hand side item'. Generally, |
|
418 there are two kinds of right hand side items, one kind corresponds to pure |
|
419 regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other |
|
420 kind corresponds to transitions from one one equivalent class to another, |
|
421 like the $X_0 b, X_1 a$ etc. |
|
422 |
|
423 *} |
|
424 |
|
425 datatype rhs_item = |
|
426 Lam "rexp" (* Lambda *) |
|
427 | Trn "lang" "rexp" (* Transition *) |
|
428 |
|
429 |
|
430 text {* |
|
431 In this formalization, pure regular expressions like $\lambda$ is |
|
432 repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is |
|
433 represented by @{term "Trn X\<^isub>0 (CHAR a)"}. |
|
434 *} |
|
435 |
|
436 text {* |
|
437 Every right-hand side item @{text "itm"} defines a language given |
|
438 by @{text "L(itm)"}, defined as: |
|
439 *} |
|
440 |
|
441 overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> lang" |
|
442 begin |
|
443 fun L_rhs_e:: "rhs_item \<Rightarrow> lang" |
|
444 where |
|
445 "L_rhs_e (Lam r) = L r" |
|
446 | "L_rhs_e (Trn X r) = X ;; L r" |
|
447 end |
|
448 |
|
449 text {* |
|
450 The right hand side of every equation is represented by a set of |
|
451 items. The string set defined by such a set @{text "itms"} is given |
|
452 by @{text "L(itms)"}, defined as: |
|
453 *} |
|
454 |
|
455 overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> lang" |
|
456 begin |
|
457 fun L_rhs:: "rhs_item set \<Rightarrow> lang" |
|
458 where |
|
459 "L_rhs rhs = \<Union> (L ` rhs)" |
|
460 end |
|
461 |
|
462 text {* |
|
463 Given a set of equivalence classes @{text "CS"} and one equivalence class @{text "X"} among |
|
464 @{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of |
|
465 the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"} |
|
466 is: |
|
467 *} |
|
468 |
|
469 definition |
|
470 transition :: "lang \<Rightarrow> rexp \<Rightarrow> lang \<Rightarrow> bool" ("_ \<Turnstile>_\<Rightarrow>_" [100,100,100] 100) |
|
471 where |
|
472 "Y \<Turnstile>r\<Rightarrow> X \<equiv> Y ;; (L r) \<subseteq> X" |
|
473 |
|
474 definition |
|
475 "init_rhs CS X \<equiv> |
|
476 if ([] \<in> X) then |
|
477 {Lam EMPTY} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X} |
|
478 else |
|
479 {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X}" |
|
480 |
|
481 text {* |
|
482 In the definition of @{text "init_rhs"}, the term |
|
483 @{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches |
|
484 describes the formation of strings in @{text "X"} out of transitions, while |
|
485 the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in |
|
486 @{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to |
|
487 the $\lambda$ in \eqref{example_eqns}. |
|
488 |
|
489 With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every |
|
490 equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}. |
|
491 *} |
|
492 |
|
493 |
|
494 definition "eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}" |
|
495 |
|
496 |
|
497 |
|
498 (************ arden's lemma variation ********************) |
|
499 |
|
500 text {* |
|
501 The following @{text "trns_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}. |
|
502 *} |
|
503 |
|
504 definition |
|
505 "trns_of rhs X \<equiv> {Trn X r | r. Trn X r \<in> rhs}" |
|
506 |
|
507 text {* |
|
508 The following @{text "attach_rexp rexp' itm"} attach |
|
509 the regular expression @{text "rexp'"} to |
|
510 the right of right hand side item @{text "itm"}. |
|
511 *} |
|
512 |
|
513 fun |
|
514 attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item" |
|
515 where |
|
516 "attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')" |
|
517 | "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')" |
|
518 |
|
519 text {* |
|
520 The following @{text "append_rhs_rexp rhs rexp"} attaches |
|
521 @{text "rexp"} to every item in @{text "rhs"}. |
|
522 *} |
|
523 |
|
524 definition |
|
525 "append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs" |
|
526 |
|
527 text {* |
|
528 With the help of the two functions immediately above, Ardens' |
|
529 transformation on right hand side @{text "rhs"} is implemented |
|
530 by the following function @{text "arden_variate X rhs"}. |
|
531 After this transformation, the recursive occurence of @{text "X"} |
|
532 in @{text "rhs"} will be eliminated, while the string set defined |
|
533 by @{text "rhs"} is kept unchanged. |
|
534 *} |
|
535 |
|
536 definition |
|
537 "arden_variate X rhs \<equiv> |
|
538 append_rhs_rexp (rhs - trns_of rhs X) (STAR (\<Uplus> {r. Trn X r \<in> rhs}))" |
|
539 |
|
540 |
|
541 (*********** substitution of ES *************) |
|
542 |
|
543 text {* |
|
544 Suppose the equation defining @{text "X"} is $X = xrhs$, |
|
545 the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in |
|
546 @{text "rhs"} by @{text "xrhs"}. |
|
547 A litte thought may reveal that the final result |
|
548 should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then |
|
549 union the result with all non-@{text "X"}-items of @{text "rhs"}. |
|
550 *} |
|
551 |
|
552 definition |
|
553 "rhs_subst rhs X xrhs \<equiv> |
|
554 (rhs - (trns_of rhs X)) \<union> (append_rhs_rexp xrhs (\<Uplus> {r. Trn X r \<in> rhs}))" |
|
555 |
|
556 text {* |
|
557 Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing |
|
558 @{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation |
|
559 of the equational system @{text "ES"}. |
|
560 *} |
|
561 |
|
562 definition |
|
563 "eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
|
564 |
|
565 text {* |
|
566 The computation of regular expressions for equivalence classes is accomplished |
|
567 using a iteration principle given by the following lemma. |
|
568 *} |
|
569 |
|
570 lemma wf_iter [rule_format]: |
|
571 fixes f |
|
572 assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)" |
|
573 shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')" |
|
574 proof(induct e rule: wf_induct |
|
575 [OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify) |
|
576 fix x |
|
577 assume h [rule_format]: |
|
578 "\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')" |
|
579 and px: "P x" |
|
580 show "\<exists>e'. P e' \<and> Q e'" |
|
581 proof(cases "Q x") |
|
582 assume "Q x" with px show ?thesis by blast |
|
583 next |
|
584 assume nq: "\<not> Q x" |
|
585 from step [OF px nq] |
|
586 obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto |
|
587 show ?thesis |
|
588 proof(rule h) |
|
589 from ltf show "(e', x) \<in> inv_image less_than f" |
|
590 by (simp add:inv_image_def) |
|
591 next |
|
592 from pe' show "P e'" . |
|
593 qed |
|
594 qed |
|
595 qed |
|
596 |
|
597 text {* |
|
598 The @{text "P"} in lemma @{text "wf_iter"} is an invariant kept throughout the iteration procedure. |
|
599 The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"}, |
|
600 an invariant over equal system @{text "ES"}. |
|
601 Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}. |
|
602 *} |
|
603 |
|
604 text {* |
|
605 Every variable is defined at most onece in @{text "ES"}. |
|
606 *} |
|
607 |
|
608 definition |
|
609 "distinct_equas ES \<equiv> |
|
610 \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
|
611 |
|
612 text {* |
|
613 Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}. |
|
614 *} |
|
615 definition |
|
616 "valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)" |
|
617 |
|
618 text {* |
|
619 The following @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional |
|
620 items of @{text "rhs"} does not contain empty string. This is necessary for |
|
621 the application of Arden's transformation to @{text "rhs"}. |
|
622 *} |
|
623 |
|
624 definition |
|
625 "rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)" |
|
626 |
|
627 text {* |
|
628 The following @{text "ardenable ES"} requires that Arden's transformation is applicable |
|
629 to every equation of equational system @{text "ES"}. |
|
630 *} |
|
631 |
|
632 definition |
|
633 "ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs" |
|
634 |
|
635 (* The following non_empty seems useless. *) |
|
636 definition |
|
637 "non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}" |
|
638 |
|
639 text {* |
|
640 The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite. |
|
641 *} |
|
642 definition |
|
643 "finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs" |
|
644 |
|
645 text {* |
|
646 The following @{text "classes_of rhs"} returns all variables (or equivalent classes) |
|
647 occuring in @{text "rhs"}. |
|
648 *} |
|
649 definition |
|
650 "classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}" |
|
651 |
|
652 text {* |
|
653 The following @{text "lefts_of ES"} returns all variables |
|
654 defined by equational system @{text "ES"}. |
|
655 *} |
|
656 definition |
|
657 "lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}" |
|
658 |
|
659 text {* |
|
660 The following @{text "self_contained ES"} requires that every |
|
661 variable occuring on the right hand side of equations is already defined by some |
|
662 equation in @{text "ES"}. |
|
663 *} |
|
664 definition |
|
665 "self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES" |
|
666 |
|
667 |
|
668 text {* |
|
669 The invariant @{text "Inv(ES)"} is a conjunction of all the previously defined constaints. |
|
670 *} |
|
671 definition |
|
672 "Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> |
|
673 non_empty ES \<and> finite_rhs ES \<and> self_contained ES" |
|
674 |
|
675 subsection {* The proof of this direction *} |
|
676 |
|
677 subsubsection {* Basic properties *} |
|
678 |
|
679 text {* |
|
680 The following are some basic properties of the above definitions. |
|
681 *} |
|
682 |
|
683 lemma L_rhs_union_distrib: |
|
684 fixes A B::"rhs_item set" |
|
685 shows "L A \<union> L B = L (A \<union> B)" |
|
686 by simp |
|
687 |
|
688 lemma finite_Trn: |
|
689 assumes fin: "finite rhs" |
|
690 shows "finite {r. Trn Y r \<in> rhs}" |
|
691 proof - |
|
692 have "finite {Trn Y r | Y r. Trn Y r \<in> rhs}" |
|
693 by (rule rev_finite_subset[OF fin]) (auto) |
|
694 then have "finite ((\<lambda>(Y, r). Trn Y r) ` {(Y, r) | Y r. Trn Y r \<in> rhs})" |
|
695 by (simp add: image_Collect) |
|
696 then have "finite {(Y, r) | Y r. Trn Y r \<in> rhs}" |
|
697 by (erule_tac finite_imageD) (simp add: inj_on_def) |
|
698 then show "finite {r. Trn Y r \<in> rhs}" |
|
699 by (erule_tac f="snd" in finite_surj) (auto simp add: image_def) |
|
700 qed |
|
701 |
|
702 lemma finite_Lam: |
|
703 assumes fin:"finite rhs" |
|
704 shows "finite {r. Lam r \<in> rhs}" |
|
705 proof - |
|
706 have "finite {Lam r | r. Lam r \<in> rhs}" |
|
707 by (rule rev_finite_subset[OF fin]) (auto) |
|
708 then show "finite {r. Lam r \<in> rhs}" |
|
709 apply(simp add: image_Collect[symmetric]) |
|
710 apply(erule finite_imageD) |
|
711 apply(auto simp add: inj_on_def) |
|
712 done |
|
713 qed |
|
714 |
|
715 lemma rexp_of_empty: |
|
716 assumes finite:"finite rhs" |
|
717 and nonempty:"rhs_nonempty rhs" |
|
718 shows "[] \<notin> L (\<Uplus> {r. Trn X r \<in> rhs})" |
|
719 using finite nonempty rhs_nonempty_def |
|
720 using finite_Trn[OF finite] |
|
721 by (auto) |
|
722 |
|
723 lemma [intro!]: |
|
724 "P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto |
|
725 |
|
726 lemma lang_of_rexp_of: |
|
727 assumes finite:"finite rhs" |
|
728 shows "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))" |
|
729 proof - |
|
730 have "finite {r. Trn X r \<in> rhs}" |
|
731 by (rule finite_Trn[OF finite]) |
|
732 then show ?thesis |
|
733 apply(auto simp add: Seq_def) |
|
734 apply(rule_tac x = "s\<^isub>1" in exI, rule_tac x = "s\<^isub>2" in exI, auto) |
|
735 apply(rule_tac x= "Trn X xa" in exI) |
|
736 apply(auto simp: Seq_def) |
|
737 done |
|
738 qed |
|
739 |
|
740 lemma rexp_of_lam_eq_lam_set: |
|
741 assumes fin: "finite rhs" |
|
742 shows "L (\<Uplus>{r. Lam r \<in> rhs}) = L ({Lam r | r. Lam r \<in> rhs})" |
|
743 proof - |
|
744 have "finite ({r. Lam r \<in> rhs})" using fin by (rule finite_Lam) |
|
745 then show ?thesis by auto |
|
746 qed |
|
747 |
|
748 lemma [simp]: |
|
749 "L (attach_rexp r xb) = L xb ;; L r" |
|
750 apply (cases xb, auto simp: Seq_def) |
|
751 apply(rule_tac x = "s\<^isub>1 @ s\<^isub>1'" in exI, rule_tac x = "s\<^isub>2'" in exI) |
|
752 apply(auto simp: Seq_def) |
|
753 done |
|
754 |
|
755 lemma lang_of_append_rhs: |
|
756 "L (append_rhs_rexp rhs r) = L rhs ;; L r" |
|
757 apply (auto simp:append_rhs_rexp_def image_def) |
|
758 apply (auto simp:Seq_def) |
|
759 apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def) |
|
760 by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def) |
|
761 |
|
762 lemma classes_of_union_distrib: |
|
763 "classes_of A \<union> classes_of B = classes_of (A \<union> B)" |
|
764 by (auto simp add:classes_of_def) |
|
765 |
|
766 lemma lefts_of_union_distrib: |
|
767 "lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)" |
|
768 by (auto simp:lefts_of_def) |
|
769 |
|
770 |
|
771 subsubsection {* Intialization *} |
|
772 |
|
773 text {* |
|
774 The following several lemmas until @{text "init_ES_satisfy_Inv"} shows that |
|
775 the initial equational system satisfies invariant @{text "Inv"}. |
|
776 *} |
|
777 |
|
778 lemma defined_by_str: |
|
779 "\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}" |
|
780 by (auto simp:quotient_def Image_def str_eq_rel_def) |
|
781 |
|
782 lemma every_eqclass_has_transition: |
|
783 assumes has_str: "s @ [c] \<in> X" |
|
784 and in_CS: "X \<in> UNIV // (\<approx>Lang)" |
|
785 obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y" |
|
786 proof - |
|
787 def Y \<equiv> "(\<approx>Lang) `` {s}" |
|
788 have "Y \<in> UNIV // (\<approx>Lang)" |
|
789 unfolding Y_def quotient_def by auto |
|
790 moreover |
|
791 have "X = (\<approx>Lang) `` {s @ [c]}" |
|
792 using has_str in_CS defined_by_str by blast |
|
793 then have "Y ;; {[c]} \<subseteq> X" |
|
794 unfolding Y_def Image_def Seq_def |
|
795 unfolding str_eq_rel_def |
|
796 by clarsimp |
|
797 moreover |
|
798 have "s \<in> Y" unfolding Y_def |
|
799 unfolding Image_def str_eq_rel_def by simp |
|
800 ultimately show thesis by (blast intro: that) |
|
801 qed |
|
802 |
|
803 lemma l_eq_r_in_eqs: |
|
804 assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))" |
|
805 shows "X = L xrhs" |
|
806 proof |
|
807 show "X \<subseteq> L xrhs" |
|
808 proof |
|
809 fix x |
|
810 assume "(1)": "x \<in> X" |
|
811 show "x \<in> L xrhs" |
|
812 proof (cases "x = []") |
|
813 assume empty: "x = []" |
|
814 thus ?thesis using X_in_eqs "(1)" |
|
815 by (auto simp:eqs_def init_rhs_def) |
|
816 next |
|
817 assume not_empty: "x \<noteq> []" |
|
818 then obtain clist c where decom: "x = clist @ [c]" |
|
819 by (case_tac x rule:rev_cases, auto) |
|
820 have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def) |
|
821 then obtain Y |
|
822 where "Y \<in> UNIV // (\<approx>Lang)" |
|
823 and "Y ;; {[c]} \<subseteq> X" |
|
824 and "clist \<in> Y" |
|
825 using decom "(1)" every_eqclass_has_transition by blast |
|
826 hence |
|
827 "x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X}" |
|
828 unfolding transition_def |
|
829 using "(1)" decom |
|
830 by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def) |
|
831 thus ?thesis using X_in_eqs "(1)" |
|
832 by (simp add: eqs_def init_rhs_def) |
|
833 qed |
|
834 qed |
|
835 next |
|
836 show "L xrhs \<subseteq> X" using X_in_eqs |
|
837 by (auto simp:eqs_def init_rhs_def transition_def) |
|
838 qed |
|
839 |
|
840 lemma finite_init_rhs: |
|
841 assumes finite: "finite CS" |
|
842 shows "finite (init_rhs CS X)" |
|
843 proof- |
|
844 have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A") |
|
845 proof - |
|
846 def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" |
|
847 def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)" |
|
848 have "finite (CS \<times> (UNIV::char set))" using finite by auto |
|
849 hence "finite S" using S_def |
|
850 by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto) |
|
851 moreover have "?A = h ` S" by (auto simp: S_def h_def image_def) |
|
852 ultimately show ?thesis |
|
853 by auto |
|
854 qed |
|
855 thus ?thesis by (simp add:init_rhs_def transition_def) |
|
856 qed |
|
857 |
|
858 lemma init_ES_satisfy_Inv: |
|
859 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
860 shows "Inv (eqs (UNIV // (\<approx>Lang)))" |
|
861 proof - |
|
862 have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS |
|
863 by (simp add:eqs_def) |
|
864 moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))" |
|
865 by (simp add:distinct_equas_def eqs_def) |
|
866 moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))" |
|
867 by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps) |
|
868 moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))" |
|
869 using l_eq_r_in_eqs by (simp add:valid_eqns_def) |
|
870 moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))" |
|
871 by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def) |
|
872 moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))" |
|
873 using finite_init_rhs[OF finite_CS] |
|
874 by (auto simp:finite_rhs_def eqs_def) |
|
875 moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))" |
|
876 by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def) |
|
877 ultimately show ?thesis by (simp add:Inv_def) |
|
878 qed |
|
879 |
|
880 subsubsection {* |
|
881 Interation step |
|
882 *} |
|
883 |
|
884 text {* |
|
885 From this point until @{text "iteration_step"}, it is proved |
|
886 that there exists iteration steps which keep @{text "Inv(ES)"} while |
|
887 decreasing the size of @{text "ES"}. |
|
888 *} |
|
889 |
|
890 lemma arden_variate_keeps_eq: |
|
891 assumes l_eq_r: "X = L rhs" |
|
892 and not_empty: "[] \<notin> L (\<Uplus>{r. Trn X r \<in> rhs})" |
|
893 and finite: "finite rhs" |
|
894 shows "X = L (arden_variate X rhs)" |
|
895 proof - |
|
896 def A \<equiv> "L (\<Uplus>{r. Trn X r \<in> rhs})" |
|
897 def b \<equiv> "rhs - trns_of rhs X" |
|
898 def B \<equiv> "L b" |
|
899 have "X = B ;; A\<star>" |
|
900 proof- |
|
901 have "L rhs = L(trns_of rhs X \<union> b)" by (auto simp: b_def trns_of_def) |
|
902 also have "\<dots> = X ;; A \<union> B" |
|
903 unfolding trns_of_def |
|
904 unfolding L_rhs_union_distrib[symmetric] |
|
905 by (simp only: lang_of_rexp_of finite B_def A_def) |
|
906 finally show ?thesis |
|
907 using l_eq_r not_empty |
|
908 apply(rule_tac ardens_revised[THEN iffD1]) |
|
909 apply(simp add: A_def) |
|
910 apply(simp) |
|
911 done |
|
912 qed |
|
913 moreover have "L (arden_variate X rhs) = (B ;; A\<star>)" |
|
914 by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs |
|
915 B_def A_def b_def L_rexp.simps seq_union_distrib_left) |
|
916 ultimately show ?thesis by simp |
|
917 qed |
|
918 |
|
919 lemma append_keeps_finite: |
|
920 "finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)" |
|
921 by (auto simp:append_rhs_rexp_def) |
|
922 |
|
923 lemma arden_variate_keeps_finite: |
|
924 "finite rhs \<Longrightarrow> finite (arden_variate X rhs)" |
|
925 by (auto simp:arden_variate_def append_keeps_finite) |
|
926 |
|
927 lemma append_keeps_nonempty: |
|
928 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)" |
|
929 apply (auto simp:rhs_nonempty_def append_rhs_rexp_def) |
|
930 by (case_tac x, auto simp:Seq_def) |
|
931 |
|
932 lemma nonempty_set_sub: |
|
933 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)" |
|
934 by (auto simp:rhs_nonempty_def) |
|
935 |
|
936 lemma nonempty_set_union: |
|
937 "\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')" |
|
938 by (auto simp:rhs_nonempty_def) |
|
939 |
|
940 lemma arden_variate_keeps_nonempty: |
|
941 "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)" |
|
942 by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub) |
|
943 |
|
944 |
|
945 lemma rhs_subst_keeps_nonempty: |
|
946 "\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)" |
|
947 by (simp only:rhs_subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub) |
|
948 |
|
949 lemma rhs_subst_keeps_eq: |
|
950 assumes substor: "X = L xrhs" |
|
951 and finite: "finite rhs" |
|
952 shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right") |
|
953 proof- |
|
954 def A \<equiv> "L (rhs - trns_of rhs X)" |
|
955 have "?Left = A \<union> L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs}))" |
|
956 unfolding rhs_subst_def |
|
957 unfolding L_rhs_union_distrib[symmetric] |
|
958 by (simp add: A_def) |
|
959 moreover have "?Right = A \<union> L ({Trn X r | r. Trn X r \<in> rhs})" |
|
960 proof- |
|
961 have "rhs = (rhs - trns_of rhs X) \<union> (trns_of rhs X)" by (auto simp add: trns_of_def) |
|
962 thus ?thesis |
|
963 unfolding A_def |
|
964 unfolding L_rhs_union_distrib |
|
965 unfolding trns_of_def |
|
966 by simp |
|
967 qed |
|
968 moreover have "L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs})) = L ({Trn X r | r. Trn X r \<in> rhs})" |
|
969 using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of) |
|
970 ultimately show ?thesis by simp |
|
971 qed |
|
972 |
|
973 lemma rhs_subst_keeps_finite_rhs: |
|
974 "\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)" |
|
975 by (auto simp:rhs_subst_def append_keeps_finite) |
|
976 |
|
977 lemma eqs_subst_keeps_finite: |
|
978 assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)" |
|
979 shows "finite (eqs_subst ES Y yrhs)" |
|
980 proof - |
|
981 have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}" |
|
982 (is "finite ?A") |
|
983 proof- |
|
984 def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}" |
|
985 def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)" |
|
986 have "finite (h ` eqns')" using finite h_def eqns'_def by auto |
|
987 moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def) |
|
988 ultimately show ?thesis by auto |
|
989 qed |
|
990 thus ?thesis by (simp add:eqs_subst_def) |
|
991 qed |
|
992 |
|
993 lemma eqs_subst_keeps_finite_rhs: |
|
994 "\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)" |
|
995 by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def) |
|
996 |
|
997 lemma append_rhs_keeps_cls: |
|
998 "classes_of (append_rhs_rexp rhs r) = classes_of rhs" |
|
999 apply (auto simp:classes_of_def append_rhs_rexp_def) |
|
1000 apply (case_tac xa, auto simp:image_def) |
|
1001 by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+) |
|
1002 |
|
1003 lemma arden_variate_removes_cl: |
|
1004 "classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}" |
|
1005 apply (simp add:arden_variate_def append_rhs_keeps_cls trns_of_def) |
|
1006 by (auto simp:classes_of_def) |
|
1007 |
|
1008 lemma lefts_of_keeps_cls: |
|
1009 "lefts_of (eqs_subst ES Y yrhs) = lefts_of ES" |
|
1010 by (auto simp:lefts_of_def eqs_subst_def) |
|
1011 |
|
1012 lemma rhs_subst_updates_cls: |
|
1013 "X \<notin> classes_of xrhs \<Longrightarrow> |
|
1014 classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}" |
|
1015 apply (simp only:rhs_subst_def append_rhs_keeps_cls |
|
1016 classes_of_union_distrib[THEN sym]) |
|
1017 by (auto simp:classes_of_def trns_of_def) |
|
1018 |
|
1019 lemma eqs_subst_keeps_self_contained: |
|
1020 fixes Y |
|
1021 assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A") |
|
1022 shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1023 (is "self_contained ?B") |
|
1024 proof- |
|
1025 { fix X xrhs' |
|
1026 assume "(X, xrhs') \<in> ?B" |
|
1027 then obtain xrhs |
|
1028 where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)" |
|
1029 and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast) |
|
1030 have "classes_of xrhs' \<subseteq> lefts_of ?B" |
|
1031 proof- |
|
1032 have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def) |
|
1033 moreover have "classes_of xrhs' \<subseteq> lefts_of ES" |
|
1034 proof- |
|
1035 have "classes_of xrhs' \<subseteq> |
|
1036 classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}" |
|
1037 proof- |
|
1038 have "Y \<notin> classes_of (arden_variate Y yrhs)" |
|
1039 using arden_variate_removes_cl by simp |
|
1040 thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls) |
|
1041 qed |
|
1042 moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc |
|
1043 apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym]) |
|
1044 by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def) |
|
1045 moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}" |
|
1046 using sc |
|
1047 by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def) |
|
1048 ultimately show ?thesis by auto |
|
1049 qed |
|
1050 ultimately show ?thesis by simp |
|
1051 qed |
|
1052 } thus ?thesis by (auto simp only:eqs_subst_def self_contained_def) |
|
1053 qed |
|
1054 |
|
1055 lemma eqs_subst_satisfy_Inv: |
|
1056 assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})" |
|
1057 shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1058 proof - |
|
1059 have finite_yrhs: "finite yrhs" |
|
1060 using Inv_ES by (auto simp:Inv_def finite_rhs_def) |
|
1061 have nonempty_yrhs: "rhs_nonempty yrhs" |
|
1062 using Inv_ES by (auto simp:Inv_def ardenable_def) |
|
1063 have Y_eq_yrhs: "Y = L yrhs" |
|
1064 using Inv_ES by (simp only:Inv_def valid_eqns_def, blast) |
|
1065 have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1066 using Inv_ES |
|
1067 by (auto simp:distinct_equas_def eqs_subst_def Inv_def) |
|
1068 moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1069 using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite) |
|
1070 moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1071 proof- |
|
1072 have "finite_rhs ES" using Inv_ES |
|
1073 by (simp add:Inv_def finite_rhs_def) |
|
1074 moreover have "finite (arden_variate Y yrhs)" |
|
1075 proof - |
|
1076 have "finite yrhs" using Inv_ES |
|
1077 by (auto simp:Inv_def finite_rhs_def) |
|
1078 thus ?thesis using arden_variate_keeps_finite by simp |
|
1079 qed |
|
1080 ultimately show ?thesis |
|
1081 by (simp add:eqs_subst_keeps_finite_rhs) |
|
1082 qed |
|
1083 moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1084 proof - |
|
1085 { fix X rhs |
|
1086 assume "(X, rhs) \<in> ES" |
|
1087 hence "rhs_nonempty rhs" using prems Inv_ES |
|
1088 by (simp add:Inv_def ardenable_def) |
|
1089 with nonempty_yrhs |
|
1090 have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))" |
|
1091 by (simp add:nonempty_yrhs |
|
1092 rhs_subst_keeps_nonempty arden_variate_keeps_nonempty) |
|
1093 } thus ?thesis by (auto simp add:ardenable_def eqs_subst_def) |
|
1094 qed |
|
1095 moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1096 proof- |
|
1097 have "Y = L (arden_variate Y yrhs)" |
|
1098 using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs |
|
1099 by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+) |
|
1100 thus ?thesis using Inv_ES |
|
1101 by (clarsimp simp add:valid_eqns_def |
|
1102 eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def |
|
1103 simp del:L_rhs.simps) |
|
1104 qed |
|
1105 moreover have |
|
1106 non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1107 using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def) |
|
1108 moreover |
|
1109 have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" |
|
1110 using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def) |
|
1111 ultimately show ?thesis using Inv_ES by (simp add:Inv_def) |
|
1112 qed |
|
1113 |
|
1114 lemma eqs_subst_card_le: |
|
1115 assumes finite: "finite (ES::(string set \<times> rhs_item set) set)" |
|
1116 shows "card (eqs_subst ES Y yrhs) <= card ES" |
|
1117 proof- |
|
1118 def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)" |
|
1119 have "eqs_subst ES Y yrhs = f ` ES" |
|
1120 apply (auto simp:eqs_subst_def f_def image_def) |
|
1121 by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+) |
|
1122 thus ?thesis using finite by (auto intro:card_image_le) |
|
1123 qed |
|
1124 |
|
1125 lemma eqs_subst_cls_remains: |
|
1126 "(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)" |
|
1127 by (auto simp:eqs_subst_def) |
|
1128 |
|
1129 lemma card_noteq_1_has_more: |
|
1130 assumes card:"card S \<noteq> 1" |
|
1131 and e_in: "e \<in> S" |
|
1132 and finite: "finite S" |
|
1133 obtains e' where "e' \<in> S \<and> e \<noteq> e'" |
|
1134 proof- |
|
1135 have "card (S - {e}) > 0" |
|
1136 proof - |
|
1137 have "card S > 1" using card e_in finite |
|
1138 by (case_tac "card S", auto) |
|
1139 thus ?thesis using finite e_in by auto |
|
1140 qed |
|
1141 hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp) |
|
1142 thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto |
|
1143 qed |
|
1144 |
|
1145 lemma iteration_step: |
|
1146 assumes Inv_ES: "Inv ES" |
|
1147 and X_in_ES: "(X, xrhs) \<in> ES" |
|
1148 and not_T: "card ES \<noteq> 1" |
|
1149 shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and> |
|
1150 (card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'") |
|
1151 proof - |
|
1152 have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def) |
|
1153 then obtain Y yrhs |
|
1154 where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" |
|
1155 using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto) |
|
1156 def ES' == "ES - {(Y, yrhs)}" |
|
1157 let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)" |
|
1158 have "?P ?ES''" |
|
1159 proof - |
|
1160 have "Inv ?ES''" using Y_in_ES Inv_ES |
|
1161 by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb) |
|
1162 moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''" using not_eq X_in_ES |
|
1163 by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def) |
|
1164 moreover have "(card ?ES'', card ES) \<in> less_than" |
|
1165 proof - |
|
1166 have "finite ES'" using finite_ES ES'_def by auto |
|
1167 moreover have "card ES' < card ES" using finite_ES Y_in_ES |
|
1168 by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less) |
|
1169 ultimately show ?thesis |
|
1170 by (auto dest:eqs_subst_card_le elim:le_less_trans) |
|
1171 qed |
|
1172 ultimately show ?thesis by simp |
|
1173 qed |
|
1174 thus ?thesis by blast |
|
1175 qed |
|
1176 |
|
1177 subsubsection {* |
|
1178 Conclusion of the proof |
|
1179 *} |
|
1180 |
|
1181 text {* |
|
1182 From this point until @{text "hard_direction"}, the hard direction is proved |
|
1183 through a simple application of the iteration principle. |
|
1184 *} |
|
1185 |
|
1186 lemma iteration_conc: |
|
1187 assumes history: "Inv ES" |
|
1188 and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES" |
|
1189 shows |
|
1190 "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1" |
|
1191 (is "\<exists> ES'. ?P ES'") |
|
1192 proof (cases "card ES = 1") |
|
1193 case True |
|
1194 thus ?thesis using history X_in_ES |
|
1195 by blast |
|
1196 next |
|
1197 case False |
|
1198 thus ?thesis using history iteration_step X_in_ES |
|
1199 by (rule_tac f = card in wf_iter, auto) |
|
1200 qed |
|
1201 |
|
1202 lemma last_cl_exists_rexp: |
|
1203 assumes ES_single: "ES = {(X, xrhs)}" |
|
1204 and Inv_ES: "Inv ES" |
|
1205 shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r") |
|
1206 proof- |
|
1207 def A \<equiv> "arden_variate X xrhs" |
|
1208 have "?P (\<Uplus>{r. Lam r \<in> A})" |
|
1209 proof - |
|
1210 have "L (\<Uplus>{r. Lam r \<in> A}) = L ({Lam r | r. Lam r \<in> A})" |
|
1211 proof(rule rexp_of_lam_eq_lam_set) |
|
1212 show "finite A" |
|
1213 unfolding A_def |
|
1214 using Inv_ES ES_single |
|
1215 by (rule_tac arden_variate_keeps_finite) |
|
1216 (auto simp add: Inv_def finite_rhs_def) |
|
1217 qed |
|
1218 also have "\<dots> = L A" |
|
1219 proof- |
|
1220 have "{Lam r | r. Lam r \<in> A} = A" |
|
1221 proof- |
|
1222 have "classes_of A = {}" using Inv_ES ES_single |
|
1223 unfolding A_def |
|
1224 by (simp add:arden_variate_removes_cl |
|
1225 self_contained_def Inv_def lefts_of_def) |
|
1226 thus ?thesis |
|
1227 unfolding A_def |
|
1228 by (auto simp only: classes_of_def, case_tac x, auto) |
|
1229 qed |
|
1230 thus ?thesis by simp |
|
1231 qed |
|
1232 also have "\<dots> = X" |
|
1233 unfolding A_def |
|
1234 proof(rule arden_variate_keeps_eq [THEN sym]) |
|
1235 show "X = L xrhs" using Inv_ES ES_single |
|
1236 by (auto simp only:Inv_def valid_eqns_def) |
|
1237 next |
|
1238 from Inv_ES ES_single show "[] \<notin> L (\<Uplus>{r. Trn X r \<in> xrhs})" |
|
1239 by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def) |
|
1240 next |
|
1241 from Inv_ES ES_single show "finite xrhs" |
|
1242 by (simp add:Inv_def finite_rhs_def) |
|
1243 qed |
|
1244 finally show ?thesis by simp |
|
1245 qed |
|
1246 thus ?thesis by auto |
|
1247 qed |
|
1248 |
|
1249 lemma every_eqcl_has_reg: |
|
1250 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
1251 and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))" |
|
1252 shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r") |
|
1253 proof - |
|
1254 from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))" |
|
1255 by (auto simp:eqs_def init_rhs_def) |
|
1256 then obtain ES xrhs where Inv_ES: "Inv ES" |
|
1257 and X_in_ES: "(X, xrhs) \<in> ES" |
|
1258 and card_ES: "card ES = 1" |
|
1259 using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc |
|
1260 by blast |
|
1261 hence ES_single_equa: "ES = {(X, xrhs)}" |
|
1262 by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff) |
|
1263 thus ?thesis using Inv_ES |
|
1264 by (rule last_cl_exists_rexp) |
|
1265 qed |
|
1266 |
|
1267 theorem hard_direction: |
|
1268 assumes finite_CS: "finite (UNIV // \<approx>A)" |
|
1269 shows "\<exists>r::rexp. A = L r" |
|
1270 proof - |
|
1271 have "\<forall> X \<in> (UNIV // \<approx>A). \<exists>reg::rexp. X = L reg" |
|
1272 using finite_CS every_eqcl_has_reg by blast |
|
1273 then obtain f |
|
1274 where f_prop: "\<forall> X \<in> (UNIV // \<approx>A). X = L ((f X)::rexp)" |
|
1275 by (auto dest: bchoice) |
|
1276 def rs \<equiv> "f ` (finals A)" |
|
1277 have "A = \<Union> (finals A)" using lang_is_union_of_finals by auto |
|
1278 also have "\<dots> = L (\<Uplus>rs)" |
|
1279 proof - |
|
1280 have "finite rs" |
|
1281 proof - |
|
1282 have "finite (finals A)" |
|
1283 using finite_CS finals_in_partitions[of "A"] |
|
1284 by (erule_tac finite_subset, simp) |
|
1285 thus ?thesis using rs_def by auto |
|
1286 qed |
|
1287 thus ?thesis |
|
1288 using f_prop rs_def finals_in_partitions[of "A"] by auto |
|
1289 qed |
|
1290 finally show ?thesis by blast |
|
1291 qed |
|
1292 |
|
1293 end |