Theories/Myhill_2.thy
changeset 149 e122cb146ecc
equal deleted inserted replaced
148:3b7477db3462 149:e122cb146ecc
       
     1 theory Myhill_2
       
     2   imports Myhill_1 Prefix_subtract
       
     3           "~~/src/HOL/Library/List_Prefix"
       
     4 begin
       
     5 
       
     6 section {* Direction @{text "regular language \<Rightarrow>finite partition"} *}
       
     7 
       
     8 definition
       
     9   str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _")
       
    10 where
       
    11   "x \<approx>A y \<equiv> (x, y) \<in> (\<approx>A)"
       
    12 
       
    13 definition 
       
    14    tag_eq_rel :: "(string \<Rightarrow> 'b) \<Rightarrow> (string \<times> string) set" ("=_=")
       
    15 where
       
    16    "=tag= \<equiv> {(x, y) | x y. tag x = tag y}"
       
    17 
       
    18 lemma finite_eq_tag_rel:
       
    19   assumes rng_fnt: "finite (range tag)"
       
    20   shows "finite (UNIV // =tag=)"
       
    21 proof -
       
    22   let "?f" =  "\<lambda>X. tag ` X" and ?A = "(UNIV // =tag=)"
       
    23   have "finite (?f ` ?A)" 
       
    24   proof -
       
    25     have "range ?f \<subseteq> (Pow (range tag))" unfolding Pow_def by auto
       
    26     moreover 
       
    27     have "finite (Pow (range tag))" using rng_fnt by simp
       
    28     ultimately 
       
    29     have "finite (range ?f)" unfolding image_def by (blast intro: finite_subset)
       
    30     moreover
       
    31     have "?f ` ?A \<subseteq> range ?f" by auto
       
    32     ultimately show "finite (?f ` ?A)" by (rule rev_finite_subset) 
       
    33   qed
       
    34   moreover
       
    35   have "inj_on ?f ?A"
       
    36   proof -
       
    37     { fix X Y
       
    38       assume X_in: "X \<in> ?A"
       
    39         and  Y_in: "Y \<in> ?A"
       
    40         and  tag_eq: "?f X = ?f Y"
       
    41       then obtain x y 
       
    42         where "x \<in> X" "y \<in> Y" "tag x = tag y"
       
    43         unfolding quotient_def Image_def image_def tag_eq_rel_def
       
    44         by (simp) (blast)
       
    45       with X_in Y_in 
       
    46       have "X = Y"
       
    47 	unfolding quotient_def tag_eq_rel_def by auto
       
    48     } 
       
    49     then show "inj_on ?f ?A" unfolding inj_on_def by auto
       
    50   qed
       
    51   ultimately show "finite (UNIV // =tag=)" by (rule finite_imageD)
       
    52 qed
       
    53 
       
    54 lemma refined_partition_finite:
       
    55   assumes fnt: "finite (UNIV // R1)"
       
    56   and refined: "R1 \<subseteq> R2"
       
    57   and eq1: "equiv UNIV R1" and eq2: "equiv UNIV R2"
       
    58   shows "finite (UNIV // R2)"
       
    59 proof -
       
    60   let ?f = "\<lambda>X. {R1 `` {x} | x. x \<in> X}" 
       
    61     and ?A = "UNIV // R2" and ?B = "UNIV // R1"
       
    62   have "?f ` ?A \<subseteq> Pow ?B"
       
    63     unfolding image_def Pow_def quotient_def by auto
       
    64   moreover
       
    65   have "finite (Pow ?B)" using fnt by simp
       
    66   ultimately  
       
    67   have "finite (?f ` ?A)" by (rule finite_subset)
       
    68   moreover
       
    69   have "inj_on ?f ?A"
       
    70   proof -
       
    71     { fix X Y
       
    72       assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A" and eq_f: "?f X = ?f Y"
       
    73       from quotientE [OF X_in]
       
    74       obtain x where "X = R2 `` {x}" by blast
       
    75       with equiv_class_self[OF eq2] have x_in: "x \<in> X" by simp
       
    76       then have "R1 ``{x} \<in> ?f X" by auto
       
    77       with eq_f have "R1 `` {x} \<in> ?f Y" by simp
       
    78       then obtain y 
       
    79         where y_in: "y \<in> Y" and eq_r1_xy: "R1 `` {x} = R1 `` {y}" by auto
       
    80       with eq_equiv_class[OF _ eq1] 
       
    81       have "(x, y) \<in> R1" by blast
       
    82       with refined have "(x, y) \<in> R2" by auto
       
    83       with quotient_eqI [OF eq2 X_in Y_in x_in y_in]
       
    84       have "X = Y" .
       
    85     } 
       
    86     then show "inj_on ?f ?A" unfolding inj_on_def by blast 
       
    87   qed
       
    88   ultimately show "finite (UNIV // R2)" by (rule finite_imageD)
       
    89 qed
       
    90 
       
    91 lemma tag_finite_imageD:
       
    92   assumes rng_fnt: "finite (range tag)" 
       
    93   and same_tag_eqvt: "\<And>m n. tag m = tag n \<Longrightarrow> m \<approx>A n"
       
    94   shows "finite (UNIV // \<approx>A)"
       
    95 proof (rule_tac refined_partition_finite [of "=tag="])
       
    96   show "finite (UNIV // =tag=)" by (rule finite_eq_tag_rel[OF rng_fnt])
       
    97 next
       
    98   from same_tag_eqvt
       
    99   show "=tag= \<subseteq> \<approx>A" unfolding tag_eq_rel_def str_eq_def
       
   100     by auto
       
   101 next
       
   102   show "equiv UNIV =tag="
       
   103     unfolding equiv_def tag_eq_rel_def refl_on_def sym_def trans_def
       
   104     by auto
       
   105 next
       
   106   show "equiv UNIV (\<approx>A)" 
       
   107     unfolding equiv_def str_eq_rel_def sym_def refl_on_def trans_def
       
   108     by blast
       
   109 qed
       
   110 
       
   111 
       
   112 subsection {* The proof *}
       
   113 
       
   114 subsubsection {* The base case for @{const "NULL"} *}
       
   115 
       
   116 lemma quot_null_eq:
       
   117   shows "UNIV // \<approx>{} = {UNIV}"
       
   118 unfolding quotient_def Image_def str_eq_rel_def by auto
       
   119 
       
   120 lemma quot_null_finiteI [intro]:
       
   121   shows "finite (UNIV // \<approx>{})"
       
   122 unfolding quot_null_eq by simp
       
   123 
       
   124 
       
   125 subsubsection {* The base case for @{const "EMPTY"} *}
       
   126 
       
   127 lemma quot_empty_subset:
       
   128   shows "UNIV // \<approx>{[]} \<subseteq> {{[]}, UNIV - {[]}}"
       
   129 proof
       
   130   fix x
       
   131   assume "x \<in> UNIV // \<approx>{[]}"
       
   132   then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" 
       
   133     unfolding quotient_def Image_def by blast
       
   134   show "x \<in> {{[]}, UNIV - {[]}}"
       
   135   proof (cases "y = []")
       
   136     case True with h
       
   137     have "x = {[]}" by (auto simp: str_eq_rel_def)
       
   138     thus ?thesis by simp
       
   139   next
       
   140     case False with h
       
   141     have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def)
       
   142     thus ?thesis by simp
       
   143   qed
       
   144 qed
       
   145 
       
   146 lemma quot_empty_finiteI [intro]:
       
   147   shows "finite (UNIV // \<approx>{[]})"
       
   148 by (rule finite_subset[OF quot_empty_subset]) (simp)
       
   149 
       
   150 
       
   151 subsubsection {* The base case for @{const "CHAR"} *}
       
   152 
       
   153 lemma quot_char_subset:
       
   154   "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"
       
   155 proof 
       
   156   fix x 
       
   157   assume "x \<in> UNIV // \<approx>{[c]}"
       
   158   then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}" 
       
   159     unfolding quotient_def Image_def by blast
       
   160   show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}"
       
   161   proof -
       
   162     { assume "y = []" hence "x = {[]}" using h 
       
   163         by (auto simp:str_eq_rel_def) } 
       
   164     moreover 
       
   165     { assume "y = [c]" hence "x = {[c]}" using h 
       
   166         by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def) } 
       
   167     moreover 
       
   168     { assume "y \<noteq> []" and "y \<noteq> [c]"
       
   169       hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto)
       
   170       moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])" 
       
   171         by (case_tac p, auto)
       
   172       ultimately have "x = UNIV - {[],[c]}" using h
       
   173         by (auto simp add:str_eq_rel_def)
       
   174     } 
       
   175     ultimately show ?thesis by blast
       
   176   qed
       
   177 qed
       
   178 
       
   179 lemma quot_char_finiteI [intro]:
       
   180   shows "finite (UNIV // \<approx>{[c]})"
       
   181 by (rule finite_subset[OF quot_char_subset]) (simp)
       
   182 
       
   183 
       
   184 subsubsection {* The inductive case for @{const ALT} *}
       
   185 
       
   186 definition 
       
   187   tag_str_ALT :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang)"
       
   188 where
       
   189   "tag_str_ALT A B \<equiv> (\<lambda>x. (\<approx>A `` {x}, \<approx>B `` {x}))"
       
   190 
       
   191 lemma quot_union_finiteI [intro]:
       
   192   fixes L1 L2::"lang"
       
   193   assumes finite1: "finite (UNIV // \<approx>A)"
       
   194   and     finite2: "finite (UNIV // \<approx>B)"
       
   195   shows "finite (UNIV // \<approx>(A \<union> B))"
       
   196 proof (rule_tac tag = "tag_str_ALT A B" in tag_finite_imageD)
       
   197   have "finite ((UNIV // \<approx>A) \<times> (UNIV // \<approx>B))" 
       
   198     using finite1 finite2 by auto
       
   199   then show "finite (range (tag_str_ALT A B))"
       
   200     unfolding tag_str_ALT_def quotient_def
       
   201     by (rule rev_finite_subset) (auto)
       
   202 next
       
   203   show "\<And>x y. tag_str_ALT A B x = tag_str_ALT A B y \<Longrightarrow> x \<approx>(A \<union> B) y"
       
   204     unfolding tag_str_ALT_def
       
   205     unfolding str_eq_def
       
   206     unfolding str_eq_rel_def
       
   207     by auto
       
   208 qed
       
   209 
       
   210 
       
   211 subsubsection {* The inductive case for @{text "SEQ"}*}
       
   212 
       
   213 definition 
       
   214   tag_str_SEQ :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang set)"
       
   215 where
       
   216   "tag_str_SEQ L1 L2 \<equiv>
       
   217      (\<lambda>x. (\<approx>L1 `` {x}, {(\<approx>L2 `` {x - xa}) | xa.  xa \<le> x \<and> xa \<in> L1}))"
       
   218 
       
   219 lemma Seq_in_cases:
       
   220   assumes "x @ z \<in> A ;; B"
       
   221   shows "(\<exists> x' \<le> x. x' \<in> A \<and> (x - x') @ z \<in> B) \<or> 
       
   222          (\<exists> z' \<le> z. (x @ z') \<in> A \<and> (z - z') \<in> B)"
       
   223 using assms
       
   224 unfolding Seq_def prefix_def
       
   225 by (auto simp add: append_eq_append_conv2)
       
   226 
       
   227 lemma tag_str_SEQ_injI:
       
   228   assumes eq_tag: "tag_str_SEQ A B x = tag_str_SEQ A B y" 
       
   229   shows "x \<approx>(A ;; B) y"
       
   230 proof -
       
   231   { fix x y z
       
   232     assume xz_in_seq: "x @ z \<in> A ;; B"
       
   233     and tag_xy: "tag_str_SEQ A B x = tag_str_SEQ A B y"
       
   234     have"y @ z \<in> A ;; B" 
       
   235     proof -
       
   236       { (* first case with x' in A and (x - x') @ z in B *)
       
   237         fix x'
       
   238         assume h1: "x' \<le> x" and h2: "x' \<in> A" and h3: "(x - x') @ z \<in> B"
       
   239         obtain y' 
       
   240           where "y' \<le> y" 
       
   241           and "y' \<in> A" 
       
   242           and "(y - y') @ z \<in> B"
       
   243         proof -
       
   244           have "{\<approx>B `` {x - x'} |x'. x' \<le> x \<and> x' \<in> A} = 
       
   245                 {\<approx>B `` {y - y'} |y'. y' \<le> y \<and> y' \<in> A}" (is "?Left = ?Right")
       
   246             using tag_xy unfolding tag_str_SEQ_def by simp
       
   247           moreover 
       
   248 	  have "\<approx>B `` {x - x'} \<in> ?Left" using h1 h2 by auto
       
   249           ultimately 
       
   250 	  have "\<approx>B `` {x - x'} \<in> ?Right" by simp
       
   251           then obtain y' 
       
   252             where eq_xy': "\<approx>B `` {x - x'} = \<approx>B `` {y - y'}" 
       
   253             and pref_y': "y' \<le> y" and y'_in: "y' \<in> A"
       
   254             by simp blast
       
   255 	  
       
   256 	  have "(x - x')  \<approx>B (y - y')" using eq_xy'
       
   257             unfolding Image_def str_eq_rel_def str_eq_def by auto
       
   258           with h3 have "(y - y') @ z \<in> B" 
       
   259 	    unfolding str_eq_rel_def str_eq_def by simp
       
   260           with pref_y' y'_in 
       
   261           show ?thesis using that by blast
       
   262         qed
       
   263 	then have "y @ z \<in> A ;; B" by (erule_tac prefixE) (auto simp: Seq_def)
       
   264       } 
       
   265       moreover 
       
   266       { (* second case with x @ z' in A and z - z' in B *)
       
   267         fix z'
       
   268         assume h1: "z' \<le> z" and h2: "(x @ z') \<in> A" and h3: "z - z' \<in> B"
       
   269 	 have "\<approx>A `` {x} = \<approx>A `` {y}" 
       
   270            using tag_xy unfolding tag_str_SEQ_def by simp
       
   271          with h2 have "y @ z' \<in> A"
       
   272             unfolding Image_def str_eq_rel_def str_eq_def by auto
       
   273         with h1 h3 have "y @ z \<in> A ;; B"
       
   274 	  unfolding prefix_def Seq_def
       
   275 	  by (auto) (metis append_assoc)
       
   276       }
       
   277       ultimately show "y @ z \<in> A ;; B" 
       
   278 	using Seq_in_cases [OF xz_in_seq] by blast
       
   279     qed
       
   280   }
       
   281   from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]
       
   282     show "x \<approx>(A ;; B) y" unfolding str_eq_def str_eq_rel_def by blast
       
   283 qed 
       
   284 
       
   285 lemma quot_seq_finiteI [intro]:
       
   286   fixes L1 L2::"lang"
       
   287   assumes fin1: "finite (UNIV // \<approx>L1)" 
       
   288   and     fin2: "finite (UNIV // \<approx>L2)" 
       
   289   shows "finite (UNIV // \<approx>(L1 ;; L2))"
       
   290 proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD)
       
   291   show "\<And>x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \<Longrightarrow> x \<approx>(L1 ;; L2) y"
       
   292     by (rule tag_str_SEQ_injI)
       
   293 next
       
   294   have *: "finite ((UNIV // \<approx>L1) \<times> (Pow (UNIV // \<approx>L2)))" 
       
   295     using fin1 fin2 by auto
       
   296   show "finite (range (tag_str_SEQ L1 L2))" 
       
   297     unfolding tag_str_SEQ_def
       
   298     apply(rule finite_subset[OF _ *])
       
   299     unfolding quotient_def
       
   300     by auto
       
   301 qed
       
   302 
       
   303 
       
   304 subsubsection {* The inductive case for @{const "STAR"} *}
       
   305 
       
   306 definition 
       
   307   tag_str_STAR :: "lang \<Rightarrow> string \<Rightarrow> lang set"
       
   308 where
       
   309   "tag_str_STAR L1 \<equiv> (\<lambda>x. {\<approx>L1 `` {x - xa} | xa. xa < x \<and> xa \<in> L1\<star>})"
       
   310 
       
   311 text {* A technical lemma. *}
       
   312 lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> 
       
   313            (\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))"
       
   314 proof (induct rule:finite.induct)
       
   315   case emptyI thus ?case by simp
       
   316 next
       
   317   case (insertI A a)
       
   318   show ?case
       
   319   proof (cases "A = {}")
       
   320     case True thus ?thesis by (rule_tac x = a in bexI, auto)
       
   321   next
       
   322     case False
       
   323     with insertI.hyps and False  
       
   324     obtain max 
       
   325       where h1: "max \<in> A" 
       
   326       and h2: "\<forall>a\<in>A. f a \<le> f max" by blast
       
   327     show ?thesis
       
   328     proof (cases "f a \<le> f max")
       
   329       assume "f a \<le> f max"
       
   330       with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto)
       
   331     next
       
   332       assume "\<not> (f a \<le> f max)"
       
   333       thus ?thesis using h2 by (rule_tac x = a in bexI, auto)
       
   334     qed
       
   335   qed
       
   336 qed
       
   337 
       
   338 
       
   339 text {* The following is a technical lemma, which helps to show the range finiteness of tag function. *}
       
   340 
       
   341 lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}"
       
   342 apply (induct x rule:rev_induct, simp)
       
   343 apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}")
       
   344 by (auto simp:strict_prefix_def)
       
   345 
       
   346 
       
   347 lemma tag_str_STAR_injI:
       
   348   assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w"
       
   349   shows "v \<approx>(L\<^isub>1\<star>) w"
       
   350 proof-
       
   351   { fix x y z
       
   352     assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" 
       
   353       and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y"
       
   354     have "y @ z \<in> L\<^isub>1\<star>"
       
   355     proof(cases "x = []")
       
   356       case True
       
   357       with tag_xy have "y = []" 
       
   358         by (auto simp add: tag_str_STAR_def strict_prefix_def)
       
   359       thus ?thesis using xz_in_star True by simp
       
   360     next
       
   361       case False
       
   362       let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}"
       
   363       have "finite ?S"
       
   364         by (rule_tac B = "{xa. xa < x}" in finite_subset, 
       
   365           auto simp:finite_strict_prefix_set)
       
   366       moreover have "?S \<noteq> {}" using False xz_in_star
       
   367         by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def)
       
   368       ultimately have "\<exists> xa_max \<in> ?S. \<forall> xa \<in> ?S. length xa \<le> length xa_max" 
       
   369         using finite_set_has_max by blast
       
   370       then obtain xa_max 
       
   371         where h1: "xa_max < x" 
       
   372         and h2: "xa_max \<in> L\<^isub>1\<star>" 
       
   373         and h3: "(x - xa_max) @ z \<in> L\<^isub>1\<star>" 
       
   374         and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>  
       
   375                                      \<longrightarrow> length xa \<le> length xa_max"
       
   376         by blast
       
   377       obtain ya 
       
   378         where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" 
       
   379         and eq_xya: "(x - xa_max) \<approx>L\<^isub>1 (y - ya)"
       
   380       proof-
       
   381         from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = 
       
   382           {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right")
       
   383           by (auto simp:tag_str_STAR_def)
       
   384         moreover have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?left" using h1 h2 by auto
       
   385         ultimately have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?right" by simp
       
   386         thus ?thesis using that 
       
   387           apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast
       
   388       qed 
       
   389       have "(y - ya) @ z \<in> L\<^isub>1\<star>" 
       
   390       proof-
       
   391         obtain za zb where eq_zab: "z = za @ zb" 
       
   392           and l_za: "(y - ya)@za \<in> L\<^isub>1" and ls_zb: "zb \<in> L\<^isub>1\<star>"
       
   393         proof -
       
   394           from h1 have "(x - xa_max) @ z \<noteq> []" 
       
   395             by (auto simp:strict_prefix_def elim:prefixE)
       
   396           from star_decom [OF h3 this]
       
   397           obtain a b where a_in: "a \<in> L\<^isub>1" 
       
   398             and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" 
       
   399             and ab_max: "(x - xa_max) @ z = a @ b" by blast
       
   400           let ?za = "a - (x - xa_max)" and ?zb = "b"
       
   401           have pfx: "(x - xa_max) \<le> a" (is "?P1") 
       
   402             and eq_z: "z = ?za @ ?zb" (is "?P2")
       
   403           proof -
       
   404             have "((x - xa_max) \<le> a \<and> (a - (x - xa_max)) @ b = z) \<or> 
       
   405               (a < (x - xa_max) \<and> ((x - xa_max) - a) @ z = b)" 
       
   406               using append_eq_dest[OF ab_max] by (auto simp:strict_prefix_def)
       
   407             moreover {
       
   408               assume np: "a < (x - xa_max)" 
       
   409                 and b_eqs: "((x - xa_max) - a) @ z = b"
       
   410               have "False"
       
   411               proof -
       
   412                 let ?xa_max' = "xa_max @ a"
       
   413                 have "?xa_max' < x" 
       
   414                   using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) 
       
   415                 moreover have "?xa_max' \<in> L\<^isub>1\<star>" 
       
   416                   using a_in h2 by (simp add:star_intro3) 
       
   417                 moreover have "(x - ?xa_max') @ z \<in> L\<^isub>1\<star>" 
       
   418                   using b_eqs b_in np h1 by (simp add:diff_diff_append)
       
   419                 moreover have "\<not> (length ?xa_max' \<le> length xa_max)" 
       
   420                   using a_neq by simp
       
   421                 ultimately show ?thesis using h4 by blast
       
   422               qed }
       
   423             ultimately show ?P1 and ?P2 by auto
       
   424           qed
       
   425           hence "(x - xa_max)@?za \<in> L\<^isub>1" using a_in by (auto elim:prefixE)
       
   426           with eq_xya have "(y - ya) @ ?za \<in> L\<^isub>1" 
       
   427             by (auto simp:str_eq_def str_eq_rel_def)
       
   428            with eq_z and b_in 
       
   429           show ?thesis using that by blast
       
   430         qed
       
   431         have "((y - ya) @ za) @ zb \<in> L\<^isub>1\<star>" using  l_za ls_zb by blast
       
   432         with eq_zab show ?thesis by simp
       
   433       qed
       
   434       with h5 h6 show ?thesis 
       
   435         by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE)
       
   436     qed
       
   437   } 
       
   438   from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]
       
   439     show  ?thesis unfolding str_eq_def str_eq_rel_def by blast
       
   440 qed
       
   441 
       
   442 lemma quot_star_finiteI [intro]:
       
   443   assumes finite1: "finite (UNIV // \<approx>L1)"
       
   444   shows "finite (UNIV // \<approx>(L1\<star>))"
       
   445 proof (rule_tac tag = "tag_str_STAR L1" in tag_finite_imageD)
       
   446   show "\<And>x y. tag_str_STAR L1 x = tag_str_STAR L1 y \<Longrightarrow> x \<approx>(L1\<star>) y"
       
   447     by (rule tag_str_STAR_injI)
       
   448 next
       
   449   have *: "finite (Pow (UNIV // \<approx>L1))" 
       
   450     using finite1 by auto
       
   451   show "finite (range (tag_str_STAR L1))"
       
   452     unfolding tag_str_STAR_def
       
   453     apply(rule finite_subset[OF _ *])
       
   454     unfolding quotient_def
       
   455     by auto
       
   456 qed
       
   457 
       
   458 subsubsection{* The conclusion *}
       
   459 
       
   460 lemma Myhill_Nerode2:
       
   461   fixes r::"rexp"
       
   462   shows "finite (UNIV // \<approx>(L r))"
       
   463 by (induct r) (auto)
       
   464 
       
   465 
       
   466 theorem Myhill_Nerode:
       
   467   shows "(\<exists>r::rexp. A = L r) \<longleftrightarrow> finite (UNIV // \<approx>A)"
       
   468 using Myhill_Nerode1 Myhill_Nerode2 by auto
       
   469 
       
   470 end