|
1 \begin{figure}[h!] |
|
2 \centering |
|
3 |
|
4 \subfigure[First possible way to split $x@z$]{\label{seq_first_split} |
|
5 \scalebox{0.7}{ |
|
6 \begin{tikzpicture} |
|
7 \node[draw,minimum height=3.8ex] (xa) { $\hspace{4em}xa\hspace{4em}$ }; |
|
8 \node[draw,minimum height=3.8ex, right=-0.03em of xa] (xxa) { $\hspace{0.5em}x - xa\hspace{0.5em}$ }; |
|
9 \node[draw,minimum height=3.8ex, right=-0.03em of xxa] (z) { $\hspace{21em}$ }; |
|
10 |
|
11 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
12 (xa.north west) -- ($(xxa.north east)+(0em,0em)$) |
|
13 node[midway, above=0.5em]{$x$}; |
|
14 |
|
15 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
16 (z.north west) -- ($(z.north east)+(0em,0em)$) |
|
17 node[midway, above=0.5em]{$z$}; |
|
18 |
|
19 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
20 ($(xa.north west)+(0em,3ex)$) -- ($(z.north east)+(0em,3ex)$) |
|
21 node[midway, above=0.8em]{$x @ z \in L_1 ;; L_2$}; |
|
22 |
|
23 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
24 ($(z.south east)+(0em,0ex)$) -- ($(xxa.south west)+(0em,0ex)$) |
|
25 node[midway, below=0.5em]{$(x - xa) @ z \in L_2$}; |
|
26 |
|
27 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
28 ($(xa.south east)+(0em,0ex)$) -- ($(xa.south west)+(0em,0ex)$) |
|
29 node[midway, below=0.5em]{$xa \in L_1$}; |
|
30 \end{tikzpicture}}} |
|
31 |
|
32 \subfigure[Transferred structure corresponding to the first way of splitting]{\label{seq_trans_first_split} |
|
33 \scalebox{0.7}{ |
|
34 \begin{tikzpicture} |
|
35 \node[draw,minimum height=3.8ex] (xa) { $\hspace{4em}ya\hspace{4em}$ }; |
|
36 \node[draw,minimum height=3.8ex, right=-0.03em of xa] (xxa) { $\hspace{0.5em}y - ya\hspace{0.5em}$ }; |
|
37 \node[draw,minimum height=3.8ex, right=-0.03em of xxa] (z) { $\hspace{21em}$ }; |
|
38 |
|
39 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
40 (xa.north west) -- ($(xxa.north east)+(0em,0em)$) |
|
41 node[midway, above=0.5em]{$y$}; |
|
42 |
|
43 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
44 (z.north west) -- ($(z.north east)+(0em,0em)$) |
|
45 node[midway, above=0.5em]{$z$}; |
|
46 |
|
47 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
48 ($(xa.north west)+(0em,3ex)$) -- ($(z.north east)+(0em,3ex)$) |
|
49 node[midway, above=0.8em]{$y @ z \in L_1 ;; L_2$}; |
|
50 |
|
51 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
52 ($(z.south east)+(0em,0ex)$) -- ($(xxa.south west)+(0em,0ex)$) |
|
53 node[midway, below=0.5em]{$(y - ya) @ z \in L_2$}; |
|
54 |
|
55 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
56 ($(xa.south east)+(0em,0ex)$) -- ($(xa.south west)+(0em,0ex)$) |
|
57 node[midway, below=0.5em]{$ya \in L_1$}; |
|
58 \end{tikzpicture}}} |
|
59 |
|
60 \subfigure[The second possible way to split $x@z$]{\label{seq_snd_split} |
|
61 \scalebox{0.7}{ |
|
62 \begin{tikzpicture} |
|
63 \node[draw,minimum height=3.8ex] (x) { $\hspace{6.5em}x\hspace{6.5em}$ }; |
|
64 \node[draw,minimum height=3.8ex, right=-0.03em of x] (za) { $\hspace{2em}za\hspace{2em}$ }; |
|
65 \node[draw,minimum height=3.8ex, right=-0.03em of za] (zza) { $\hspace{6.1em}z - za\hspace{6.1em}$ }; |
|
66 |
|
67 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
68 ($(za.north west)+(0em,0ex)$) -- ($(zza.north east)+(0em,0ex)$) |
|
69 node[midway, above=0.8em]{$z$}; |
|
70 |
|
71 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
72 ($(x.north west)+(0em,3ex)$) -- ($(zza.north east)+(0em,3ex)$) |
|
73 node[midway, above=0.8em]{$x @ z \in L_1 ;; L_2$}; |
|
74 |
|
75 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
76 ($(za.south east)+(0em,0ex)$) -- ($(x.south west)+(0em,0ex)$) |
|
77 node[midway, below=0.5em]{$x @ za \in L_1$}; |
|
78 \end{tikzpicture}}} |
|
79 |
|
80 |
|
81 \subfigure[Transferred structure corresponding to the second way of splitting]{\label{seq_trans_snd_split} |
|
82 \scalebox{0.7}{ |
|
83 \begin{tikzpicture} |
|
84 \node[draw,minimum height=3.8ex] (x) { $\hspace{6.5em}y\hspace{6.5em}$ }; |
|
85 \node[draw,minimum height=3.8ex, right=-0.03em of x] (za) { $\hspace{2em}za\hspace{2em}$ }; |
|
86 \node[draw,minimum height=3.8ex, right=-0.03em of za] (zza) { $\hspace{6.1em}z - za\hspace{6.1em}$ }; |
|
87 |
|
88 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
89 ($(za.north west)+(0em,0ex)$) -- ($(zza.north east)+(0em,0ex)$) |
|
90 node[midway, above=0.8em]{$z$}; |
|
91 |
|
92 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
93 ($(x.north west)+(0em,3ex)$) -- ($(zza.north east)+(0em,3ex)$) |
|
94 node[midway, above=0.8em]{$y @ z \in L_1 ;; L_2$}; |
|
95 |
|
96 \draw[decoration={brace,transform={yscale=3}},decorate] |
|
97 ($(za.south east)+(0em,0ex)$) -- ($(x.south west)+(0em,0ex)$) |
|
98 node[midway, below=0.5em]{$y @ za \in L_1$}; |
|
99 \end{tikzpicture}}} |
|
100 |
|
101 \caption{The case for $SEQ$} |
|
102 \end{figure} |