1 theory Myhill_1 |
1 theory Myhill_1 |
2 imports Main Folds |
2 imports Main Folds Regular |
3 "~~/src/HOL/Library/While_Combinator" |
3 "~~/src/HOL/Library/While_Combinator" |
4 begin |
4 begin |
5 |
5 |
6 section {* Preliminary definitions *} |
|
7 |
|
8 types lang = "string set" |
|
9 |
|
10 |
|
11 text {* Sequential composition of two languages *} |
|
12 |
|
13 definition |
|
14 Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" (infixr ";;" 100) |
|
15 where |
|
16 "A ;; B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}" |
|
17 |
|
18 |
|
19 text {* Some properties of operator @{text ";;"}. *} |
|
20 |
|
21 lemma seq_add_left: |
|
22 assumes a: "A = B" |
|
23 shows "C ;; A = C ;; B" |
|
24 using a by simp |
|
25 |
|
26 lemma seq_union_distrib_right: |
|
27 shows "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)" |
|
28 unfolding Seq_def by auto |
|
29 |
|
30 lemma seq_union_distrib_left: |
|
31 shows "C ;; (A \<union> B) = (C ;; A) \<union> (C ;; B)" |
|
32 unfolding Seq_def by auto |
|
33 |
|
34 lemma seq_intro: |
|
35 assumes a: "x \<in> A" "y \<in> B" |
|
36 shows "x @ y \<in> A ;; B " |
|
37 using a by (auto simp: Seq_def) |
|
38 |
|
39 lemma seq_assoc: |
|
40 shows "(A ;; B) ;; C = A ;; (B ;; C)" |
|
41 unfolding Seq_def |
|
42 apply(auto) |
|
43 apply(blast) |
|
44 by (metis append_assoc) |
|
45 |
|
46 lemma seq_empty [simp]: |
|
47 shows "A ;; {[]} = A" |
|
48 and "{[]} ;; A = A" |
|
49 by (simp_all add: Seq_def) |
|
50 |
|
51 |
|
52 text {* Power and Star of a language *} |
|
53 |
|
54 fun |
|
55 pow :: "lang \<Rightarrow> nat \<Rightarrow> lang" (infixl "\<up>" 100) |
|
56 where |
|
57 "A \<up> 0 = {[]}" |
|
58 | "A \<up> (Suc n) = A ;; (A \<up> n)" |
|
59 |
|
60 definition |
|
61 Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102) |
|
62 where |
|
63 "A\<star> \<equiv> (\<Union>n. A \<up> n)" |
|
64 |
|
65 |
|
66 lemma star_start[intro]: |
|
67 shows "[] \<in> A\<star>" |
|
68 proof - |
|
69 have "[] \<in> A \<up> 0" by auto |
|
70 then show "[] \<in> A\<star>" unfolding Star_def by blast |
|
71 qed |
|
72 |
|
73 lemma star_step [intro]: |
|
74 assumes a: "s1 \<in> A" |
|
75 and b: "s2 \<in> A\<star>" |
|
76 shows "s1 @ s2 \<in> A\<star>" |
|
77 proof - |
|
78 from b obtain n where "s2 \<in> A \<up> n" unfolding Star_def by auto |
|
79 then have "s1 @ s2 \<in> A \<up> (Suc n)" using a by (auto simp add: Seq_def) |
|
80 then show "s1 @ s2 \<in> A\<star>" unfolding Star_def by blast |
|
81 qed |
|
82 |
|
83 lemma star_induct[consumes 1, case_names start step]: |
|
84 assumes a: "x \<in> A\<star>" |
|
85 and b: "P []" |
|
86 and c: "\<And>s1 s2. \<lbrakk>s1 \<in> A; s2 \<in> A\<star>; P s2\<rbrakk> \<Longrightarrow> P (s1 @ s2)" |
|
87 shows "P x" |
|
88 proof - |
|
89 from a obtain n where "x \<in> A \<up> n" unfolding Star_def by auto |
|
90 then show "P x" |
|
91 by (induct n arbitrary: x) |
|
92 (auto intro!: b c simp add: Seq_def Star_def) |
|
93 qed |
|
94 |
|
95 lemma star_intro1: |
|
96 assumes a: "x \<in> A\<star>" |
|
97 and b: "y \<in> A\<star>" |
|
98 shows "x @ y \<in> A\<star>" |
|
99 using a b |
|
100 by (induct rule: star_induct) (auto) |
|
101 |
|
102 lemma star_intro2: |
|
103 assumes a: "y \<in> A" |
|
104 shows "y \<in> A\<star>" |
|
105 proof - |
|
106 from a have "y @ [] \<in> A\<star>" by blast |
|
107 then show "y \<in> A\<star>" by simp |
|
108 qed |
|
109 |
|
110 lemma star_intro3: |
|
111 assumes a: "x \<in> A\<star>" |
|
112 and b: "y \<in> A" |
|
113 shows "x @ y \<in> A\<star>" |
|
114 using a b by (blast intro: star_intro1 star_intro2) |
|
115 |
|
116 lemma star_cases: |
|
117 shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
118 proof |
|
119 { fix x |
|
120 have "x \<in> A\<star> \<Longrightarrow> x \<in> {[]} \<union> A ;; A\<star>" |
|
121 unfolding Seq_def |
|
122 by (induct rule: star_induct) (auto) |
|
123 } |
|
124 then show "A\<star> \<subseteq> {[]} \<union> A ;; A\<star>" by auto |
|
125 next |
|
126 show "{[]} \<union> A ;; A\<star> \<subseteq> A\<star>" |
|
127 unfolding Seq_def by auto |
|
128 qed |
|
129 |
|
130 lemma star_decom: |
|
131 assumes a: "x \<in> A\<star>" "x \<noteq> []" |
|
132 shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>" |
|
133 using a |
|
134 by (induct rule: star_induct) (blast)+ |
|
135 |
|
136 lemma |
|
137 shows seq_Union_left: "B ;; (\<Union>n. A \<up> n) = (\<Union>n. B ;; (A \<up> n))" |
|
138 and seq_Union_right: "(\<Union>n. A \<up> n) ;; B = (\<Union>n. (A \<up> n) ;; B)" |
|
139 unfolding Seq_def by auto |
|
140 |
|
141 lemma seq_pow_comm: |
|
142 shows "A ;; (A \<up> n) = (A \<up> n) ;; A" |
|
143 by (induct n) (simp_all add: seq_assoc[symmetric]) |
|
144 |
|
145 lemma seq_star_comm: |
|
146 shows "A ;; A\<star> = A\<star> ;; A" |
|
147 unfolding Star_def seq_Union_left |
|
148 unfolding seq_pow_comm seq_Union_right |
|
149 by simp |
|
150 |
|
151 |
|
152 text {* Two lemmas about the length of strings in @{text "A \<up> n"} *} |
|
153 |
|
154 lemma pow_length: |
|
155 assumes a: "[] \<notin> A" |
|
156 and b: "s \<in> A \<up> Suc n" |
|
157 shows "n < length s" |
|
158 using b |
|
159 proof (induct n arbitrary: s) |
|
160 case 0 |
|
161 have "s \<in> A \<up> Suc 0" by fact |
|
162 with a have "s \<noteq> []" by auto |
|
163 then show "0 < length s" by auto |
|
164 next |
|
165 case (Suc n) |
|
166 have ih: "\<And>s. s \<in> A \<up> Suc n \<Longrightarrow> n < length s" by fact |
|
167 have "s \<in> A \<up> Suc (Suc n)" by fact |
|
168 then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A \<up> Suc n" |
|
169 by (auto simp add: Seq_def) |
|
170 from ih ** have "n < length s2" by simp |
|
171 moreover have "0 < length s1" using * a by auto |
|
172 ultimately show "Suc n < length s" unfolding eq |
|
173 by (simp only: length_append) |
|
174 qed |
|
175 |
|
176 lemma seq_pow_length: |
|
177 assumes a: "[] \<notin> A" |
|
178 and b: "s \<in> B ;; (A \<up> Suc n)" |
|
179 shows "n < length s" |
|
180 proof - |
|
181 from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A \<up> Suc n" |
|
182 unfolding Seq_def by auto |
|
183 from * have " n < length s2" by (rule pow_length[OF a]) |
|
184 then show "n < length s" using eq by simp |
|
185 qed |
|
186 |
|
187 |
|
188 section {* A modified version of Arden's lemma *} |
|
189 |
|
190 text {* A helper lemma for Arden *} |
|
191 |
|
192 lemma arden_helper: |
|
193 assumes eq: "X = X ;; A \<union> B" |
|
194 shows "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" |
|
195 proof (induct n) |
|
196 case 0 |
|
197 show "X = X ;; (A \<up> Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B ;; (A \<up> m))" |
|
198 using eq by simp |
|
199 next |
|
200 case (Suc n) |
|
201 have ih: "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" by fact |
|
202 also have "\<dots> = (X ;; A \<union> B) ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" using eq by simp |
|
203 also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (B ;; (A \<up> Suc n)) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" |
|
204 by (simp add: seq_union_distrib_right seq_assoc) |
|
205 also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" |
|
206 by (auto simp add: le_Suc_eq) |
|
207 finally show "X = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" . |
|
208 qed |
|
209 |
|
210 theorem arden: |
|
211 assumes nemp: "[] \<notin> A" |
|
212 shows "X = X ;; A \<union> B \<longleftrightarrow> X = B ;; A\<star>" |
|
213 proof |
|
214 assume eq: "X = B ;; A\<star>" |
|
215 have "A\<star> = {[]} \<union> A\<star> ;; A" |
|
216 unfolding seq_star_comm[symmetric] |
|
217 by (rule star_cases) |
|
218 then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" |
|
219 by (rule seq_add_left) |
|
220 also have "\<dots> = B \<union> B ;; (A\<star> ;; A)" |
|
221 unfolding seq_union_distrib_left by simp |
|
222 also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" |
|
223 by (simp only: seq_assoc) |
|
224 finally show "X = X ;; A \<union> B" |
|
225 using eq by blast |
|
226 next |
|
227 assume eq: "X = X ;; A \<union> B" |
|
228 { fix n::nat |
|
229 have "B ;; (A \<up> n) \<subseteq> X" using arden_helper[OF eq, of "n"] by auto } |
|
230 then have "B ;; A\<star> \<subseteq> X" |
|
231 unfolding Seq_def Star_def UNION_def by auto |
|
232 moreover |
|
233 { fix s::string |
|
234 obtain k where "k = length s" by auto |
|
235 then have not_in: "s \<notin> X ;; (A \<up> Suc k)" |
|
236 using seq_pow_length[OF nemp] by blast |
|
237 assume "s \<in> X" |
|
238 then have "s \<in> X ;; (A \<up> Suc k) \<union> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" |
|
239 using arden_helper[OF eq, of "k"] by auto |
|
240 then have "s \<in> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" using not_in by auto |
|
241 moreover |
|
242 have "(\<Union>m\<in>{0..k}. B ;; (A \<up> m)) \<subseteq> (\<Union>n. B ;; (A \<up> n))" by auto |
|
243 ultimately |
|
244 have "s \<in> B ;; A\<star>" |
|
245 unfolding seq_Union_left Star_def by auto } |
|
246 then have "X \<subseteq> B ;; A\<star>" by auto |
|
247 ultimately |
|
248 show "X = B ;; A\<star>" by simp |
|
249 qed |
|
250 |
|
251 |
|
252 section {* Regular Expressions *} |
|
253 |
|
254 datatype rexp = |
|
255 NULL |
|
256 | EMPTY |
|
257 | CHAR char |
|
258 | SEQ rexp rexp |
|
259 | ALT rexp rexp |
|
260 | STAR rexp |
|
261 |
|
262 |
|
263 text {* |
|
264 The function @{text L} is overloaded, with the idea that @{text "L x"} |
|
265 evaluates to the language represented by the object @{text x}. |
|
266 *} |
|
267 |
|
268 consts L:: "'a \<Rightarrow> lang" |
|
269 |
|
270 overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> lang" |
|
271 begin |
|
272 fun |
|
273 L_rexp :: "rexp \<Rightarrow> lang" |
|
274 where |
|
275 "L_rexp (NULL) = {}" |
|
276 | "L_rexp (EMPTY) = {[]}" |
|
277 | "L_rexp (CHAR c) = {[c]}" |
|
278 | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)" |
|
279 | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)" |
|
280 | "L_rexp (STAR r) = (L_rexp r)\<star>" |
|
281 end |
|
282 |
|
283 |
|
284 text {* ALT-combination of a set or regulare expressions *} |
|
285 |
|
286 abbreviation |
|
287 Setalt ("\<Uplus>_" [1000] 999) |
|
288 where |
|
289 "\<Uplus>A \<equiv> folds ALT NULL A" |
|
290 |
|
291 text {* |
|
292 For finite sets, @{term Setalt} is preserved under @{term L}. |
|
293 *} |
|
294 |
|
295 lemma folds_alt_simp [simp]: |
|
296 fixes rs::"rexp set" |
|
297 assumes a: "finite rs" |
|
298 shows "L (\<Uplus>rs) = \<Union> (L ` rs)" |
|
299 unfolding folds_def |
|
300 apply(rule set_eqI) |
|
301 apply(rule someI2_ex) |
|
302 apply(rule_tac finite_imp_fold_graph[OF a]) |
|
303 apply(erule fold_graph.induct) |
|
304 apply(auto) |
|
305 done |
|
306 |
|
307 |
|
308 section {* Direction @{text "finite partition \<Rightarrow> regular language"} *} |
6 section {* Direction @{text "finite partition \<Rightarrow> regular language"} *} |
309 |
|
310 |
|
311 text {* Just a technical lemma for collections and pairs *} |
|
312 |
7 |
313 lemma Pair_Collect[simp]: |
8 lemma Pair_Collect[simp]: |
314 shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
9 shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
315 by simp |
10 by simp |
316 |
11 |
319 definition |
14 definition |
320 str_eq_rel :: "lang \<Rightarrow> (string \<times> string) set" ("\<approx>_" [100] 100) |
15 str_eq_rel :: "lang \<Rightarrow> (string \<times> string) set" ("\<approx>_" [100] 100) |
321 where |
16 where |
322 "\<approx>A \<equiv> {(x, y). (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)}" |
17 "\<approx>A \<equiv> {(x, y). (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)}" |
323 |
18 |
324 text {* |
|
325 Among the equivalence clases of @{text "\<approx>A"}, the set @{text "finals A"} |
|
326 singles out those which contains the strings from @{text A}. |
|
327 *} |
|
328 |
|
329 definition |
19 definition |
330 finals :: "lang \<Rightarrow> lang set" |
20 finals :: "lang \<Rightarrow> lang set" |
331 where |
21 where |
332 "finals A \<equiv> {\<approx>A `` {s} | s . s \<in> A}" |
22 "finals A \<equiv> {\<approx>A `` {s} | s . s \<in> A}" |
333 |
|
334 |
23 |
335 lemma lang_is_union_of_finals: |
24 lemma lang_is_union_of_finals: |
336 shows "A = \<Union> finals A" |
25 shows "A = \<Union> finals A" |
337 unfolding finals_def |
26 unfolding finals_def |
338 unfolding Image_def |
27 unfolding Image_def |
339 unfolding str_eq_rel_def |
28 unfolding str_eq_rel_def |
340 apply(auto) |
29 by (auto) (metis append_Nil2) |
341 apply(drule_tac x = "[]" in spec) |
|
342 apply(auto) |
|
343 done |
|
344 |
30 |
345 lemma finals_in_partitions: |
31 lemma finals_in_partitions: |
346 shows "finals A \<subseteq> (UNIV // \<approx>A)" |
32 shows "finals A \<subseteq> (UNIV // \<approx>A)" |
347 unfolding finals_def quotient_def |
33 unfolding finals_def quotient_def |
348 by auto |
34 by auto |
349 |
35 |
350 section {* Equational systems *} |
36 section {* Equational systems *} |
351 |
37 |
352 text {* The two kinds of terms in the rhs of equations. *} |
38 text {* The two kinds of terms in the rhs of equations. *} |
353 |
39 |
354 datatype rhs_item = |
40 datatype rhs_trm = |
355 Lam "rexp" (* Lambda-marker *) |
41 Lam "rexp" (* Lambda-marker *) |
356 | Trn "lang" "rexp" (* Transition *) |
42 | Trn "lang" "rexp" (* Transition *) |
357 |
43 |
358 |
44 |
359 overloading L_rhs_item \<equiv> "L:: rhs_item \<Rightarrow> lang" |
45 overloading L_rhs_trm \<equiv> "L:: rhs_trm \<Rightarrow> lang" |
360 begin |
46 begin |
361 fun L_rhs_item:: "rhs_item \<Rightarrow> lang" |
47 fun L_rhs_trm:: "rhs_trm \<Rightarrow> lang" |
362 where |
48 where |
363 "L_rhs_item (Lam r) = L r" |
49 "L_rhs_trm (Lam r) = L r" |
364 | "L_rhs_item (Trn X r) = X ;; L r" |
50 | "L_rhs_trm (Trn X r) = X ;; L r" |
365 end |
51 end |
366 |
52 |
367 overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> lang" |
53 overloading L_rhs \<equiv> "L:: rhs_trm set \<Rightarrow> lang" |
368 begin |
54 begin |
369 fun L_rhs:: "rhs_item set \<Rightarrow> lang" |
55 fun L_rhs:: "rhs_trm set \<Rightarrow> lang" |
370 where |
56 where |
371 "L_rhs rhs = \<Union> (L ` rhs)" |
57 "L_rhs rhs = \<Union> (L ` rhs)" |
372 end |
58 end |
373 |
59 |
|
60 lemma L_rhs_set: |
|
61 shows "L {Trn X r | r. P r} = \<Union>{L (Trn X r) | r. P r}" |
|
62 by (auto simp del: L_rhs_trm.simps) |
|
63 |
374 lemma L_rhs_union_distrib: |
64 lemma L_rhs_union_distrib: |
375 fixes A B::"rhs_item set" |
65 fixes A B::"rhs_trm set" |
376 shows "L A \<union> L B = L (A \<union> B)" |
66 shows "L A \<union> L B = L (A \<union> B)" |
377 by simp |
67 by simp |
378 |
68 |
379 |
69 |
380 |
70 |
396 |
86 |
397 definition |
87 definition |
398 "Init CS \<equiv> {(X, Init_rhs CS X) | X. X \<in> CS}" |
88 "Init CS \<equiv> {(X, Init_rhs CS X) | X. X \<in> CS}" |
399 |
89 |
400 |
90 |
401 |
|
402 section {* Arden Operation on equations *} |
91 section {* Arden Operation on equations *} |
403 |
92 |
404 text {* |
|
405 The function @{text "attach_rexp r item"} SEQ-composes @{text r} to the |
|
406 right of every rhs-item. |
|
407 *} |
|
408 |
|
409 fun |
93 fun |
410 append_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item" |
94 Append_rexp :: "rexp \<Rightarrow> rhs_trm \<Rightarrow> rhs_trm" |
411 where |
95 where |
412 "append_rexp r (Lam rexp) = Lam (SEQ rexp r)" |
96 "Append_rexp r (Lam rexp) = Lam (SEQ rexp r)" |
413 | "append_rexp r (Trn X rexp) = Trn X (SEQ rexp r)" |
97 | "Append_rexp r (Trn X rexp) = Trn X (SEQ rexp r)" |
414 |
98 |
415 |
99 |
416 definition |
100 definition |
417 "append_rhs_rexp rhs rexp \<equiv> (append_rexp rexp) ` rhs" |
101 "Append_rexp_rhs rhs rexp \<equiv> (Append_rexp rexp) ` rhs" |
418 |
102 |
419 definition |
103 definition |
420 "Arden X rhs \<equiv> |
104 "Arden X rhs \<equiv> |
421 append_rhs_rexp (rhs - {Trn X r | r. Trn X r \<in> rhs}) (STAR (\<Uplus> {r. Trn X r \<in> rhs}))" |
105 Append_rexp_rhs (rhs - {Trn X r | r. Trn X r \<in> rhs}) (STAR (\<Uplus> {r. Trn X r \<in> rhs}))" |
422 |
106 |
423 |
107 |
424 section {* Substitution Operation on equations *} |
108 section {* Substitution Operation on equations *} |
425 |
109 |
426 text {* |
|
427 Suppose and equation @{text "X = xrhs"}, @{text "Subst"} substitutes |
|
428 all occurences of @{text "X"} in @{text "rhs"} by @{text "xrhs"}. |
|
429 *} |
|
430 |
|
431 definition |
110 definition |
432 "Subst rhs X xrhs \<equiv> |
111 "Subst rhs X xrhs \<equiv> |
433 (rhs - {Trn X r | r. Trn X r \<in> rhs}) \<union> (append_rhs_rexp xrhs (\<Uplus> {r. Trn X r \<in> rhs}))" |
112 (rhs - {Trn X r | r. Trn X r \<in> rhs}) \<union> (Append_rexp_rhs xrhs (\<Uplus> {r. Trn X r \<in> rhs}))" |
434 |
|
435 text {* |
|
436 @{text "eqs_subst ES X xrhs"} substitutes @{text xrhs} into every |
|
437 equation of the equational system @{text ES}. |
|
438 *} |
|
439 |
|
440 types esystem = "(lang \<times> rhs_item set) set" |
|
441 |
113 |
442 definition |
114 definition |
443 Subst_all :: "esystem \<Rightarrow> lang \<Rightarrow> rhs_item set \<Rightarrow> esystem" |
115 Subst_all :: "(lang \<times> rhs_trm set) set \<Rightarrow> lang \<Rightarrow> rhs_trm set \<Rightarrow> (lang \<times> rhs_trm set) set" |
444 where |
116 where |
445 "Subst_all ES X xrhs \<equiv> {(Y, Subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
117 "Subst_all ES X xrhs \<equiv> {(Y, Subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
446 |
|
447 text {* |
|
448 The following term @{text "remove ES Y yrhs"} removes the equation |
|
449 @{text "Y = yrhs"} from equational system @{text "ES"} by replacing |
|
450 all occurences of @{text "Y"} by its definition (using @{text "eqs_subst"}). |
|
451 The @{text "Y"}-definition is made non-recursive using Arden's transformation |
|
452 @{text "arden_variate Y yrhs"}. |
|
453 *} |
|
454 |
118 |
455 definition |
119 definition |
456 "Remove ES X xrhs \<equiv> |
120 "Remove ES X xrhs \<equiv> |
457 Subst_all (ES - {(X, xrhs)}) X (Arden X xrhs)" |
121 Subst_all (ES - {(X, xrhs)}) X (Arden X xrhs)" |
458 |
122 |
459 |
123 |
460 section {* While-combinator *} |
124 section {* While-combinator *} |
461 |
|
462 text {* |
|
463 The following term @{text "Iter X ES"} represents one iteration in the while loop. |
|
464 It arbitrarily chooses a @{text "Y"} different from @{text "X"} to remove. |
|
465 *} |
|
466 |
125 |
467 definition |
126 definition |
468 "Iter X ES \<equiv> (let (Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) \<in> ES \<and> X \<noteq> Y |
127 "Iter X ES \<equiv> (let (Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) \<in> ES \<and> X \<noteq> Y |
469 in Remove ES Y yrhs)" |
128 in Remove ES Y yrhs)" |
470 |
129 |
474 and "\<And>Y yrhs. \<lbrakk>(Y, yrhs) \<in> ES; X \<noteq> Y\<rbrakk> \<Longrightarrow> Q (Remove ES Y yrhs)" |
133 and "\<And>Y yrhs. \<lbrakk>(Y, yrhs) \<in> ES; X \<noteq> Y\<rbrakk> \<Longrightarrow> Q (Remove ES Y yrhs)" |
475 shows "Q (Iter X ES)" |
134 shows "Q (Iter X ES)" |
476 unfolding Iter_def using assms |
135 unfolding Iter_def using assms |
477 by (rule_tac a="(Y, yrhs)" in someI2) (auto) |
136 by (rule_tac a="(Y, yrhs)" in someI2) (auto) |
478 |
137 |
479 |
|
480 text {* |
|
481 The following term @{text "Reduce X ES"} repeatedly removes characteriztion equations |
|
482 for unknowns other than @{text "X"} until one is left. |
|
483 *} |
|
484 |
|
485 abbreviation |
138 abbreviation |
486 "Cond ES \<equiv> card ES \<noteq> 1" |
139 "Cond ES \<equiv> card ES \<noteq> 1" |
487 |
140 |
488 definition |
141 definition |
489 "Solve X ES \<equiv> while Cond (Iter X) ES" |
142 "Solve X ES \<equiv> while Cond (Iter X) ES" |
490 |
143 |
491 text {* |
|
492 Since the @{text "while"} combinator from HOL library is used to implement @{text "Solve X ES"}, |
|
493 the induction principle @{thm [source] while_rule} is used to proved the desired properties |
|
494 of @{text "Solve X ES"}. For this purpose, an invariant predicate @{text "invariant"} is defined |
|
495 in terms of a series of auxilliary predicates: |
|
496 *} |
|
497 |
144 |
498 section {* Invariants *} |
145 section {* Invariants *} |
499 |
146 |
500 text {* Every variable is defined at most once in @{text ES}. *} |
147 definition |
501 |
148 "distinctness ES \<equiv> |
502 definition |
|
503 "distinct_equas ES \<equiv> |
|
504 \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
149 \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
505 |
150 |
506 |
151 definition |
507 text {* |
152 "soundness ES \<equiv> \<forall>(X, rhs) \<in> ES. X = L rhs" |
508 Every equation in @{text ES} (represented by @{text "(X, rhs)"}) |
|
509 is valid, i.e. @{text "X = L rhs"}. |
|
510 *} |
|
511 |
|
512 definition |
|
513 "sound_eqs ES \<equiv> \<forall>(X, rhs) \<in> ES. X = L rhs" |
|
514 |
|
515 text {* |
|
516 @{text "ardenable rhs"} requires regular expressions occuring in |
|
517 transitional items of @{text "rhs"} do not contain empty string. This is |
|
518 necessary for the application of Arden's transformation to @{text "rhs"}. |
|
519 *} |
|
520 |
153 |
521 definition |
154 definition |
522 "ardenable rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)" |
155 "ardenable rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)" |
523 |
156 |
524 text {* |
|
525 The following @{text "ardenable_all ES"} requires that Arden's transformation |
|
526 is applicable to every equation of equational system @{text "ES"}. |
|
527 *} |
|
528 |
|
529 definition |
157 definition |
530 "ardenable_all ES \<equiv> \<forall>(X, rhs) \<in> ES. ardenable rhs" |
158 "ardenable_all ES \<equiv> \<forall>(X, rhs) \<in> ES. ardenable rhs" |
531 |
159 |
532 |
|
533 text {* |
|
534 @{text "finite_rhs ES"} requires every equation in @{text "rhs"} |
|
535 be finite. |
|
536 *} |
|
537 definition |
160 definition |
538 "finite_rhs ES \<equiv> \<forall>(X, rhs) \<in> ES. finite rhs" |
161 "finite_rhs ES \<equiv> \<forall>(X, rhs) \<in> ES. finite rhs" |
539 |
162 |
540 lemma finite_rhs_def2: |
163 lemma finite_rhs_def2: |
541 "finite_rhs ES = (\<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs)" |
164 "finite_rhs ES = (\<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs)" |
542 unfolding finite_rhs_def by auto |
165 unfolding finite_rhs_def by auto |
543 |
166 |
544 text {* |
|
545 @{text "classes_of rhs"} returns all variables (or equivalent classes) |
|
546 occuring in @{text "rhs"}. |
|
547 *} |
|
548 |
|
549 definition |
167 definition |
550 "rhss rhs \<equiv> {X | X r. Trn X r \<in> rhs}" |
168 "rhss rhs \<equiv> {X | X r. Trn X r \<in> rhs}" |
551 |
169 |
552 text {* |
|
553 @{text "lefts_of ES"} returns all variables defined by an |
|
554 equational system @{text "ES"}. |
|
555 *} |
|
556 definition |
170 definition |
557 "lhss ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}" |
171 "lhss ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}" |
558 |
172 |
559 text {* |
173 definition |
560 The following @{text "valid_eqs ES"} requires that every variable occuring |
174 "validity ES \<equiv> \<forall>(X, rhs) \<in> ES. rhss rhs \<subseteq> lhss ES" |
561 on the right hand side of equations is already defined by some equation in @{text "ES"}. |
175 |
562 *} |
176 lemma rhss_union_distrib: |
563 definition |
177 shows "rhss (A \<union> B) = rhss A \<union> rhss B" |
564 "valid_eqs ES \<equiv> \<forall>(X, rhs) \<in> ES. rhss rhs \<subseteq> lhss ES" |
178 by (auto simp add: rhss_def) |
565 |
179 |
566 |
180 lemma lhss_union_distrib: |
567 text {* |
181 shows "lhss (A \<union> B) = lhss A \<union> lhss B" |
568 The invariant @{text "invariant(ES)"} is a conjunction of all the previously defined constaints. |
182 by (auto simp add: lhss_def) |
569 *} |
183 |
|
184 |
570 definition |
185 definition |
571 "invariant ES \<equiv> finite ES |
186 "invariant ES \<equiv> finite ES |
572 \<and> finite_rhs ES |
187 \<and> finite_rhs ES |
573 \<and> sound_eqs ES |
188 \<and> soundness ES |
574 \<and> distinct_equas ES |
189 \<and> distinctness ES |
575 \<and> ardenable_all ES |
190 \<and> ardenable_all ES |
576 \<and> valid_eqs ES" |
191 \<and> validity ES" |
577 |
192 |
578 |
193 |
579 lemma invariantI: |
194 lemma invariantI: |
580 assumes "sound_eqs ES" "finite ES" "distinct_equas ES" "ardenable_all ES" |
195 assumes "soundness ES" "finite ES" "distinctness ES" "ardenable_all ES" |
581 "finite_rhs ES" "valid_eqs ES" |
196 "finite_rhs ES" "validity ES" |
582 shows "invariant ES" |
197 shows "invariant ES" |
583 using assms by (simp add: invariant_def) |
198 using assms by (simp add: invariant_def) |
584 |
199 |
|
200 |
585 subsection {* The proof of this direction *} |
201 subsection {* The proof of this direction *} |
586 |
|
587 subsubsection {* Basic properties *} |
|
588 |
|
589 text {* |
|
590 The following are some basic properties of the above definitions. |
|
591 *} |
|
592 |
|
593 |
202 |
594 lemma finite_Trn: |
203 lemma finite_Trn: |
595 assumes fin: "finite rhs" |
204 assumes fin: "finite rhs" |
596 shows "finite {r. Trn Y r \<in> rhs}" |
205 shows "finite {r. Trn Y r \<in> rhs}" |
597 proof - |
206 proof - |
616 apply(erule finite_imageD) |
225 apply(erule finite_imageD) |
617 apply(auto simp add: inj_on_def) |
226 apply(auto simp add: inj_on_def) |
618 done |
227 done |
619 qed |
228 qed |
620 |
229 |
621 lemma rexp_of_empty: |
230 lemma rhs_trm_soundness: |
622 assumes finite: "finite rhs" |
|
623 and nonempty: "ardenable rhs" |
|
624 shows "[] \<notin> L (\<Uplus> {r. Trn X r \<in> rhs})" |
|
625 using finite nonempty ardenable_def |
|
626 using finite_Trn[OF finite] |
|
627 by auto |
|
628 |
|
629 lemma lang_of_rexp_of: |
|
630 assumes finite:"finite rhs" |
231 assumes finite:"finite rhs" |
631 shows "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))" |
232 shows "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))" |
632 proof - |
233 proof - |
633 have "finite {r. Trn X r \<in> rhs}" |
234 have "finite {r. Trn X r \<in> rhs}" |
634 by (rule finite_Trn[OF finite]) |
235 by (rule finite_Trn[OF finite]) |
635 then show ?thesis |
236 then show "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))" |
636 apply(auto simp add: Seq_def) |
237 by (simp only: L_rhs_set L_rhs_trm.simps) (auto simp add: Seq_def) |
637 apply(rule_tac x = "s\<^isub>1" in exI, rule_tac x = "s\<^isub>2" in exI) |
238 qed |
638 apply(auto) |
239 |
639 apply(rule_tac x= "Trn X xa" in exI) |
240 lemma lang_of_append_rexp: |
640 apply(auto simp add: Seq_def) |
241 "L (Append_rexp r rhs_trm) = L rhs_trm ;; L r" |
641 done |
242 by (induct rule: Append_rexp.induct) |
642 qed |
|
643 |
|
644 lemma lang_of_append: |
|
645 "L (append_rexp r rhs_item) = L rhs_item ;; L r" |
|
646 by (induct rule: append_rexp.induct) |
|
647 (auto simp add: seq_assoc) |
243 (auto simp add: seq_assoc) |
648 |
244 |
649 lemma lang_of_append_rhs: |
245 lemma lang_of_append_rexp_rhs: |
650 "L (append_rhs_rexp rhs r) = L rhs ;; L r" |
246 "L (Append_rexp_rhs rhs r) = L rhs ;; L r" |
651 unfolding append_rhs_rexp_def |
247 unfolding Append_rexp_rhs_def |
652 by (auto simp add: Seq_def lang_of_append) |
248 by (auto simp add: Seq_def lang_of_append_rexp) |
653 |
249 |
654 lemma rhss_union_distrib: |
|
655 shows "rhss (A \<union> B) = rhss A \<union> rhss B" |
|
656 by (auto simp add: rhss_def) |
|
657 |
|
658 lemma lhss_union_distrib: |
|
659 shows "lhss (A \<union> B) = lhss A \<union> lhss B" |
|
660 by (auto simp add: lhss_def) |
|
661 |
250 |
662 |
251 |
663 subsubsection {* Intialization *} |
252 subsubsection {* Intialization *} |
664 |
|
665 text {* |
|
666 The following several lemmas until @{text "init_ES_satisfy_invariant"} shows that |
|
667 the initial equational system satisfies invariant @{text "invariant"}. |
|
668 *} |
|
669 |
253 |
670 lemma defined_by_str: |
254 lemma defined_by_str: |
671 assumes "s \<in> X" "X \<in> UNIV // \<approx>A" |
255 assumes "s \<in> X" "X \<in> UNIV // \<approx>A" |
672 shows "X = \<approx>A `` {s}" |
256 shows "X = \<approx>A `` {s}" |
673 using assms |
257 using assms |
700 shows "X = L rhs" |
284 shows "X = L rhs" |
701 proof |
285 proof |
702 show "X \<subseteq> L rhs" |
286 show "X \<subseteq> L rhs" |
703 proof |
287 proof |
704 fix x |
288 fix x |
705 assume "(1)": "x \<in> X" |
289 assume in_X: "x \<in> X" |
706 show "x \<in> L rhs" |
290 { assume empty: "x = []" |
707 proof (cases "x = []") |
291 then have "x \<in> L rhs" using X_in_eqs in_X |
708 assume empty: "x = []" |
292 unfolding Init_def Init_rhs_def |
709 thus ?thesis using X_in_eqs "(1)" |
293 by auto |
710 by (auto simp: Init_def Init_rhs_def) |
294 } |
711 next |
295 moreover |
712 assume not_empty: "x \<noteq> []" |
296 { assume not_empty: "x \<noteq> []" |
713 then obtain clist c where decom: "x = clist @ [c]" |
297 then obtain s c where decom: "x = s @ [c]" |
714 by (case_tac x rule:rev_cases, auto) |
298 using rev_cases by blast |
715 have "X \<in> UNIV // \<approx>A" using X_in_eqs by (auto simp:Init_def) |
299 have "X \<in> UNIV // \<approx>A" using X_in_eqs unfolding Init_def by auto |
716 then obtain Y |
300 then obtain Y where "Y \<in> UNIV // \<approx>A" "Y ;; {[c]} \<subseteq> X" "s \<in> Y" |
717 where "Y \<in> UNIV // \<approx>A" |
301 using decom in_X every_eqclass_has_transition by blast |
718 and "Y ;; {[c]} \<subseteq> X" |
302 then have "x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // \<approx>A \<and> Y \<Turnstile>c\<Rightarrow> X}" |
719 and "clist \<in> Y" |
|
720 using decom "(1)" every_eqclass_has_transition by blast |
|
721 hence |
|
722 "x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // \<approx>A \<and> Y \<Turnstile>c\<Rightarrow> X}" |
|
723 unfolding transition_def |
303 unfolding transition_def |
724 using "(1)" decom |
304 using decom by (force simp add: Seq_def) |
725 by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def) |
305 then have "x \<in> L rhs" using X_in_eqs in_X |
726 thus ?thesis using X_in_eqs "(1)" |
306 unfolding Init_def Init_rhs_def by simp |
727 by (simp add: Init_def Init_rhs_def) |
307 } |
728 qed |
308 ultimately show "x \<in> L rhs" by blast |
729 qed |
309 qed |
730 next |
310 next |
731 show "L rhs \<subseteq> X" using X_in_eqs |
311 show "L rhs \<subseteq> X" using X_in_eqs |
732 by (auto simp:Init_def Init_rhs_def transition_def) |
312 unfolding Init_def Init_rhs_def transition_def |
|
313 by auto |
733 qed |
314 qed |
734 |
315 |
735 lemma test: |
316 lemma test: |
736 assumes X_in_eqs: "(X, rhs) \<in> Init (UNIV // \<approx>A)" |
317 assumes X_in_eqs: "(X, rhs) \<in> Init (UNIV // \<approx>A)" |
737 shows "X = \<Union> (L ` rhs)" |
318 shows "X = \<Union> (L ` rhs)" |
738 using assms |
319 using assms l_eq_r_in_eqs by (simp) |
739 by (drule_tac l_eq_r_in_eqs) (simp) |
|
740 |
|
741 |
320 |
742 lemma finite_Init_rhs: |
321 lemma finite_Init_rhs: |
743 assumes finite: "finite CS" |
322 assumes finite: "finite CS" |
744 shows "finite (Init_rhs CS X)" |
323 shows "finite (Init_rhs CS X)" |
745 proof- |
324 proof- |
757 |
336 |
758 lemma Init_ES_satisfies_invariant: |
337 lemma Init_ES_satisfies_invariant: |
759 assumes finite_CS: "finite (UNIV // \<approx>A)" |
338 assumes finite_CS: "finite (UNIV // \<approx>A)" |
760 shows "invariant (Init (UNIV // \<approx>A))" |
339 shows "invariant (Init (UNIV // \<approx>A))" |
761 proof (rule invariantI) |
340 proof (rule invariantI) |
762 show "sound_eqs (Init (UNIV // \<approx>A))" |
341 show "soundness (Init (UNIV // \<approx>A))" |
763 unfolding sound_eqs_def |
342 unfolding soundness_def |
764 using l_eq_r_in_eqs by auto |
343 using l_eq_r_in_eqs by auto |
765 show "finite (Init (UNIV // \<approx>A))" using finite_CS |
344 show "finite (Init (UNIV // \<approx>A))" using finite_CS |
766 unfolding Init_def by simp |
345 unfolding Init_def by simp |
767 show "distinct_equas (Init (UNIV // \<approx>A))" |
346 show "distinctness (Init (UNIV // \<approx>A))" |
768 unfolding distinct_equas_def Init_def by simp |
347 unfolding distinctness_def Init_def by simp |
769 show "ardenable_all (Init (UNIV // \<approx>A))" |
348 show "ardenable_all (Init (UNIV // \<approx>A))" |
770 unfolding ardenable_all_def Init_def Init_rhs_def ardenable_def |
349 unfolding ardenable_all_def Init_def Init_rhs_def ardenable_def |
771 by auto |
350 by auto |
772 show "finite_rhs (Init (UNIV // \<approx>A))" |
351 show "finite_rhs (Init (UNIV // \<approx>A))" |
773 using finite_Init_rhs[OF finite_CS] |
352 using finite_Init_rhs[OF finite_CS] |
774 unfolding finite_rhs_def Init_def by auto |
353 unfolding finite_rhs_def Init_def by auto |
775 show "valid_eqs (Init (UNIV // \<approx>A))" |
354 show "validity (Init (UNIV // \<approx>A))" |
776 unfolding valid_eqs_def Init_def Init_rhs_def rhss_def lhss_def |
355 unfolding validity_def Init_def Init_rhs_def rhss_def lhss_def |
777 by auto |
356 by auto |
778 qed |
357 qed |
779 |
358 |
780 subsubsection {* Interation step *} |
359 subsubsection {* Interation step *} |
781 |
|
782 text {* |
|
783 From this point until @{text "iteration_step"}, |
|
784 the correctness of the iteration step @{text "Iter X ES"} is proved. |
|
785 *} |
|
786 |
360 |
787 lemma Arden_keeps_eq: |
361 lemma Arden_keeps_eq: |
788 assumes l_eq_r: "X = L rhs" |
362 assumes l_eq_r: "X = L rhs" |
789 and not_empty: "ardenable rhs" |
363 and not_empty: "ardenable rhs" |
790 and finite: "finite rhs" |
364 and finite: "finite rhs" |
791 shows "X = L (Arden X rhs)" |
365 shows "X = L (Arden X rhs)" |
792 proof - |
366 proof - |
793 def A \<equiv> "L (\<Uplus>{r. Trn X r \<in> rhs})" |
367 def A \<equiv> "L (\<Uplus>{r. Trn X r \<in> rhs})" |
794 def b \<equiv> "rhs - {Trn X r | r. Trn X r \<in> rhs}" |
368 def b \<equiv> "{Trn X r | r. Trn X r \<in> rhs}" |
795 def B \<equiv> "L b" |
369 def B \<equiv> "L (rhs - b)" |
796 have "X = B ;; A\<star>" |
370 have not_empty2: "[] \<notin> A" |
797 proof - |
371 using finite_Trn[OF finite] not_empty |
798 have "L rhs = L({Trn X r | r. Trn X r \<in> rhs} \<union> b)" by (auto simp: b_def) |
372 unfolding A_def ardenable_def by simp |
799 also have "\<dots> = X ;; A \<union> B" |
373 have "X = L rhs" using l_eq_r by simp |
800 unfolding L_rhs_union_distrib[symmetric] |
374 also have "\<dots> = L (b \<union> (rhs - b))" unfolding b_def by auto |
801 by (simp only: lang_of_rexp_of finite B_def A_def) |
375 also have "\<dots> = L b \<union> B" unfolding B_def by (simp only: L_rhs_union_distrib) |
802 finally show ?thesis |
376 also have "\<dots> = X ;; A \<union> B" |
803 apply(rule_tac arden[THEN iffD1]) |
377 unfolding b_def |
804 apply(simp (no_asm) add: A_def) |
378 unfolding rhs_trm_soundness[OF finite] |
805 using finite_Trn[OF finite] not_empty |
379 unfolding A_def |
806 apply(simp add: ardenable_def) |
380 by blast |
807 using l_eq_r |
381 finally have "X = X ;; A \<union> B" . |
808 apply(simp) |
382 then have "X = B ;; A\<star>" |
809 done |
383 by (simp add: arden[OF not_empty2]) |
810 qed |
384 also have "\<dots> = L (Arden X rhs)" |
811 moreover have "L (Arden X rhs) = B ;; A\<star>" |
385 unfolding Arden_def A_def B_def b_def |
812 by (simp only:Arden_def L_rhs_union_distrib lang_of_append_rhs |
386 by (simp only: lang_of_append_rexp_rhs L_rexp.simps) |
813 B_def A_def b_def L_rexp.simps seq_union_distrib_left) |
387 finally show "X = L (Arden X rhs)" by simp |
814 ultimately show ?thesis by simp |
|
815 qed |
388 qed |
816 |
389 |
817 lemma append_keeps_finite: |
390 lemma Append_keeps_finite: |
818 "finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)" |
391 "finite rhs \<Longrightarrow> finite (Append_rexp_rhs rhs r)" |
819 by (auto simp:append_rhs_rexp_def) |
392 by (auto simp:Append_rexp_rhs_def) |
820 |
393 |
821 lemma Arden_keeps_finite: |
394 lemma Arden_keeps_finite: |
822 "finite rhs \<Longrightarrow> finite (Arden X rhs)" |
395 "finite rhs \<Longrightarrow> finite (Arden X rhs)" |
823 by (auto simp:Arden_def append_keeps_finite) |
396 by (auto simp:Arden_def Append_keeps_finite) |
824 |
397 |
825 lemma append_keeps_nonempty: |
398 lemma Append_keeps_nonempty: |
826 "ardenable rhs \<Longrightarrow> ardenable (append_rhs_rexp rhs r)" |
399 "ardenable rhs \<Longrightarrow> ardenable (Append_rexp_rhs rhs r)" |
827 apply (auto simp:ardenable_def append_rhs_rexp_def) |
400 apply (auto simp:ardenable_def Append_rexp_rhs_def) |
828 by (case_tac x, auto simp:Seq_def) |
401 by (case_tac x, auto simp:Seq_def) |
829 |
402 |
830 lemma nonempty_set_sub: |
403 lemma nonempty_set_sub: |
831 "ardenable rhs \<Longrightarrow> ardenable (rhs - A)" |
404 "ardenable rhs \<Longrightarrow> ardenable (rhs - A)" |
832 by (auto simp:ardenable_def) |
405 by (auto simp:ardenable_def) |
835 "\<lbrakk>ardenable rhs; ardenable rhs'\<rbrakk> \<Longrightarrow> ardenable (rhs \<union> rhs')" |
408 "\<lbrakk>ardenable rhs; ardenable rhs'\<rbrakk> \<Longrightarrow> ardenable (rhs \<union> rhs')" |
836 by (auto simp:ardenable_def) |
409 by (auto simp:ardenable_def) |
837 |
410 |
838 lemma Arden_keeps_nonempty: |
411 lemma Arden_keeps_nonempty: |
839 "ardenable rhs \<Longrightarrow> ardenable (Arden X rhs)" |
412 "ardenable rhs \<Longrightarrow> ardenable (Arden X rhs)" |
840 by (simp only:Arden_def append_keeps_nonempty nonempty_set_sub) |
413 by (simp only:Arden_def Append_keeps_nonempty nonempty_set_sub) |
841 |
414 |
842 |
415 |
843 lemma Subst_keeps_nonempty: |
416 lemma Subst_keeps_nonempty: |
844 "\<lbrakk>ardenable rhs; ardenable xrhs\<rbrakk> \<Longrightarrow> ardenable (Subst rhs X xrhs)" |
417 "\<lbrakk>ardenable rhs; ardenable xrhs\<rbrakk> \<Longrightarrow> ardenable (Subst rhs X xrhs)" |
845 by (simp only:Subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub) |
418 by (simp only: Subst_def Append_keeps_nonempty nonempty_set_union nonempty_set_sub) |
846 |
419 |
847 lemma Subst_keeps_eq: |
420 lemma Subst_keeps_eq: |
848 assumes substor: "X = L xrhs" |
421 assumes substor: "X = L xrhs" |
849 and finite: "finite rhs" |
422 and finite: "finite rhs" |
850 shows "L (Subst rhs X xrhs) = L rhs" (is "?Left = ?Right") |
423 shows "L (Subst rhs X xrhs) = L rhs" (is "?Left = ?Right") |
851 proof- |
424 proof- |
852 def A \<equiv> "L (rhs - {Trn X r | r. Trn X r \<in> rhs})" |
425 def A \<equiv> "L (rhs - {Trn X r | r. Trn X r \<in> rhs})" |
853 have "?Left = A \<union> L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs}))" |
426 have "?Left = A \<union> L (Append_rexp_rhs xrhs (\<Uplus>{r. Trn X r \<in> rhs}))" |
854 unfolding Subst_def |
427 unfolding Subst_def |
855 unfolding L_rhs_union_distrib[symmetric] |
428 unfolding L_rhs_union_distrib[symmetric] |
856 by (simp add: A_def) |
429 by (simp add: A_def) |
857 moreover have "?Right = A \<union> L ({Trn X r | r. Trn X r \<in> rhs})" |
430 moreover have "?Right = A \<union> L ({Trn X r | r. Trn X r \<in> rhs})" |
858 proof- |
431 proof- |
928 have "Y \<notin> rhss (Arden Y yrhs)" |
501 have "Y \<notin> rhss (Arden Y yrhs)" |
929 using Arden_removes_cl by simp |
502 using Arden_removes_cl by simp |
930 thus ?thesis using xrhs_xrhs' by (auto simp:Subst_updates_cls) |
503 thus ?thesis using xrhs_xrhs' by (auto simp:Subst_updates_cls) |
931 qed |
504 qed |
932 moreover have "rhss xrhs \<subseteq> lhss ES \<union> {Y}" using X_in sc |
505 moreover have "rhss xrhs \<subseteq> lhss ES \<union> {Y}" using X_in sc |
933 apply (simp only:valid_eqs_def lhss_union_distrib) |
506 apply (simp only:validity_def lhss_union_distrib) |
934 by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lhss_def) |
507 by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lhss_def) |
935 moreover have "rhss (Arden Y yrhs) \<subseteq> lhss ES \<union> {Y}" |
508 moreover have "rhss (Arden Y yrhs) \<subseteq> lhss ES \<union> {Y}" |
936 using sc |
509 using sc |
937 by (auto simp add:Arden_removes_cl valid_eqs_def lhss_def) |
510 by (auto simp add:Arden_removes_cl validity_def lhss_def) |
938 ultimately show ?thesis by auto |
511 ultimately show ?thesis by auto |
939 qed |
512 qed |
940 ultimately show ?thesis by simp |
513 ultimately show ?thesis by simp |
941 qed |
514 qed |
942 } thus ?thesis by (auto simp only:Subst_all_def valid_eqs_def) |
515 } thus ?thesis by (auto simp only:Subst_all_def validity_def) |
943 qed |
516 qed |
944 |
517 |
945 lemma Subst_all_satisfies_invariant: |
518 lemma Subst_all_satisfies_invariant: |
946 assumes invariant_ES: "invariant (ES \<union> {(Y, yrhs)})" |
519 assumes invariant_ES: "invariant (ES \<union> {(Y, yrhs)})" |
947 shows "invariant (Subst_all ES Y (Arden Y yrhs))" |
520 shows "invariant (Subst_all ES Y (Arden Y yrhs))" |
948 proof (rule invariantI) |
521 proof (rule invariantI) |
949 have Y_eq_yrhs: "Y = L yrhs" |
522 have Y_eq_yrhs: "Y = L yrhs" |
950 using invariant_ES by (simp only:invariant_def sound_eqs_def, blast) |
523 using invariant_ES by (simp only:invariant_def soundness_def, blast) |
951 have finite_yrhs: "finite yrhs" |
524 have finite_yrhs: "finite yrhs" |
952 using invariant_ES by (auto simp:invariant_def finite_rhs_def) |
525 using invariant_ES by (auto simp:invariant_def finite_rhs_def) |
953 have nonempty_yrhs: "ardenable yrhs" |
526 have nonempty_yrhs: "ardenable yrhs" |
954 using invariant_ES by (auto simp:invariant_def ardenable_all_def) |
527 using invariant_ES by (auto simp:invariant_def ardenable_all_def) |
955 show "sound_eqs (Subst_all ES Y (Arden Y yrhs))" |
528 show "soundness (Subst_all ES Y (Arden Y yrhs))" |
956 proof - |
529 proof - |
957 have "Y = L (Arden Y yrhs)" |
530 have "Y = L (Arden Y yrhs)" |
958 using Y_eq_yrhs invariant_ES finite_yrhs |
531 using Y_eq_yrhs invariant_ES finite_yrhs |
959 using finite_Trn[OF finite_yrhs] |
532 using finite_Trn[OF finite_yrhs] |
960 apply(rule_tac Arden_keeps_eq) |
533 apply(rule_tac Arden_keeps_eq) |
961 apply(simp_all) |
534 apply(simp_all) |
962 unfolding invariant_def ardenable_all_def ardenable_def |
535 unfolding invariant_def ardenable_all_def ardenable_def |
963 apply(auto) |
536 apply(auto) |
964 done |
537 done |
965 thus ?thesis using invariant_ES |
538 thus ?thesis using invariant_ES |
966 unfolding invariant_def finite_rhs_def2 sound_eqs_def Subst_all_def |
539 unfolding invariant_def finite_rhs_def2 soundness_def Subst_all_def |
967 by (auto simp add: Subst_keeps_eq simp del: L_rhs.simps) |
540 by (auto simp add: Subst_keeps_eq simp del: L_rhs.simps) |
968 qed |
541 qed |
969 show "finite (Subst_all ES Y (Arden Y yrhs))" |
542 show "finite (Subst_all ES Y (Arden Y yrhs))" |
970 using invariant_ES by (simp add:invariant_def Subst_all_keeps_finite) |
543 using invariant_ES by (simp add:invariant_def Subst_all_keeps_finite) |
971 show "distinct_equas (Subst_all ES Y (Arden Y yrhs))" |
544 show "distinctness (Subst_all ES Y (Arden Y yrhs))" |
972 using invariant_ES |
545 using invariant_ES |
973 unfolding distinct_equas_def Subst_all_def invariant_def by auto |
546 unfolding distinctness_def Subst_all_def invariant_def by auto |
974 show "ardenable_all (Subst_all ES Y (Arden Y yrhs))" |
547 show "ardenable_all (Subst_all ES Y (Arden Y yrhs))" |
975 proof - |
548 proof - |
976 { fix X rhs |
549 { fix X rhs |
977 assume "(X, rhs) \<in> ES" |
550 assume "(X, rhs) \<in> ES" |
978 hence "ardenable rhs" using prems invariant_ES |
551 hence "ardenable rhs" using invariant_ES |
979 by (auto simp add:invariant_def ardenable_all_def) |
552 by (auto simp add:invariant_def ardenable_all_def) |
980 with nonempty_yrhs |
553 with nonempty_yrhs |
981 have "ardenable (Subst rhs Y (Arden Y yrhs))" |
554 have "ardenable (Subst rhs Y (Arden Y yrhs))" |
982 by (simp add:nonempty_yrhs |
555 by (simp add:nonempty_yrhs |
983 Subst_keeps_nonempty Arden_keeps_nonempty) |
556 Subst_keeps_nonempty Arden_keeps_nonempty) |
1157 obtain xrhs where Inv_ES: "invariant {(X, xrhs)}" |
729 obtain xrhs where Inv_ES: "invariant {(X, xrhs)}" |
1158 using Solve by metis |
730 using Solve by metis |
1159 |
731 |
1160 def A \<equiv> "Arden X xrhs" |
732 def A \<equiv> "Arden X xrhs" |
1161 have "rhss xrhs \<subseteq> {X}" using Inv_ES |
733 have "rhss xrhs \<subseteq> {X}" using Inv_ES |
1162 unfolding valid_eqs_def invariant_def rhss_def lhss_def |
734 unfolding validity_def invariant_def rhss_def lhss_def |
1163 by auto |
735 by auto |
1164 then have "rhss A = {}" unfolding A_def |
736 then have "rhss A = {}" unfolding A_def |
1165 by (simp add: Arden_removes_cl) |
737 by (simp add: Arden_removes_cl) |
1166 then have eq: "{Lam r | r. Lam r \<in> A} = A" unfolding rhss_def |
738 then have eq: "{Lam r | r. Lam r \<in> A} = A" unfolding rhss_def |
1167 by (auto, case_tac x, auto) |
739 by (auto, case_tac x, auto) |
1168 |
740 |
1169 have "finite A" using Inv_ES unfolding A_def invariant_def finite_rhs_def |
741 have "finite A" using Inv_ES unfolding A_def invariant_def finite_rhs_def |
1170 using Arden_keeps_finite by auto |
742 using Arden_keeps_finite by auto |
1171 then have fin: "finite {r. Lam r \<in> A}" by (rule finite_Lam) |
743 then have fin: "finite {r. Lam r \<in> A}" by (rule finite_Lam) |
1172 |
744 |
1173 have "X = L xrhs" using Inv_ES unfolding invariant_def sound_eqs_def |
745 have "X = L xrhs" using Inv_ES unfolding invariant_def soundness_def |
1174 by simp |
746 by simp |
1175 then have "X = L A" using Inv_ES |
747 then have "X = L A" using Inv_ES |
1176 unfolding A_def invariant_def ardenable_all_def finite_rhs_def |
748 unfolding A_def invariant_def ardenable_all_def finite_rhs_def |
1177 by (rule_tac Arden_keeps_eq) (simp_all add: finite_Trn) |
749 by (rule_tac Arden_keeps_eq) (simp_all add: finite_Trn) |
1178 then have "X = L {Lam r | r. Lam r \<in> A}" using eq by simp |
750 then have "X = L {Lam r | r. Lam r \<in> A}" using eq by simp |